
 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

814

SMARTSCAN: A COMPREHENSIVE FRAMEWORK FOR
EFFICIENT AND OPTIMIZED FORMAL VERIFICATION OF

COMPLEX BLOCKCHAIN SMART CONTRACTS

G.SOWMYA1 , DR.R.SRIDEVI2
1Research Scholor, JNTUH, Department of CSE, Hyd, India

2Professor. JNTUH, Department of CSE, Hyd, Country
E-mail: gonurusowmya@gmail.com, sridevirangu@jntuh.ac.in

ABSTRACT

Smart contracts are gaining popularity as blockchain technology, and its uses continue to develop rapidly.
Smart contracts are necessary to enforce real-time contracts in Blockchain systems. It is essential to
thoroughly verify both simple and complex smart contracts since inconsistencies could lead to issues like the
inability to deliver the required services. Existing tools like SmartCheck can automatically verify the
correctness of smart contracts. However, a more complete solution that ensures the accuracy of smart
contracts and considers security concerns is needed. In this study, we propose SmartScan, an efficient and
optimal framework for formally verifying complex blockchain smart contracts. SmartScan uses a hybrid
methodology that includes formal approaches, optimized heuristics, static analysis, and an optimized
verification process to find weaknesses and inconsistencies in smart contracts. SmartScan's architecture aims
to be robust to complex relationships and many interconnected parts. SmartScan streamlines the verification
process by lowering its temporal and computational complexity. More importantly, it can validate the smart
contracts of large-scale blockchain applications due to its scalable architecture. It manages the life cycle of
smart contracts and can be extended to interface with other apps. Several algorithms in SmartScan aid in
realizing the underlying architecture so that its primary functions can be accomplished. In terms of computer
complexity, temporal complexity, and the ability to detect flaws and irregularities in simple and sophisticated
smart contracts, SmartScan outperforms many currently used approaches, per an objective analysis using the
DeFiLending case study. As a result, SmartScan is more than just a tool; it is a scalable and effective solution
that can be incorporated into already-existing applications that deal with the life cycle of smart contracts and
blockchain application development.

Keywords - Smart Contracts Verification, Blockchain Technology, Blockchain Applications, Formal
Verification, Smart Contact Life Cycle

1. INTRODUCTION
Blockchain technology is a decentralized

digital ledger that enables multiple people to
preserve records safely and publicly without
needing a single authority. Every block in the
chain has a cryptographic link to the block before
it, which also has a list of transactions, ensuring
the data's integrity and immutability.
Organizations like logistics management and
Bitcoin that require security, transparency, and
trust benefit significantly from blockchain
technology. A document with terms encoded into
computer code that can be executed
independently is called a contract with
intelligence. Blockchain technology is used in
electronic contracts to manage and implement
contracts autonomously based on predefined

criteria. Smart contracts enhance transaction
efficiency and save money, as they do not need
intermediaries. They are indispensable to
complex systems such as decentralized finance
(DeFi), governance protocols, and virtual asset
management.

Official verification is an algebraic
technique that can prove the accuracy of
algorithms and systems. To ensure they are
resistant to a wide range of possible risks. Smart
contracts must be long-term secure and resilient
against failure, error, or misuse and must meet
regulatory compliance requirements. Smart
contracts have various applications, especially in
the banking sector. It is also crucial as any fault or
vulnerability may lead to millions of dollars in
losses. As they move autonomously, there is more

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

815

willingness to trust the smart contracts when their
accuracy is validated. Proving readiness to follow
laws and regulations through official
documentation might encourage using blockchain
technologies more often. Problems can be
identified quickly before being implemented once
an agreement is published, avoiding costly errors
through official verification.

Multiple established methods exist for
validating smart contracts, each with advantages
and disadvantages. Model testing examines the
space of a system to determine things such as
safety and liveness. While it is practical, model
verification for complex contracts may be
resource-intensive. On the other hand, one can use
a theorem-type approach to prove that a contract
is legal in its terms. It requires a lot of effort and
talent, but it provides a lot of assurance. Symbolic
code execution is used in place of physical inputs
in operation symbolic to enable the investigation
of numerous execution paths. Despite its strength,
it might not be able to withstand state explosions.
Two programs, Mythril and Slither, use static
analysis to find issues and flaws in smart contracts
without ever having to execute them. Because of
their quickness, they could miss some contextual
mistakes. Formal approaches have become more
accessible for developers to apply because of tools
like VeriSol and KEVM, which provide
automated frameworks for comparing smart
contracts to specifications. Employing
appropriate and ideal formal verification
approaches is necessary because blockchain and
smart contract technologies are widely used. By
guaranteeing the precision and safety of smart
contracts, blockchain applications can gain more
dependability and credibility, paving the way for
this innovative technology's more comprehensive
implementation and development.

As part of this study, we present a
thorough SmartScan framework for the successful
and fast formal verification of intricate blockchain
smart contracts. A hybrid tool called SmartScan
uses formal methods, updated verification
processes, improved heuristics, and static analysis
to find flaws and inconsistencies in smart
contracts. The primary objective of SmartScan's
design is to ensure that it can tolerate intricate
connections and interactions between various
parts. It boosts efficiency by speeding up the
verification process in terms of time and
calculation. The scalability of SmartScan allows
it to validate smart contracts used in large-scale
blockchain applications. The framework can be
utilized by apps that manage the smart contract

lifecycle due to its adaptability and simplicity of
usage. Many algorithms are built into SmartScan
to support its primary features and simplify the
underlying processes. An investigation of the
DeFiLending scenario shows that SmartScan
outperforms several existing approaches in terms
of time complexity, computational complexity,
and its capacity to detect bugs and inconsistencies
in simple and sophisticated smart contracts. As a
result, SmartScan is more than just a tool; it is a
scalable and effective solution that can be
incorporated into already-existing blockchain
development and smart contract lifecycle
applications. This paper's remaining sections are
organized as follows: The literature on formal
verification techniques is reviewed in Section 2.
Section 3 presents the necessary preliminaries.
Section 4 introduces the proposed framework.
Section 5 discusses the case study. Section 6
presents the experimental results, while Section 7
outlines the study's limitations and provides
directions for future research.

2. RELATED WORK

This section reviews prior works on
smart contract formal verification tools. Singh et
al. [1] allowed using smart contracts to enable
decentralized apps; however, security issues still
exist. Vulnerabilities are addressed by formal
approaches such as theorem proofing. An analysis
stresses cooperative efforts for increased smart
contract security while highlighting methods,
languages, and tools Permenev et al. [2] regarding
real-world custom requirements; VERX is an
automated verification demonstrating the
functional features of Ethereum smart contracts. It
uses three strategies, showing that it is helpful in
real life. Liu et al. [3] investigated the security
verification of blockchain smart contracts, fixing
flaws and accuracy. Future research shows
potential when formal approaches are the focus.
So et al. [4] arithmetic safety in Ethereum smart
contracts is guaranteed by VERISMART, an
accurate verifier. It reduces manual inspections
and false alerts by outperforming current
analyzers. Gao et al. [5] Word embedding is used
automatically to discover bugs and clones,
ensuring the dependability of Solidity smart
contracts. It can identify 90% of clones and detect
bugs effectively after being evaluated on 22,000
contracts.

Angelo and Salzer et al. [6] decentralized
apps are powered by smart contracts, which
openly manage asset trades. Open-source
development promotes confidence. Reusing parts

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

816

from reliable repositories such as ConsenSys and
the Ethereum Foundation is advised. Five tools
inspire. Feist et al. [7] SlithIR is used by Slither,
an open-source static analysis framework for
Ethereum smart contracts, to find bugs, optimize
code, and comprehend them efficiently. Grech et
al. [8], with accuracy, comprehensiveness, and
scalability for analysis, Gigahorse, a toolchain,
decompiles Ethereum smart contracts into high-
level 3-address code. Zheng et al. [9] state that
smart contracts transform sectors by automating
contracts on blockchains. Issues with bugs,
security, and bridging gaps across disciplines of
knowledge exist despite the promise. Issues with
security, language barriers, performance, and few
resources beset Zou et al. [10] Blockchain-driven
smart contract development. Further study and
advancements are required.

