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ABSTRACT 

Smart contracts are gaining popularity as blockchain technology, and its uses continue to develop rapidly. 
Smart contracts are necessary to enforce real-time contracts in Blockchain systems. It is essential to 
thoroughly verify both simple and complex smart contracts since inconsistencies could lead to issues like the 
inability to deliver the required services. Existing tools like SmartCheck can automatically verify the 
correctness of smart contracts. However, a more complete solution that ensures the accuracy of smart 
contracts and considers security concerns is needed. In this study, we propose SmartScan, an efficient and 
optimal framework for formally verifying complex blockchain smart contracts. SmartScan uses a hybrid 
methodology that includes formal approaches, optimized heuristics, static analysis, and an optimized 
verification process to find weaknesses and inconsistencies in smart contracts. SmartScan's architecture aims 
to be robust to complex relationships and many interconnected parts. SmartScan streamlines the verification 
process by lowering its temporal and computational complexity. More importantly, it can validate the smart 
contracts of large-scale blockchain applications due to its scalable architecture. It manages the life cycle of 
smart contracts and can be extended to interface with other apps. Several algorithms in SmartScan aid in 
realizing the underlying architecture so that its primary functions can be accomplished. In terms of computer 
complexity, temporal complexity, and the ability to detect flaws and irregularities in simple and sophisticated 
smart contracts, SmartScan outperforms many currently used approaches, per an objective analysis using the 
DeFiLending case study. As a result, SmartScan is more than just a tool; it is a scalable and effective solution 
that can be incorporated into already-existing applications that deal with the life cycle of smart contracts and 
blockchain application development. 

Keywords - Smart Contracts Verification, Blockchain Technology, Blockchain Applications, Formal 
Verification, Smart Contact Life Cycle 

1. INTRODUCTION  
Blockchain technology is a decentralized 

digital ledger that enables multiple people to 
preserve records safely and publicly without 
needing a single authority. Every block in the 
chain has a cryptographic link to the block before 
it, which also has a list of transactions, ensuring 
the data's integrity and immutability. 
Organizations like logistics management and 
Bitcoin that require security, transparency, and 
trust benefit significantly from blockchain 
technology. A document with terms encoded into 
computer code that can be executed 
independently is called a contract with 
intelligence. Blockchain technology is used in 
electronic contracts to manage and implement 
contracts autonomously based on predefined 

criteria. Smart contracts enhance transaction 
efficiency and save money, as they do not need 
intermediaries. They are indispensable to 
complex systems such as decentralized finance 
(DeFi), governance protocols, and virtual asset 
management. 

Official verification is an algebraic 
technique that can prove the accuracy of 
algorithms and systems. To ensure they are 
resistant to a wide range of possible risks. Smart 
contracts must be long-term secure and resilient 
against failure, error, or misuse and must meet 
regulatory compliance requirements. Smart 
contracts have various applications, especially in 
the banking sector. It is also crucial as any fault or 
vulnerability may lead to millions of dollars in 
losses. As they move autonomously, there is more 
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willingness to trust the smart contracts when their 
accuracy is validated. Proving readiness to follow 
laws and regulations through official 
documentation might encourage using blockchain 
technologies more often. Problems can be 
identified quickly before being implemented once 
an agreement is published, avoiding costly errors 
through official verification. 

Multiple established methods exist for 
validating smart contracts, each with advantages 
and disadvantages. Model testing examines the 
space of a system to determine things such as 
safety and liveness. While it is practical, model 
verification for complex contracts may be 
resource-intensive. On the other hand, one can use 
a theorem-type approach to prove that a contract 
is legal in its terms.  It requires a lot of effort and 
talent, but it provides a lot of assurance. Symbolic 
code execution is used in place of physical inputs 
in operation symbolic to enable the investigation 
of numerous execution paths. Despite its strength, 
it might not be able to withstand state explosions. 
Two programs, Mythril and Slither, use static 
analysis to find issues and flaws in smart contracts 
without ever having to execute them. Because of 
their quickness, they could miss some contextual 
mistakes. Formal approaches have become more 
accessible for developers to apply because of tools 
like VeriSol and KEVM, which provide 
automated frameworks for comparing smart 
contracts to specifications. Employing 
appropriate and ideal formal verification 
approaches is necessary because blockchain and 
smart contract technologies are widely used. By 
guaranteeing the precision and safety of smart 
contracts, blockchain applications can gain more 
dependability and credibility, paving the way for 
this innovative technology's more comprehensive 
implementation and development. 