Pinna et al. [11] thoroughly examine
more than 10,000 Ethereum Smart Contracts,
looking into their features, transactions, positions
in the development community, and source code
attributes. Results show power-law distributions,
developing software, and a wide range of uses not
limited to crypto values. Ante [12] examined
20,188 references and 468 publications on smart
contracts, identifying six study strands that
address legal, social, technological, and economic
issues. The promise and multidisciplinary nature
of smart contracts are highlighted, along with
challenges and prospects for further study. Babel
et al. [13] for decentralized finance (DeFi) smart
contracts, Clockwork Finance Framework (CFF)
is a flexible formal verification tool that
guarantees both attack exhaustiveness and
contract completeness. Without pre-programmed
attack techniques, CFF creates models for well-
known DeFi protocols and finds that real-world
transactions have an average monthly estimated
extractable value (EV) of $56 million. Rana et al.
[14] utilized smart contracts to propose a
decentralized paradigm on the Layer 2 Polygon
blockchain; data security, integrity, and
transparency are guaranteed. Superior
dependability is demonstrated via simulations,
and scalability issues are resolved. Yamashita et
al. [15] discussed the hazards of Hyperledger
Fabric smart contracts, especially those created in
Go. The study presents a novel static analytic
technique to identify new risks and emphasizes
the necessity of regular surveys and updates.

Kemmoe et al. [16] examined state-of-
the-art blockchain-based smart contract
technologies, classifying developments in social
applications, contract architecture, access control,

and cryptography. It points out flaws, emphasizes
recent advancements, and makes
recommendations for future lines of inquiry.
Wang et al. [17] suggested using machine
learning to quickly identify Ethereum smart
contract vulnerabilities, with an average detection
time of 4 seconds and over 96% prediction
accuracy—subsequent research endeavors to
optimize efficiency and identify new weaknesses.
Khan et al. [18] influence on banking and the rise
of trustless environments with smart contracts are
revolutionary. A survey that addresses obstacles
and unresolved issues examines technical, use,
and future trends. Vacca et al. [19], a literature
survey on blockchain software engineering,
identify problems with testing, security, metrics,
and smart contract creation. Open challenges are
noted for more research on a variety of subjects.
Huang et al. [20] investigated the issues with
security in smart contracts running on
decentralized blockchains. It examines salient
characteristics, susceptibilities, and remedies
across the software life cycle and makes
recommendations for future study avenues.

Rouhani and Deters [21] examined the
development of blockchain technology,
emphasizing the use of smart contracts for
purposes other than cryptocurrency. Research on
security, performance, and decentralized
applications is categorized under it. Peng et al.
[22] thoroughly examine the research prospects
and security concerns of using smart contracts in
Internet of Things applications, emphasizing
possible attacks, programming problems, and
vulnerabilities. The survey aims to direct future
research on this developing topic. Jiao et al. [23]
aimed to increase security in implementing
Ethereum smart contracts by introducing formal
Solidity semantics that enhance source code
verification. Hewa et al. [24] examined how
blockchain technology and smart contracts may
revolutionize various applications, emphasizing
the present advantages and the possibilities for the
future. Kushwaha et al. [25] methodically
examined Ethereum smart contract security,
including flaws, assaults, defenses, and potential
future study areas.

Kirli et al. [26] examined 13 initiatives,
178 articles, and blockchain-enabled smart
contracts in the energy industry. The report
addresses issues and provides solutions
emphasizing distributed control, energy, and
flexibility trading. Hamledari et al. [27] presented
a payment system that ensures speed and accuracy
in autonomous payments in building projects by

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

817

utilizing blockchain smart contracts and robotic
reality capture. After being successfully applied to
actual projects, the technique eliminates
inefficiencies in the payment workflow and opens
the door for broader adoption by fusing on-chain
and off-chain reality. Vangala et al. [28] offered a
blockchain-based intelligent farming system that
guarantees data integrity, transparency, and
anonymity. Formal analysis and simulation verify
that the suggested authentication strategy delivers
greater security and functionality. Sookhak et al.
[29] examined the security, taxonomy, and
problems of blockchain-based access control for
Electronic Health Records (EHRs) in the medical
field. Saini et al. [30] presented a safe framework
in a blockchain-based innovative healthcare
system for exchanging Electronic Medical
Records (EMRs). For effective access control, the
system uses blockchain technology and
encryption.

Seven et al. [31] offered a peer-to-peer
energy trading platform built on the Ethereum
blockchain for a virtual power plant. It
concentrates on the financial side, using smart
contracts to establish an auction for safe and
affordable transactions within a virtual private
network. On the Ethereum Ropsten Test Network,
actual data is used to validate the suggested
design. Hu et al. [32] addressed vulnerabilities
and fraud by implementing a transaction-based
approach for Ethereum smart contract
categorization and detection. The technique
demonstrates exemplary performance in
recognizing abnormalities and differentiating
across contract types using LSTM. Sanchez [33]
executed traces are compared to specifications in
the formal methods field of runtime verification,
often used in software. This article emphasizes
overcoming obstacles by outlining issues in
several disciplines. Liu et al. [34] suggested that
the EV power selling paradigm for V2G networks
is based on blockchain technology and uses
reverse auctions and smart contracts. Simulation
studies confirm its efficacy. Li et al. [35]
suggested using a hierarchical architecture to
manage a distributed energy system with various
end users and renewable sources. It uses
blockchain technology and smart contracts to run
safe and effective operations; a case study
conducted in Singapore demonstrates the
potential outcomes. Future developments will
focus on scalability and resolving obstacles to the
acceptance of blockchain technology.

Xiong et al. [36] addressed issues with
traditional data trading and offered a blockchain

alternative using machine learning and smart
contracts. It secures data owner rights, removes
reliance on other parties, and expedites Ethereum
payments. The research, which is available on
GitHub, examines the smart contract's
conception, execution, security analysis, and
performance assessment. Upcoming projects will
improve smart contracts to stop post-sale data
reselling. Alkadi et al. [37] examined a Deep
Blockchain Framework (DBF) focusing on cloud
privacy protection for cooperative intrusion
detection. Using Ethereum for a privacy-based
blockchain and Bidirectional Long Short-Term
Memory (BiLSTM) for intrusion detection, DBF
performs better than its peers. It offers a safe
method of decision assistance for prompt data
movement. Future research aims to assess the
usefulness and scalability of various real-world
datasets. Wang et al. [38] became more popular,
especially with Ethereum's smart contracts. This
study examines the security of Ethereum smart
contracts from 2015 to 2019, pointing out flaws
and suggesting areas for further research to
improve security. Wang et al. [39] fixed problems
with agricultural food supply chains, guaranteeing
transparency and traceability. Reliability and
security are increased by process tracking and
information sharing, which are improved by a
consortium and smart contract-based architecture.
When used at Shanwei Lvfengyuan Modern
Agricultural Development Co., Ltd., the
framework facilitates product tracking using QR
codes and disintermediation. Egala et al. [40]
suggested use blockchain, DDSS, and hybrid
computing to create a decentralized IoMT
healthcare system that is efficient, secure, and
private. From the literature, it was observed that
there is a need for developing better formal
verification tools for checking blockchain
technology smart contracts.

3. PRELIMINARIES

3.1 Formal Verification of Smart
Contracts

Formal methods provide a powerful
technology for the correctness verification of
smart contracts. The use of formal methods to
verify smart contracts has been widely
recognized, and significant results have been
achieved in practice. The Ethereum community
has also turned to formal methods to solve the
demands for high-assurance contracts. Besides,
using formal methods to validate smart contracts
can provide a rigorous mathematical model for
verifying smart contracts. By analyzing the

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

818

model, we can more easily discover logic errors
or other new vulnerabilities. The formal
verification of smart contracts tends to have an
excellent potential for development in the future.

3.1.1 Program-based Formal
Verification

A smart contract's essence is the program
executed on the blockchain. Verifying the
correctness of the program is a vital part of
ensuring the safety and reliability of smart
contracts. Successful practical cases and
theoretical studies have been conducted on
program-based verification of smart contracts. At
the 3rd Global Blockchain Summit in 2017, a
blockchain formal verification team of the
University of Electronic Science and Technology
presented the VaaS (Verification as a service) as
an EOS formal verification platform. In addition
to the EOS blockchain platform, VaaS supports
other common platforms such as Ethereum and
Fabric. The principle of the VaaS platform is to
translate programs written in the Solidity scripting
language into the Coq code, thus establishing a
standard formal model for smart contracts and
then verifying the correctness of the smart
contract by verifying the correctness of the Coq
language. Similarly, Bhargavan et al. proposed a
verification method based on programming
language. They translated the Solidity language
into an F* language to check if the contract was
correct. In most cases, we can only get the binary
code running on Ethereum, and we cannot get the
source code of the smart contract. So, in the
absence of source code, they decompiled the
binary files on Ethereum into F* language and
analyzed whether at least some of the attributes to
be reached by the contract were satisfied. The
complete F* language for any smart contract had
not yet been implemented because of enormous
work. Moreover, verifying whether the F*
language translated by Solidity language was
consistent with the decompiled binary code was
challenging for the same contract. Furthermore,
Grishchenko et al. used the F* language proof
assistant to successfully validate the official
Ethereum test suite.