As part of this study, we present a 
thorough SmartScan framework for the successful 
and fast formal verification of intricate blockchain 
smart contracts. A hybrid tool called SmartScan 
uses formal methods, updated verification 
processes, improved heuristics, and static analysis 
to find flaws and inconsistencies in smart 
contracts. The primary objective of SmartScan's 
design is to ensure that it can tolerate intricate 
connections and interactions between various 
parts. It boosts efficiency by speeding up the 
verification process in terms of time and 
calculation. The scalability of SmartScan allows 
it to validate smart contracts used in large-scale 
blockchain applications. The framework can be 
utilized by apps that manage the smart contract 

lifecycle due to its adaptability and simplicity of 
usage. Many algorithms are built into SmartScan 
to support its primary features and simplify the 
underlying processes. An investigation of the 
DeFiLending scenario shows that SmartScan 
outperforms several existing approaches in terms 
of time complexity, computational complexity, 
and its capacity to detect bugs and inconsistencies 
in simple and sophisticated smart contracts. As a 
result, SmartScan is more than just a tool; it is a 
scalable and effective solution that can be 
incorporated into already-existing blockchain 
development and smart contract lifecycle 
applications. This paper's remaining sections are 
organized as follows: The literature on formal 
verification techniques is reviewed in Section 2. 
Section 3 presents the necessary preliminaries. 
Section 4 introduces the proposed framework. 
Section 5 discusses the case study. Section 6 
presents the experimental results, while Section 7 
outlines the study's limitations and provides 
directions for future research. 

 
2. RELATED WORK 

This section reviews prior works on 
smart contract formal verification tools. Singh et 
al. [1] allowed using smart contracts to enable 
decentralized apps; however, security issues still 
exist. Vulnerabilities are addressed by formal 
approaches such as theorem proofing. An analysis 
stresses cooperative efforts for increased smart 
contract security while highlighting methods, 
languages, and tools Permenev et al. [2] regarding 
real-world custom requirements; VERX is an 
automated verification demonstrating the 
functional features of Ethereum smart contracts. It 
uses three strategies, showing that it is helpful in 
real life. Liu et al. [3] investigated the security 
verification of blockchain smart contracts, fixing 
flaws and accuracy. Future research shows 
potential when formal approaches are the focus. 
So et al. [4] arithmetic safety in Ethereum smart 
contracts is guaranteed by VERISMART, an 
accurate verifier. It reduces manual inspections 
and false alerts by outperforming current 
analyzers. Gao et al. [5] Word embedding is used 
automatically to discover bugs and clones, 
ensuring the dependability of Solidity smart 
contracts. It can identify 90% of clones and detect 
bugs effectively after being evaluated on 22,000 
contracts. 

Angelo and Salzer et al. [6] decentralized 
apps are powered by smart contracts, which 
openly manage asset trades. Open-source 
development promotes confidence. Reusing parts 
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from reliable repositories such as ConsenSys and 
the Ethereum Foundation is advised. Five tools 
inspire. Feist et al. [7] SlithIR is used by Slither, 
an open-source static analysis framework for 
Ethereum smart contracts, to find bugs, optimize 
code, and comprehend them efficiently. Grech et 
al. [8], with accuracy, comprehensiveness, and 
scalability for analysis, Gigahorse, a toolchain, 
decompiles Ethereum smart contracts into high-
level 3-address code. Zheng et al. [9] state that 
smart contracts transform sectors by automating 
contracts on blockchains. Issues with bugs, 
security, and bridging gaps across disciplines of 
knowledge exist despite the promise. Issues with 
security, language barriers, performance, and few 
resources beset Zou et al. [10] Blockchain-driven 
smart contract development. Further study and 
advancements are required. 