3.1.2 Behavior-based Formal
Verification

Model checking is well adopted in
behavior-based verification. It can conveniently
model the interaction between the user and the
program to verify whether the smart contract can
interact with the user reliably and securely. Some

good examples of behavior-based formal
validation are demonstrated below. Ellul et al.
proposed a runtime verification method. It was a
novel state-based technique that ensured the
violating party provided insurance for correct
behavior. They used the finite state machine to
model the contracts, and this method had been
partially implemented in a proof-of-concept tool,
ContractLarva. Their method referred to the
methods proposed by Fenech et al. and Gorin et
al., which validated the properties of the contract.

3.2 Need for Formal Verification of
Smart Contracts

The blockchain application known as
DeFiLending exemplifies a decentralized finance
platform where users can deposit cryptocurrency,
withdraw funds, borrow assets, and repay debts.
This system facilitates crucial financial
interactions and must uphold high security,
accuracy, and reliability standards to avoid
financial loss and safeguard user assets. In the
contract, users deposit funds into a shared pool,
providing collateral for potential borrowing; the
platform then allows users to borrow assets
proportionate to their deposit value. This ensures
the system has enough liquidity to perform loans
but maintains stringent collateral requirements of
150% or more of a single loan. As such, a smart
contract relies on complicated computations and
handles high-value financial assets, so it must use
formal verification to ensure that it behaves as
desired while not introducing risk.

Correct collateral management is a
critical element of lending systems based on smart
contracts. Incorrect calculations or modifications
on the collateral part could lead users to borrow
more than needed, putting the platform's liquidity
at risk and raising the possibility of insolvency.
Facilitating formal verification would also help to
avoid overborrowing, as deposits, collateral, and
amounts that can be borrowed should always be
valued using the intended logic on your platform.
For smart contracts to ensure that consumers can
obtain funds deposited into accounts, accurate
tracking of deposits and withdrawals is also
required. This is to prevent cases when a user
withdraws more than he has, which leads to losing
funds for other users. Formal verification could
help confirm that quantities on the platform are
equal to those provided by customers, making
payments and withdrawals more accurate and
ensuring confidence.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

819

Figure 1: Illustrates the flow of the DefiLending application’s smart contract

Protection is essential when creating
smart contracts since reentrancy assaults and
other flaws could allow dishonest users to keep
performing operations like `withdraw` and
`borrow,` thus exhausting the contract's cash. An
attacker may start a money transfer more than
once before the system amount is updated if they
attempt to enter a contract again while a
transaction is underway. Before any funds are
transferred, platforms can expressly verify that
operations, such as fund deductions and other
state changes, are adequately protected against
reentrancy. Furthermore, smart contracts could be
impacted by integer overflow and underflow
problems, especially in previous Solidity
versions.

Both unwanted consequences may
happen when dams overflow or underflow,
passing a value above its upper bound and below
zero. With things like deposits and debts able to
be automatically analyzed, formal verification
techniques come in handy for ensuring that big
transfers or edge-case inputs cannot cause
unforeseen financial disasters by ensuring they
are always kept within defined bounds. Last but

not least, verifying an authority also ensures
compliance with lending regulations (such as
needing enough collateral before approving a
loan). Besides fulfilling the collateral
requirements, our formal verification gives a
mathematical assurance that no borrower can
draw more than their collateral can bear. This
behavior is vital to the long-term sustainability of
the platform and ensuring other people can hold
their assets there without risk.

Thereon, the agreement must then be
completed (completed formally/initially), and
after that, the complete pre-conditions to
provision and deposit of the loan should be
checked. It can also be systematically enforced for
plausible adherences. Official inspection models
invariant properties (e.g., deposits>=debts) and
analyzes a mathematical procedure with each
transaction to guarantee that overdraws are
avoided, ensuring the contract's validity. By a
strict methodology, the integrity of each
transaction is guaranteed and protected from
threats, which brings customers' trust and safety
to the DeFiLending program.

Start

End

User Interaction

Deposit

User Sends
Funds

Update Balance

Withdraw

Check Balance
& Debt

Send Funds if
Met

Borrow

Check
Collateral

Update Debt

Repay

Check Repayment
Amount

Update Debt if
Met

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

820

Table 1: Acronyms Used In This Paper
Acronym Description
BIP Behavior, Interaction, Priority
FSM Finite State Machine
SMV Symbolic Model Verifier
CTL Computation Tree Logic
nuXmv Symbolic Model Checker Tool

3. PROPOSED FRAMEWORK
We created a formal method for

checking smart contracts. SmartScan technology
was developed to evaluate complex blockchain
smart contracts for accuracy and security. The
source code and contract definition are
transformed into an FSM (Finite State Machine),
which is a mathematically rigorous model. The
framework of an FSM fostering this analysis can
uncover surprising behaviors and potential
shortcomings by easing the application of model-
checking tools. Once the FSM is ready for
efficient validation, The framework creates a
Behavior, Interaction, Priority (BIP) model.
Symbolic model checkers such as nuXmv analyze
the state space of a BIP to detect security flaws or
violations of predefined properties. The result is a
complete verification report containing the
evaluation results and any problems identified.
SmartScan aims to build trust in inaccessible
networks and improve smart contracts' safety,
reliability, and value by automating the
verification process. So, the architecture is
demonstrated in Figure 2 of SmartScan.
SmartScan enhances the efficiency of complex
blockchain smart contract processes. This
paradigm posits that formal definition,
verification, and modeling are interconnected
processes. A smart agreement's accuracy and
security features are described in the Contract
Specification, the first document in the Formal
Specification Phase. Using user-defined
correctness qualities, these specifics can be

adjusted to meet the terms of the contract.
However, security features address common
security issues in smart contracts by leveraging
these pre-existing components.

Those qualities are reflected in
Computation Tree Logic (CTL) equations, a
temporal logic used in model verification that
dictates the order in which certain events must
occur in a system. The contract can be expressed
as a finite state machine (FSM) capturing its
behavior regarding states and transitions.
Identifying potential weaknesses in the channels
over which the contract runs is necessary. We
recommend exploring the limitations of this FSM.
FSM modeling: SmartScan can detect any
vulnerabilities resulting from the nature of smart
contracts and ensure they are accurately
represented in security and functionality. The
Solidity contract source code is first converted
into a formal language known as BIP (Behavior,
Interaction, Priority) in the Modeling Phase. This
allows for a deeper behavioral analysis of the
contract. The BIP model is then translated into
FSM (FSM-SC) for the state-based analysis,
thereby completing formal verification. So, this
method transforms the solidity code into one that
can be validated completely. In the Verification
Phase, nuXmv [15], a symbolic model checker, is
used to check the CTL formulas defined from the
security and correctness properties specified in
the first phase.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

821

Figure 2: Architectural Overview Of The Proposed Framework Named Smartscan For Efficient And

Optimized Formal Verification Of Complex Blockchain Smart Contracts
Based on the contract, NuXmv

characterizes all states and transitions of the
contract to assist the framework in ensuring the
presence of required attributes. Based on the
results of this verification process, an elaborate
Verification Report is generated to demonstrate
that the contract conforms to the specifications.
Apart from highlighting the noted flaws, it comes
with a handy report for developers and analysts to
rectify the contract. SmartScan formal
specification, modeling, and verification are
integrated into a multi-phase process to bring a
thorough, rigorous, and careful approach to
blockchain smart contract verification. Formal
code models must be generated and analyzed to
enhance the security and reliability of smart

contracts deployed on blockchain systems and
ensure that all correctness and safety properties
are satisfied.

3.1 SOL to BIP Conversion
An approved framework for formal

evaluation is created from a Solidity smart
contract (SOL) using the BIP architecture. Smart
contract structures are created on blockchain
systems like Ethereum using the Solidity
programming language. Sometimes, Solidity's
high-level features, concurrency issues, and
interactions with the Ethereum Virtual Machine
(EVM) make it too complex for a simple formal
check. Formalizing and structuring the simulation
of these systems, the BIP architecture describes
behaviors, interactions, and priorities in a way that

Contract
Specification

 Specificatio
ns

Formal Specification
Phase

Modeling Phase

Source Code

 Solidity

Convert to BIP

Modeling
to

FSM-SC

BIP-SC

BIP-to-SMV

Security
Propertie

s

Modeling to
FSM

 FSM-
Vulnerabiliti
es

Correctness
Properties

Pre-
defined

User
Defined

CTL
Formulas

nuXmv
(Symbolic Model

Checker Tool)

Verification
Report

Verificati
on

Phase

Requi
red

Data

Analyti
cs &

Verifica
tion

Result
s

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

822

can be evaluated for correctness, safety, and
security. To move Solidity, also known as code,
to BIP, it is necessary first to deconstruct it into its
component functions, state variables, and control
flow structures. Solidity transforms user-defined
functions, such as fallback and receive, into BIP
behaviors. These exercises explain how the smart
contract interacts with other parts and changes
states. The BIP model of Solidity would depict a
behavior that updates the system's state as a
function that modifies a state variable, like
`setData().`

The BIP model captures state variables,
which make up the permanent data of the contract,
just like Solidity does. Balances and ownership
data are examples of variables that BIP transforms
into states. The BIP paradigm requires that any
changes to a smart contract's state when functions
are called be explicitly stated as state transitions.
Control flow structures such as `if,` `for,`
`require,` and `assert` are essential for ensuring
that the logic of the contract operates correctly.
BIP links these to guards or transitions that
regulate the style and timing of specific actions.
This is followed by determining and mapping the
functions, state variables, and control flow of the
Solidity code to the formal designs of the BIP
framework.

The BIP converts each function into a
behavior the other system components can
communicate. It demonstrates how various
contract components or functions alter standard
state variables and how they are directly or
indirectly connected. BIP's priority design ensures
that specific tasks are completed in a predefined
order because systems such as blockchain
contracts may enable the execution of several
processes at once. Preventing the overriding or
erroneous execution of critical procedures is
crucial.

BIP organizes the contract pieces to

generate a formal representation that is subject to
analysis and validation. BIP-SMV integrates BIP
with symbolic model checking techniques such as
nuXmv to check the fidelity of the agreement.
Properties of interest include safety (e.g., the
contract never reaching an undesirable state) and
liveness (e.g., specific tasks eventually being
carried out) verification using symbolic model
checking. Using CTL (Computation Tree Logic)
and other varieties of temporal logic, you can state
the desired properties that the contract should
eventually conform to, such as avoidance of race
conditions or that a transaction has been

completed. SOL to BIP Conversion ensures the
security and accurate functionality of Smart
Contracts by rigorously representing and formally
verifying smart contracts. This allows developers
to verify all possible scenarios before deployment,
discovering potential vulnerabilities, deadlocks,
or other weird behaviors that traditional testing
methods cannot check for. BIP framework can be
used to analyze Solidity contracts to ensure they
are secure and deploying as intended in a
blockchain environment.
3.2 Modelling BIPs to FSM

It is necessary to convert a BIP formal
description into an illustration in which the
system's conversations, actions, and phases are
represented as states and transitions in an FSM to
map BIPs to FSMs. In mathematics, the FSM
defines a finite number of state systems. These
systems can either remain in a single state
continuously or undergo state changes in response
to specific events or situations. This improvement
is required to formally validate systems, like
smart contracts, where the objective is to
investigate and guarantee acceptable behavior in
all possible states and transitions. The process
begins by assigning a state in the FSM to each
behavior in the BIP model, which represents the
activity or system component. These actions
usually correlate to system actions, such as a
function being executed or the system's state
changes. BIP typically characterizes behaviors as
discrete actions that can alter or interact with other
parts of the system. Nonetheless, these behaviors
in FSM reflect the state or mode of the system at
that moment. For example, an FSM state
representing the contract processing the data
would be mapped to an intelligent contract
behavior like "setData" that modifies a state
variable.

Then, in the FSM, the interactions
between behaviors in the BIP model are
represented as transitions. BIP defines how
components interact or communicate with one
another, and in FSM, these interactions are
converted into transitions that change the system's
state. The FSM would show a transition between
two states, for instance, if one behavior, like
`setData,` causes another, like `getData.` Events,
circumstances, or inputs typically bring about
these changes; in the case of smart contracts, these
could be transactions, outside calls, or
adjustments to state variables. The priority
element is essential in BIP for modelizing FSM as
it defines the order in which interactions or
behaviors occur.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

823

In the presence of multiple potential
transitions, the system uses this data to decide
which transitions to start or how to handle them if
there are several simultaneous events. FSM's
turnover chain and limitations illustrate this
importance. It ensures precedence in certain
machine operations, such as executing smart
contracts that rely on timeliness and ordering for
deadlines. Behaviors, interactions, and priorities
can be mapped to states and transitions so that the
FSM paradigm allows for official verification. In
the FSM paradigm, system analysis is more
comprehensive since every state and transition is
guaranteed to be present, with no states being
wrong or missing. This is useful when searching
for race conditions, deadlocks, or sometimes
incorrect system behavior. Tools such as model
checkers, which provide formal guarantees on
correctness, reliability, and assurance, make
validating that the system meets its specifications
easier once the BIP model has been translated into
an FSM.

Finally, converting BIPs into FSM
facilitates the analysis of complex smart contracts
by allowing these contracts to have a formally
mathematical and computationally realistic
representation. Programmers need to do this step
because it is necessary for proper smart contract
validation. This means considering every possible
state and contact, ensuring the system behaves as
it should. FSM can identify minor errors that
routine testing can overlook, thus enhancing the
system's overall accuracy.
3.3 BIP to SMV

The BIP-to-SMV method allows the
formal verification of smart contracts taken from
model-checking tools that analyze large systems
driven by behavior. Suppose we transform our
BIP model into an SMV (Symbolic Model
Verification) format. It enables complete contract
behavior exploration via high-performance
formal verification tools such as nuXmv
(https://github.com/nuprl/nuXmv) or Cadence
SMV. Providing an analytical tool for the entire
lifecycle of a smart contract, including every state
and transition where correct functioning is
implemented, is vital; this version does just that.
This ensures that the transaction will proceed as
intended under certain conditions.

In the BIP paradigm, the behavior of the
smart contract is represented in a placeholder
manner. By encapsulating the basic logical
structure and restrictions that control the
contract's execution, developers can use BIP to
specify the contract's interactions, priorities, and

functions. In BIP, interactions define the
connections and information flow between
various activities, whereas behaviors denote a
function or a state-altering activity within the
smart contract. Because BIP priority rules
guarantee that specific behaviors occur in a
particular order, they help manage the sequence of
transactions or prevent conflicting state changes
in a contract. This BIP model offers an ordered,
component-based representation of the smart
contract, facilitating the transition to SMV.

Following its establishment, the BIP
model is converted into the SMV format,
designed especially for symbolic model
verification. The contract is represented as a
finite-state machine in SMV, where each
transition indicates an action or modification in
the behavior of the contract, and each state
indicates a possible configuration of its variables.
This change is essential in SMV tools since all
conceivable states are systematically checked
using symbolic representation. BIP actions are
transformed to produce SMV model
representations using the BIP-to-SMV translation
method. When the concurrent model is based on
contracts, contract activity can be studied
deterministically and linearly by converting
priorities and interactions into conditions and
transitions of a dynamically changing state.

Then, the SMV model is syntactically
checked using the nuXmv tool, which explores
the state space with symbolic model-checking
techniques. Built-in tools for verifying CTL
(Computation Tree Logic) temporal logic
properties Features such as safety properties that
guarantee the contract never becomes inactive and
liveness properties that ensure a particular action
will eventually be executed can help developers
define essential behavioral assumptions. The
SMV program analyzes all possible execution
paths to determine if the contract complies with
these rules or to identify specific states in which a
violation may occur.

To formalize verification, the BIP-to-
SMV approach is a valuable strategy for detecting
smart contract issues. Issues appeared, such as
reentrancy attacks, state changes we did not
expect, and concern about the state transition
during the model checking phase. For instance, if
an smart contract allows calls to a specific
function repeatedly without inflicting massive
state changes, the SMV model checker reveals
errors by exploring these states in which the
contract enters into a loop unexpectedly. Standard
testing approaches typically only exercise a small

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

824

subset of possible contract behaviors, making this
integrated automated analysis challenging. BIP-
to-SMV offers a firmer assurance of the security
and validity of smart contracts than traditional
testing.

This method ensures the contract always
operates correctly and safely by providing a
mathematically proven specification. This
strategy primarily benefits high-value blockchain
applications, as logical contract errors can put
security or revenue at risk. The BIP-to-SMV
pipeline is a necessary instrument for
programmers and accountants in the blockchain
ecosystem, as it increases the reliability of smart
contracts. We create a nuXmv formula for each
CTL (Computation Tree Logic) formula.
3.4 CTL Formulas to nuXmv (Symbolic Model
Checker Tool)

SmartScan is a tool to formally verify the
complex properties of blockchain smart contracts
with CTL (Computation Tree Logic) equations.
SmartScan checks the accuracy, security, and
robustness of every possible bright contract state
and transition. The logical claims that build CTL
formulations specify limits the smart contract
needs to operate under. By writing these
properties in CTL, SmartScan can use the nuXmv
symbolic model checker to validate smart contract
behavior exhaustively on all execution channels.
With SmartScan's CTL formulae, representing
temporal characteristics or conditions we expect
to hold through the contract is a breeze. These
features are essential to reduce application
blockchain vulnerabilities, ensure error-free
execution patterns, and avoid situations that could
lead to a security breach. For example, to prevent
deadlocks and infinite loops, they apply a CTL
formula like "if the transaction is started, then it
must eventually finish." This attribute is
represented in CTL as AG(request -
>AF(response)). To ensure upholding the
contract, a response condition ({AF) is triggered
if a request condition({AG) globally holds.