Pinna et al. [11] thoroughly examine 
more than 10,000 Ethereum Smart Contracts, 
looking into their features, transactions, positions 
in the development community, and source code 
attributes. Results show power-law distributions, 
developing software, and a wide range of uses not 
limited to crypto values. Ante [12] examined 
20,188 references and 468 publications on smart 
contracts, identifying six study strands that 
address legal, social, technological, and economic 
issues. The promise and multidisciplinary nature 
of smart contracts are highlighted, along with 
challenges and prospects for further study.  Babel 
et al. [13] for decentralized finance (DeFi) smart 
contracts, Clockwork Finance Framework (CFF) 
is a flexible formal verification tool that 
guarantees both attack exhaustiveness and 
contract completeness. Without pre-programmed 
attack techniques, CFF creates models for well-
known DeFi protocols and finds that real-world 
transactions have an average monthly estimated 
extractable value (EV) of $56 million. Rana et al. 
[14] utilized smart contracts to propose a 
decentralized paradigm on the Layer 2 Polygon 
blockchain; data security, integrity, and 
transparency are guaranteed. Superior 
dependability is demonstrated via simulations, 
and scalability issues are resolved. Yamashita et 
al. [15] discussed the hazards of Hyperledger 
Fabric smart contracts, especially those created in 
Go. The study presents a novel static analytic 
technique to identify new risks and emphasizes 
the necessity of regular surveys and updates. 

Kemmoe et al. [16] examined state-of-
the-art blockchain-based smart contract 
technologies, classifying developments in social 
applications, contract architecture, access control, 

and cryptography. It points out flaws, emphasizes 
recent advancements, and makes 
recommendations for future lines of inquiry. 
Wang et al. [17] suggested using machine 
learning to quickly identify Ethereum smart 
contract vulnerabilities, with an average detection 
time of 4 seconds and over 96% prediction 
accuracy—subsequent research endeavors to 
optimize efficiency and identify new weaknesses. 
Khan et al. [18] influence on banking and the rise 
of trustless environments with smart contracts are 
revolutionary. A survey that addresses obstacles 
and unresolved issues examines technical, use, 
and future trends. Vacca et al. [19], a literature 
survey on blockchain software engineering, 
identify problems with testing, security, metrics, 
and smart contract creation. Open challenges are 
noted for more research on a variety of subjects. 
Huang et al. [20] investigated the issues with 
security in smart contracts running on 
decentralized blockchains. It examines salient 
characteristics, susceptibilities, and remedies 
across the software life cycle and makes 
recommendations for future study avenues.  

Rouhani and Deters [21] examined the 
development of blockchain technology, 
emphasizing the use of smart contracts for 
purposes other than cryptocurrency. Research on 
security, performance, and decentralized 
applications is categorized under it. Peng et al. 
[22] thoroughly examine the research prospects 
and security concerns of using smart contracts in 
Internet of Things applications, emphasizing 
possible attacks, programming problems, and 
vulnerabilities. The survey aims to direct future 
research on this developing topic. Jiao et al. [23] 
aimed to increase security in implementing 
Ethereum smart contracts by introducing formal 
Solidity semantics that enhance source code 
verification. Hewa et al. [24] examined how 
blockchain technology and smart contracts may 
revolutionize various applications, emphasizing 
the present advantages and the possibilities for the 
future. Kushwaha et al. [25] methodically 
examined Ethereum smart contract security, 
including flaws, assaults, defenses, and potential 
future study areas. 