The different CTL features are encoded
into nuXmv using the SmartScan tool [25] so that
each CTL formula corresponds to a unique bright
contract verification target. The nuXmv model
checker inspects all possible states and transitions
to determine whether the contract's BIP-SMV
(Behavior, Interaction, Priority - Symbolic Model
Verification) representation satisfies a CTL
formula. SmartScan then maps BIP interactions to
SMV states and transitions and precisely checks
contract behaviors like sequence validation,
mutual exclusion, and condition management.

With its symbolic power, NuXmv can explore
each possible execution and avoid tedious
simulations. One example of a CTL formula that
SmartScan may want to use to verify the proper
processing of funds is ~AG(balance >= 0)) This
would eventually make financial malpractice
more likely or misappropriation because it
wouldn't allow the balance to drop below zero.
Similarly, EF(error_state) can be used with
SmartScan to help identify such issues and ensure
these problematic channels are excluded before
deployment. These CTL compositions will
always be relevant to the essential safety aspects
throughout the contract execution.

Another essential element that CTL
equations may capture is priority limits, which are
part of the BIP architecture used by SmartScan for
smart contract verification. If both are feasible, a
hypothetical CTL formula in nuXmv states that
one of the two events must always happen first.
The equation `AG (request1 -> AF request2)`
forces `request2` to follow `request1` to do this,
provided that `request1` is met. This directive will
be applied globally. This prevents other problems
from impacting the contract and jeopardizing the
validity of its execution. Traditional testing
cannot achieve the rigor that nuXmv for
SmartScan's symbolic model verification enables.
SmartScan uses symbolic verification and the
expressive capability of CTL to traverse an
unlimited state space with few representations by
setting sophisticated, high-level criteria. The CTL
formulas from nuXmv are used by SmartScan to
confirm that smart contracts are safe
methodically, work as planned, and adhere to the
intended operational logic in a range of situations.
Therefore, a robust and trustworthy contract
verification that can recognize and correct such
errors improves blockchain systems' overall
security and validity.

4. CASE STUDY: DeFi Lending

Smart Contract Verification Using SmartScan
In this case study, the smart contract of a

DeFi loan application is validated using the
SmartScan tool. It demonstrates how SmartScan
ensures the contract is accurate, dependable, and
secure in various circumstances. Through a DeFi
lending operation, users can deposit, borrow, and
pay interest on Bitcoin. However, problems like
reentrancy attacks, inadequate fund management,
and erroneous interest rates could arise with these
smart contracts. To help, SmartScan legally
validates that the contract meets all standards and

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

825

offers adequate protection against common
vulnerabilities.

Step 1: Define Contract Requirements
and Properties

We use Smart Scan only once we have
established the leading security and behavioral
components of the DeFi Lending contract.

1. Fund Safety: Confirm that the funds

deposited are secure and cannot be stolen.
2. Reentrancy Prevention: Prevent any

functions from being called repeatedly in a
manner that exploits the contract’s state.

3. Interest Correctness: Verify that
interest calculations are accurate and non-
exploitative.

4. Liquidation Conditions: Confirm that
liquidation only occurs when collateralization
falls below a specified threshold.

These properties can be expressed using
CTL (Computation Tree Logic) formulas to
specify the smart contract's required temporal
behaviors.

Step 2: Model the Contract in BIP
(Behavior, Interaction, Priority)

The smart contract is then translated into
a BIP representation. Behaviors represent the
contract’s functions: deposit, withdrawing,
borrowing, and repaying. Interactions are the
logical connections between behaviors, defining
how different functions interact (for example,
withdraw can only be executed after a deposit has
occurred). Priorities enforce execution order,
ensuring that actions that exit critical sections take
precedence and disallow reentrancy.

Algorithm 1: Behavior
Transformation Algorithm

1. Extract all functions and define
them as behaviors.

2. Identify function calls within other
functions to establish interactions.

3. Set priorities to disallow reentrant
calls or disallowed sequences.

Step 3: Convert BIP Model to SMV

for Symbolic Model Checking
The BIP model is then converted to SMV

format, which SmartScan uses to create a finite
state machine (FSM) representation. States in
SMV correspond to distinct states in the DeFi
Lending contract, such as FundsDeposited,
FundsBorrowed, and FundsRepaid. Transitions
represent possible changes, such as moving from
FundsDeposited to FundsWithdrawn.

Algorithm 2: BIP-to-SMV
Transformation Algorithm

1. Map each behavior in BIP to a
corresponding state in SMV.

2. Translate interactions into state
transitions.

3. Encode priority constraints as
transition conditions in SMV.

Step 4: Encode Properties Using CTL

Formulas
For verification, the necessary attributes

are defined in SmartScan using CTL formulas:
1. Fund Safety: Make sure that in every

state, the balance stays positive:
 CTL Formula: AG (balance >= 0)
2. Reentrancy Prevention: Declare that a

function cannot call itself until the previous call
has finished:

 CTL Formula: AG (¬(function_call →
AF (¬function_call)))

3. Interest Correctness: Verify that every
interest update stays within the anticipated
bounds:

 CTL Formula: AG (interest >=
min_interest & interest <= max_interest)

4. Liquidation Condition: Make sure that
liquidation only takes place when there is not
enough collateral:

 CTL Formula: AG (collateral <
threshold → AF liquidated)

Step 5: Run Symbolic Model Checking
with nuXmv

To verify all CTL formulas, SmartScan
uses nuXmv to examine every state and transition
the DeFi Lending contract model may have.
Every potential configuration of the contract is
represented by a state space graph created by the
nuXmv tool. NuXmv assesses whether each state
satisfies the CTL characteristics. If a violation is
discovered, it offers a counterexample illustrating
how to get to the state.

Algorithm 3: Symbolic Model
Checking Algorithm

1. Generate all possible states for the
DeFi contract.

2. For each state, apply CTL formulas
to check property compliance.

3. If a violation occurs, output a
counterexample detailing the failing sequence.

Step 6: Analyze Counterexamples and
Correct Contract Logic

Smart Scan will give a counter-example
that shows the ordering of function calls that led
to the problem when a CTL property is violated.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

826

One such attack is reentrancy, wherein an external
call to withdraw allows entry multiple times
before the state change occurs. The liquidity
indicators for long positions preserve the risk of
premature liquidations due to poorly positioned
liquidation levels. The developer can then tweak
the smart contract code to ensure it meets all
requirements and plugs any vulnerabilities.

Step 7: Re-Verify and Finalize the

Smart Contract
Upon fixing it, we run SmartScan so that

no new violations arise and CTL properties are
upheld from the verification. This is repeated until
nuXmv guarantees full compliance, i.e., the
contract meets all the requirements. This study
analyzes the DeFi lending contract using
SmartScan to verify critical safety and functional
correctness. SmartScan identifies defects at all
phases, including Wrong interest predictions,
inappropriate funds management, and reentrancy
bugs. This official verification process lowers the
risk of cash loss. It raises user trust in DeFi
networks by showcasing the strength and

reliability of SmartScan as a blockchain
application security solution.

5. EXPERIMENTAL RESULTS

This evaluates the ability of the
SmartScan to catch critical errors in DeFi Lending
smart contracts and confirm correct security
features. It evaluates its ability to calculate
interest accurately, risk check fund safety,
reentrancy guard against, and liquidation
compliance. MSSmartScan is a net platform
utility developed with the C# programming
language. An Intel(R) Core(TM) i7-1355U 13th
Gen CPU with ten cores, 12 logical processors,
and 1700 MHz serves as the implementation
environment. The computer runs Windows 11.
The tool is executed using the Visual Studio 2022
version. Presenting experimental results for
SmartScan with a DeFi Lending example involves
detailing the verification process's effectiveness,
efficiency, and reliability in identifying potential
vulnerabilities or confirming property adherence.
Here’s a structured approach to presenting these
results, covering critical metrics, result tables, and
analysis points to communicate findings.

5.1 Metrics and Evaluation Criteria
Metrics used for the evaluation of SmartScan are provided here.

Metric Description
Verification Time Time taken by SmartScan to check each

CTL property.
Detection Rate Number of vulnerabilities correctly

identified.
False Positive/False Negative Rates Instances of incorrect alerts or missed

vulnerabilities
Counterexample Quality Clarity and utility of counterexamples

provided for detected issues
Property Satisfaction Rate The percentage of properties successfully

verified.
Table 2: Performance metrics used to evaluate SmartScan

5.2 Results
This section provides detailed findings

for each evaluated property, organized into tables
and charts with the case study application verified
by SmartSca.

Property CTL Formula Verification

Time (seconds)
Result

Fund Safety AG
(balance>=0)

3.5 Satisfied

Reentrancy
Prevention

AG
(¬(function_call → AF
(¬function_call)))

4.1 Violated
(counterexample)

Interest
Calculation Accuracy

AG (interest
>= min_interest &
interest <=
max_interest)

5.2 Satisfied

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

827

Liquidation
Condition

AG (collateral
< threshold → AF
liquidated)

6.0 Satisfied

Table 3: Verification time comparison
As shown in Table 3, verification Time

shows the time required to analyze each property.
Notably, the Reentrancy Prevention property is
violated, prompting further investigation.

Property Violation
Type

Counterexample
Provided

Steps in
Counterexample

Reentrancy
Prevention

Reentrancy
Attack

Yes Call to
withdraw() →
Reentrant call to
withdraw() without
state update

Liquidation
Condition

- No -

Fund Safety - No -
Table 4: Vulnerability detection and counterexamples

Table 4 outlines any detected issues, the
type of vulnerability, and whether a
counterexample was provided. For example,
Reentrancy Prevention displays a reentrancy

vulnerability where the withdraw() function was
called before the state updated, confirming a
vulnerability.

Metric Value
Total verification time 18.8 seconds
Properties verified 4
Properties violated 1
False positive rate 0%
False negative rate 0%
Average counterexample depth 3 steps

Table 5: SmartScan performance measures

Figure 3: Verification time for each property of DeFi Lending in smart contract verification using

SmartScan
Figure 3 illustrates the verification times

for various DeFi lending smart contracts
properties, as assessed by the SmartScan

framework. The properties examined include
Fund Safety, Reentrancy Prevention, Interest
Calculation Accuracy, and Liquidation Condition.

3.5
4.1

5.2

6

0

1

2

3

4

5

6

7

Verification Time (seconds)

Ve
rif

ic
at

io
n

Ti
m

e
(s

ec
on

ds
)

Measure

Verification Times for Each Property

Fund Safety Reentrancy Prevention Interest Calculation Accuracy Liquidation Condition

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

828

The visualization reveals that the verification time
for each property varies. It just takes around 3.5
seconds to validate Fund Safety, the fundamental
component that guarantees the security of
customers' money. An essential security measure
to guard against evil assaults, Reentrancy
Prevention, takes roughly 4.1 seconds to
complete. Interest Calculation Formula Accuracy
(which this check falls under) requires a more in-
depth verification process. It costs around 5.2
seconds to run the check with an accurate output
guarantee for interest rate calculations. The
verification period for the Liquidation Condition
is the longest, taking approximately six seconds,
and so is crucial for the emergency withdrawal of
funds.

The above examples help demonstrate
the difficulties in validating specific properties of
DeFi loan smart contracts. While Fund Safety and
Prevention of Reentrancy is critical, Interest
Calculation Accuracy and Liquidation are
complex enough to require more extensive
verification efforts. The following presents an
example of how the SmartScan framework could
investigate the quality and safety of DeFi lending
smart contracts. While the system provides a
detailed account of how long it takes to verify
each attribute, developers, and users can see the
system's confidence level across multiple
domains.

Figure 4: Property satisfaction rate DeFi lending
smart contract when formal verification is done
using SmartScan

Finally, Figure 4 shows the associated
property compliance of a DeFi loan smart contract
after receiving formal approval from within the
SmartScan framework. And then, because the
chart distinguishes readily between met and
unmet criteria, it requires painstaking cross-
checking to guarantee that those contracts have
true reliability and security. The pie chart shows
that more than 75% of the characteristics are met.
The SmartScan framework identified and
evaluated many bright contract characteristics,
indicating that smart contracts met the
requirements. This result is promising because it
demonstrates the framework's capability to locate
and confirm essential components necessary for
the reliable and secure functioning of DeFi
lending protocols. The other 25% of the pie figure
has been met on those regulations. Here, we
highlight abnormal traits compared to the
intended standard of the smart contract or have a
potential vulnerability. It has been found that
features are violated a great deal, leading to
unnoticed security problems, but this can be fixed
through formal verification. Figure 1 — Two
Roles that Smarter Contracts Play: Verification
and Diagnosis. Because it tells whether the
specific properties were satisfied, it provides vital
information regarding the security posture of the
smart contract and the evidence that verification
is practical.
5.3 Performance Comparison

This segment compares formal smart
contract verification methods, like the one
proposed in the SmartScan product.

FFeatu
re/Tool

Ssma
rtScan
(Proposed)

MM
ythril

OOy
ente

ZEU
S

Slith
er

Verifica
tion technique

Mode
l checking
(CTL with
nuXmv)

Sym
bolic
execution and
analysis

Sym
bolic
execution

Mod
el checking
and abstract
interpretation

Static
analysis

Support
ed contracts

Comp
lex and multi-
function
contracts

Gene
ral Ethereum
contracts

Gene
ral Ethereum
contracts

Solid
ity smart
contracts

Gene
ral solidity
contracts

Support
ed vulnerabilities

Reent
rancy, Integer
Overflow/Und
erflow, Access
Control,

Reen
trancy,
Unchecked
Calls, Integer

Reen
trancy,
Transaction
Ordering,

Reen
trancy,
Overflow,
DoS

Reent
rancy, Integer
Overflow/Und
erflow, Tx.
Ordering

75%

25%

Property Satisfaction Rate

Satisfied Properties Violated Properties

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

829

Liquidation,
State
Inconsistencie
s

Overflow/Und
erflow

Unchecked
Calls

Counter
example
generation

Yes
(for violated
CTL
properties)

Limit
ed (only
symbolic
traces)

Limit
ed (only
symbolic
traces)

No No

Analysi
s speed

Mode
rate to Fast

Fast
for simple
properties

Slow
for complex
contracts

Mod
erate

Fast

Scalabil
ity

High Mod
erate

Low Mod
erate

High

False
positive rate

Low
(optimized
CTL with FSM
& SMV
mapping)

Mod
erate

High Mod
erate

Mode
rate

Usabilit
y for Developers

User-
friendly
interface,
extensive CTL
support

Mod
erate
(command-
line-based)

Tech
nical
(command-
line-based)

Requ
ires
knowledge of
formal
methods

Easy
to use

Static/D
ynamic Analysis

Static
(symbolic with
model-
checking)

Dyna
mic
(symbolic)

Dyna
mic
(symbolic)

Stati
c & symbolic

static

Unique
features

FSM
& BIP
conversions,
strong CTL
support

Rich
in
vulnerability
analysis
options

Early
symbolic
execution
model

Kno
wn for policy
checking and
DoS checks

Quic
k static
analysis with
warnings

Table 6: Performance comparison among formal verification tools
SmartScan performs very different

verification methods and verification for contracts
with high verifiability. We summarize in Table 6
that SmartScan compares to a few notable
innovative contract verification tools, along with
their compatibility of contracts, vulnerability
identification, and overall effectiveness.
SmartScan integrates CTL-based state
decomposition, BIP with FSM, and symbolic
model validation over tetrahedral-based
representation using nuXmv. Together, this
allows for complete formal verification and the
generation of counterexamples for broken CTL
properties. Mythril and Oyente based their work
on symbolic execution; specifically, they focused
more on symbolic traces than thorough model-
checking.

As symbolic execution benefits many
vulnerabilities, SmartScan critical state-based
analysis might be less prone to false positives.
DeFi applications typically have complex and
multi-function contracts, but SmartScan is the

only solution that deals with such compatibility at
scale. With more complicated or even more
extensive contract structures, it should be able to
better handle giant contracts with commutatively
interacting functions than an Oyente-type tool due
to its FSM mapping. More generally, ZEUS and
Mythril broadly support common
Ethereum/solidity contracts, while SmartScan
aims to provide discrete increases under very
complicated situations.

SmartScan does a decent job of
discovering vulnerabilities, especially with DeFi
programs. SKY can analyze and reason about
complex contract components like money safety
or liquidation through its CTL (Computation Tree
Logic) capabilities. Mythril, Oyente, and ZEUS
can check for many more straightforward issues
like integer overflows or reentrancy; however,
SmartScan is much more advanced than any of
these. Employing a state-based model-checking
method lessens ambiguity, providing clearer
counterexamples to the developer. SmartScan’s

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

830

CTL method has a lower false positive rate when
compared with alternatives based on symbolic
execution only, as this is due to the improved
specification of contract features and outcomes.

Based on the powerful CTL formulae
and FSM usage, SmartScan instantly evaluates
smart contracts regarding their scalability and
analysis time for simple and complex cases.
While not the fastest, it manages to strike a good
balance between speed and completeness —
something Oyente usually struggles with on more
extensive clientele. Developers can quickly get
acquainted with the SmartScan by leveraging its
no-sweat interface instead of requiring the same
degree of technical expertise as they would need
to use command-line alternatives like Oyente.
SmartScan enables developers to view state
changes to the contract with FSM and BIP
mappings, which helps us understand how a
contract reacts following specific state changes —
not so easy with other tools. This is particularly
useful for preventing complex state changes, such
as DeFi loans.

6. DISCUSSION

SmartScan offers a few areas of accuracy
and verification depth that bring substantial
advantages. By integrating symbolic model
checking with CTL-based (Computational Tree
Logic) capabilities, DeFi applications can assess
different attributes of smart contract security like
fund soundness, reentrancy-freeness from
adversaries, transaction ordering dependencies,
etc. SmartScan is feature-complete in mapping
complex interactions and state changes within
smart contracts by integrating behavior-
interaction-priority (BIP) and finite state machine
(FSM) modeling approaches. Is it ability is
essential in high-pressure positions, as using
complex academic. Reasoning without taking the
proper safety measures could have disastrous
results. The nuXmv model checker and
SmartScan work together to assess features and
provide counterexamples to assist developers in
locating and correcting errors. However,
SmartScan has several problems.

6.1 Limitations
The proposed SmartScan has a few

problems. Testing has been conducted using a
limited number of smart contracts. The tool's
capacity and efficiency must be confirmed for
really complex applications. It is also necessary to
improve the suggested tool to use smart contracts
written in languages other than Solidity.

7. CONCLUSION AND FUTURE WORK
We suggest SmartScan, a comprehensive

system for the effective and optimal formal
verification of intricate blockchain smart
contracts. SmartScan uses a hybrid methodology
that combines static analysis, optimized
heuristics, formal approaches, and an improved
verification procedure to find inconsistencies and
vulnerabilities in smart contracts efficiently. Two
of SmartScan's main design objectives are
robustness and the capacity to manage complex
connections and interactions between multiple
components. Reducing computational complexity
and time streamlines the verification procedure.
Because SmartScan is scalable, it can validate
smart contracts for extensive blockchain
applications. Furthermore, because SmartScan is
extensible and easy to use, it can seamlessly
integrate with current apps that oversee the smart
contract life cycle. In a reasonable amount of time,
it has successfully confirmed most characteristics,
found a severe reentrancy flaw, and offered
insightful counterexamples. This indicates how
SmartScan works well in decentralized finance
(DeFi) settings where security is crucial. The
effectiveness of SmartScan could be further
enhanced for more complicated properties or
larger contracts. It would also be possible to detect
more specific weaknesses, such as flash loan
hazards, by adding more attributes.

References
[1] Singh, Amritraj; Parizi, Reza M.; Zhang, Qi;

Choo, Kim-Kwang Raymond and
Dehghantanha, Ali (2019). Blockchain
Smart Contracts Formalization: Approaches
and Challenges to Address Vulnerabilities.
Computers & Security, 101654–.
http://doi:10.1016/j.cose.2019.101654

[2] Permenev, Anton; Dimitrov, Dimitar;
Tsankov, Petar; Drachsler-Cohen, Dana and
Vechev, Martin (2020). IEEE Symposium
on Security and Privacy (SP) - VerX: Safety
Verification of Smart Contracts. 1661–1677.
http://doi:10.1109/SP40000.2020.00024

[3] Liu, Jing and Liu, Zhentian (2019). A Survey
on Security Verification of Blockchain Smart
Contracts. IEEE Access, 1–1.
http://doi:10.1109/ACCESS.2019.2921624

[4] So, Sunbeom; Lee, Myungho; Park, Jisu; Lee,
Heejo and Oh, Hakjoo (2020). IEEE
Symposium on Security and Privacy (SP) -
VERISMART: A Highly Precise Safety
Verifier for Ethereum Smart Contracts.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

831

1678–1694.
http://doi:10.1109/SP40000.2020.00032

[5] Gao, Zhipeng; Jiang, Lingxiao; Xia, Xin; Lo,
David and Grundy, John (2020). Checking
Smart Contracts with Structural Code
Embedding. IEEE Transactions on Software
Engineering, 1–1.
http://doi:10.1109/TSE.2020.2971482

[6] di Angelo, Monika and Salzer, Gernot (2019).
IEEE International Conference on
Decentralized Applications and
Infrastructures (DAPPCON) - A Survey of
Tools for Analyzing Ethereum Smart
Contracts. 69–78.
http://doi:10.1109/dappcon.2019.00018

[7] Feist, Josselin; Grieco, Gustavo and Groce,
Alex (2019). IEEE/ACM 2nd International
Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB) -
Slither: A Static Analysis Framework for
Smart Contracts. 8–15.
http://doi:10.1109/wetseb.2019.00008

[8] Grech, Neville; Brent, Lexi; Scholz, Bernhard
and Smaragdakis, Yannis (2019).
IEEE/ACM 41st International Conference on
Software Engineering (ICSE) - Gigahorse:
Thorough, Declarative Decompilation of
Smart Contracts. 1176–1186.
http://doi:10.1109/ICSE.2019.00120

[9] Zheng, Zibin; Xie, Shaoan; Dai, Hong-Ning;
Chen, Weili; Chen, Xiangping; Weng, Jian
and Imran, Muhammad (2019). An overview
on smart contracts: Challenges, advances and
platforms. Future Generation Computer
Systems, S0167739X19316280–.
http://doi:10.1016/j.future.2019.12.019

[10] Zou, Weiqin; Lo, David; Kochhar, Pavneet
Singh; Le, Xuan-Bach D.; Xia, Xin; Feng,
Yang; Chen, Zhenyu and Xu, Baowen
(2019). Smart Contract Development:
Challenges and Opportunities. IEEE
Transactions on Software Engineering, 1–1.
http://doi:10.1109/TSE.2019.2942301

[11] Pinna, Andrea; Ibba, Simona; Baralla,
Gavina; Tonelli, Roberto and Marchesi,
Michele (2019). A Massive Analysis of
Ethereum Smart Contracts Empirical Study
and Code Metrics. IEEE Access, 7, 78194–
78213.
http://doi:10.1109/ACCESS.2019.2921936

[12] Ante, Lennart (2020). Smart Contracts on the
Blockchain â A Bibliometric Analysis
and Review. Telematics and Informatics,
101519–.
http://doi:10.1016/j.tele.2020.101519

[13] Kushal Babel, Philip Daian, Mahimna Kelkar
and Ari Juels. (2023). Clockwork Finance:
Automated Analysis of Economic Security in
Smart Contracts. IEEE., pp.1-46.
http://DOI:10.1109/SP46215.2023.1017934
6

[14] SUMIT KUMAR RANA, ARUN KUMAR
RANA, SANJEEV KUMAR RANA,
VISHNU SHARMA, UMESH KUMAR
LILHORE, OSAMAH IBRAHIM KHALAF
AND ANTONINO GALLETTA. (2023).
Decentralized Model to Protect Digital
Evidence via Smart Contracts Using Layer 2
Polygon Blockchain. IEEE. 11, pp.83289 -
83300.
http://DOI:10.1109/ACCESS.2023.3302771

[15] Yamashita, Kazuhiro; Nomura, Yoshihide;
Zhou, Ence; Pi, Bingfeng and Jun, Sun
(2019). IEEE International Workshop on
Blockchain Oriented Software Engineering
(IWBOSE) - Potential Risks of Hyperledger
Fabric Smart Contracts. 1–10.
http://doi:10.1109/IWBOSE.2019.8666486

[16] Kemmoe, Victor Youdom; Stone, William;
Kim, Jeehyeong; Kim, Daeyoung and Son,
Junggab (2020). Recent Advances in Smart
Contracts: A Technical Overview and State
of the Art. IEEE Access, 1–1.
http://doi:10.1109/ACCESS.2020.3005020

[17] Wang, Wei; Song, Jingjing; Xu, Guangquan;
Li, Yidong; Wang, Hao and Su, Chunhua
(2020). ContractWard: Automated
Vulnerability Detection Models for Ethereum
Smart Contracts. IEEE Transactions on
Network Science and Engineering, 1–1.
http://doi:10.1109/TNSE.2020.2968505

[18] Shafaq Naheed Khan; Faiza Loukil; Chirine
Ghedira-Guegan; Elhadj Benkhelifa and
Anoud Bani-Hani; (2021). Blockchain smart
contracts: Applications, challenges, and
future trends . Peer-to-Peer Networking and
Applications. http://doi:10.1007/s12083-
021-01127-0

[19] Anna Vacca; Andrea Di Sorbo; Corrado A.
Visaggio and Gerardo Canfora; (2021). A
systematic literature review of blockchain
and smart contract development: Techniques,
tools, and open challenges . Journal of
Systems and Software.
http://doi:10.1016/j.jss.2020.110891

[20] Huang, Yongfeng; Bian, Yiyang; Li, Renpu;
Zhao, J. Leon and Shi, Peizhong (2019).
Smart Contract Security: A Software
Lifecycle Perspective. IEEE Access, 7,

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

832

150184–150202.
http://doi:10.1109/access.2019.2946988

[21] S. ROUHANI and R. DETERS. (2019).
Security, Performance, and Applications of
Smart Contracts: A Systematic
Survey. IEEE. 7, pp.50759 - 50779.
http://DOI:10.1109/ACCESS.2019.2911031

[22] Kai Peng; Meijun Li; Haojun Huang; Chen
Wang; Shaohua Wan and Kim-Kwang
Raymond Choo; (2021). Security Challenges
and Opportunities for Smart Contracts in
Internet of Things: A Survey . IEEE Internet
of Things Journal.
http://doi:10.1109/jiot.2021.3074544

[23] Jiao, Jiao; Kan, Shuanglong; Lin, Shang-
Wei; Sanan, David; Liu, Yang and Sun, Jun
(2020). IEEE Symposium on Security and
Privacy (SP) - Semantic Understanding of
Smart Contracts: Executable Operational
Semantics of Solidity. 1695–1712.
http://doi:10.1109/SP40000.2020.00066

[24] Hewa, Tharaka; Ylianttila, Mika and
Liyanage, Madhusanka (2020). Survey on
blockchain based smart contracts:
Applications, opportunities and challenges.
Journal of Network and Computer
Applications, 102857–.
http://doi:10.1016/j.jnca.2020.102857

[25] SATPAL SINGH KUSHWAHA,
SANDEEP JOSHI, DILBAG SINGH,
MANJIT KAUR AND HEUNG-NO LEE.
(2022). Systematic Review of Security
Vulnerabilities in Ethereum Blockchain
Smart Contract. IEEE. 10, pp.6605 - 6621.
http://DOI:10.1109/ACCESS.2021.3140091

[26] Desen Kirli, Benoit Couraud, Valentin Robu,
Marcelo Salgado-Bravo, Sonam Norbu,
Merlinda Andoni, Ioannis Antonopoulos,
Matias Negrete-Pincetic, David Flynn and
Aristides Kiprakis. (2022). Smart contracts in
energy systems: A systematic review of
fundamental approaches and
implementations. Elsevier. 158, pp.1-28.
https://doi.org/10.1016/j.rser.2021.112013

[27] Hamledari, H., & Fischer, M. (2021).
Construction payment automation using
blockchain-enabled smart contracts and
robotic reality capture technologies.
Automation in Construction, 132, 103926.
http://doi:10.1016/j.autcon.2021.103926

[28] Anusha Vangala; Anil Kumar Sutrala; Ashok
Kumar Das and Minho Jo; (2021). Smart
Contract-Based Blockchain-Envisioned
Authentication Scheme for Smart Farming .

IEEE Internet of Things Journal.
http://doi:10.1109/jiot.2021.3050676

[29] Mehdi Sookhak; Mohammad Reza
Jabbarpour; Nader Sohrabi Safa and F.
Richard Yu; (2021). Blockchain and smart
contract for access control in healthcare: A
survey, issues and challenges, and open
issues . Journal of Network and Computer
Applications.
http://doi:10.1016/j.jnca.2020.102950

[30] Saini, Akanksha; Zhu, Qingyi; Singh,
Navneet; Xiang, Yong; Gao, Longxiang and
Zhang, Yushu (2020). A Smart Contract
Based Access Control Framework for Cloud
Smart Healthcare System. IEEE Internet of
Things Journal, 1–1.
http://doi:10.1109/JIOT.2020.3032997

[31] Seven, Serkan; Yao, Gang; Soran, Ahmet;
Onen, Ahmet and Muyeen, S. M. (2020).
Peer-to-Peer Energy Trading in Virtual
Power Plant Based on Blockchain Smart
Contracts. IEEE Access, 8, 175713–175726.
http://doi:10.1109/ACCESS.2020.3026180

[32] Hu, Teng; Liu, Xiaolei; Chen, Ting; Zhang,
Xiaosong; Huang, Xiaoming; Niu, Weina;
Lu, Jiazhong; Zhou, Kun and Liu, Yuan
(2021). Transaction-based classification and
detection approach for Ethereum smart
contract. Information Processing &
Management, 58(2), 102462–.
http://doi:10.1016/j.ipm.2020.102462

[33] Sánchez, César; Schneider, Gerardo;
Ahrendt, Wolfgang; Bartocci, Ezio;
Bianculli, Domenico; Colombo, Christian;
Falcone, Yliés; Francalanza, Adrian; Krstić,
Srđan; Lourenço, Joa̋o M.; Nickovic, Dejan;
Pace, Gordon J.; Rufino, Jose; Signoles,
Julien; Traytel, Dmitriy and Weiss,
Alexander (2019). A survey of challenges for
runtime verification from advanced
application domains (beyond software).
Formal Methods in System Design.
http://doi:10.1007/s10703-019-00337-w

[34] HAIQING LIU, YAN ZHANG, SHIQIANG
ZHENG AND YUANCHENG LI. (2019).
Electric Vehicle Power Trading Mechanism
Based on Blockchain and Smart Contract in
V2G Network. IEEE. 7, pp.160546 - 160558.
http://DOI:10.1109/ACCESS.2019.2951057

[35] Li, Yinan; Yang, Wentao; He, Ping; Chen,
Chang and Wang, Xiaonan (2019). Design
and management of a distributed hybrid
energy system through smart contract and
blockchain. Applied Energy, 248, 390–405.
http://doi:10.1016/j.apenergy.2019.04.132

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

833

[36] Xiong, Wei and Xiong, Li (2019). Smart
Contract Based Data Trading Mode Using
Blockchain and Machine Learning. IEEE
Access, 1–1.
http://doi:10.1109/ACCESS.2019.2928325

[37] Alkadi, O., Moustafa, N., Turnbull, B., &
Choo, K.-K. R. (2021). A Deep Blockchain
Framework-Enabled Collaborative Intrusion
Detection for Protecting IoT and Cloud
Networks. IEEE Internet of Things Journal,
8(12), 9463–9472.
http://doi:10.1109/jiot.2020.2996590

[38] Wang, Zeli; Jin, Hai; Dai, Weiqi; Choo, Kim-
Kwang Raymond and Zou, Deqing (2021).
Ethereum smart contract security research:
survey and future research opportunities.
Frontiers of Computer Science, 15(2),
152802–. http://doi:10.1007/s11704-020-
9284-9

[39] Lu Wang; Longqin Xu; Zhiying Zheng;
Shuangyin Liu; Xiangtong Li;Liang Cao;
Jingbin Li and Chuanheng Sun; (2021).
Smart Contract-Based Agricultural Food
Supply Chain Traceability . IEEE Access.
http://doi:10.1109/access.2021.3050112

[40] Bhaskara S. Egala; Ashok K. Pradhan;
Venkataramana Badarla and Saraju P.
Mohanty; (2021). Fortified-Chain: A
Blockchain-Based Framework for Security
and Privacy-Assured Internet of Medical
Things With Effective Access Control . IEEE
Internet of Things Journal.
http://doi:10.1109/jiot.2021.3058946

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

834

Appendix: DeFiLending Application (Used for Formal Verification of Smart Contracts using
SmartScan)

Deposit - Allows users to deposit cryptocurrency assets.
Withdraw - Allows users to withdraw their deposited funds if certain conditions are met.
Borrow - Allows users to borrow assets based on the value of their deposits, subject to a collateral

requirement.
Repay - Allows users to repay their borrowed funds.

pragma solidity ^0.8.0;
contract DeFiLending {
 mapping(address => uint256) public deposits;
 mapping(address => uint256) public debts;
 uint256 public constant collateralFactor = 150; // 150%
 function deposit() external payable {
 deposits[msg.sender] += msg.value;
 }
 function withdraw(uint256 amount) external {
 require(deposits[msg.sender] >= amount, "Insufficient balance");
 require(debts[msg.sender] == 0, "Debt exists, cannot withdraw");
 deposits[msg.sender] -= amount;
 payable(msg.sender).transfer(amount);
 }
 function borrow(uint256 amount) external {
 uint256 collateralRequired = (amount * collateralFactor) / 100;
 require(deposits[msg.sender] >= collateralRequired, "Insufficient collateral");
 debts[msg.sender] += amount;
 payable(msg.sender).transfer(amount);
 }
 function repay() external payable {
 require(msg.value >= debts[msg.sender], "Repay full debt");
 debts[msg.sender] -= msg.value;
 }
}