Kirli et al. [26] examined 13 initiatives, 
178 articles, and blockchain-enabled smart 
contracts in the energy industry. The report 
addresses issues and provides solutions 
emphasizing distributed control, energy, and 
flexibility trading. Hamledari et al. [27] presented 
a payment system that ensures speed and accuracy 
in autonomous payments in building projects by 
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utilizing blockchain smart contracts and robotic 
reality capture. After being successfully applied to 
actual projects, the technique eliminates 
inefficiencies in the payment workflow and opens 
the door for broader adoption by fusing on-chain 
and off-chain reality. Vangala et al. [28] offered a 
blockchain-based intelligent farming system that 
guarantees data integrity, transparency, and 
anonymity. Formal analysis and simulation verify 
that the suggested authentication strategy delivers 
greater security and functionality. Sookhak et al. 
[29] examined the security, taxonomy, and 
problems of blockchain-based access control for 
Electronic Health Records (EHRs) in the medical 
field. Saini et al. [30] presented a safe framework 
in a blockchain-based innovative healthcare 
system for exchanging Electronic Medical 
Records (EMRs). For effective access control, the 
system uses blockchain technology and 
encryption. 

Seven et al. [31] offered a peer-to-peer 
energy trading platform built on the Ethereum 
blockchain for a virtual power plant. It 
concentrates on the financial side, using smart 
contracts to establish an auction for safe and 
affordable transactions within a virtual private 
network. On the Ethereum Ropsten Test Network, 
actual data is used to validate the suggested 
design. Hu et al. [32] addressed vulnerabilities 
and fraud by implementing a transaction-based 
approach for Ethereum smart contract 
categorization and detection. The technique 
demonstrates exemplary performance in 
recognizing abnormalities and differentiating 
across contract types using LSTM. Sanchez [33] 
executed traces are compared to specifications in 
the formal methods field of runtime verification, 
often used in software. This article emphasizes 
overcoming obstacles by outlining issues in 
several disciplines. Liu et al. [34] suggested that 
the EV power selling paradigm for V2G networks 
is based on blockchain technology and uses 
reverse auctions and smart contracts. Simulation 
studies confirm its efficacy. Li et al. [35] 
suggested using a hierarchical architecture to 
manage a distributed energy system with various 
end users and renewable sources. It uses 
blockchain technology and smart contracts to run 
safe and effective operations; a case study 
conducted in Singapore demonstrates the 
potential outcomes. Future developments will 
focus on scalability and resolving obstacles to the 
acceptance of blockchain technology. 

Xiong et al. [36] addressed issues with 
traditional data trading and offered a blockchain 

alternative using machine learning and smart 
contracts. It secures data owner rights, removes 
reliance on other parties, and expedites Ethereum 
payments. The research, which is available on 
GitHub, examines the smart contract's 
conception, execution, security analysis, and 
performance assessment. Upcoming projects will 
improve smart contracts to stop post-sale data 
reselling. Alkadi et al. [37] examined a Deep 
Blockchain Framework (DBF) focusing on cloud 
privacy protection for cooperative intrusion 
detection. Using Ethereum for a privacy-based 
blockchain and Bidirectional Long Short-Term 
Memory (BiLSTM) for intrusion detection, DBF 
performs better than its peers. It offers a safe 
method of decision assistance for prompt data 
movement. Future research aims to assess the 
usefulness and scalability of various real-world 
datasets. Wang et al. [38] became more popular, 
especially with Ethereum's smart contracts. This 
study examines the security of Ethereum smart 
contracts from 2015 to 2019, pointing out flaws 
and suggesting areas for further research to 
improve security. Wang et al. [39] fixed problems 
with agricultural food supply chains, guaranteeing 
transparency and traceability. Reliability and 
security are increased by process tracking and 
information sharing, which are improved by a 
consortium and smart contract-based architecture. 
When used at Shanwei Lvfengyuan Modern 
Agricultural Development Co., Ltd., the 
framework facilitates product tracking using QR 
codes and disintermediation. Egala et al. [40] 
suggested use blockchain, DDSS, and hybrid 
computing to create a decentralized IoMT 
healthcare system that is efficient, secure, and 
private. From the literature, it was observed that 
there is a need for developing better formal 
verification tools for checking blockchain 
technology smart contracts.  

 
3. PRELIMINARIES 

3.1 Formal Verification of Smart 
Contracts 

Formal methods provide a powerful 
technology for the correctness verification of 
smart contracts. The use of formal methods to 
verify smart contracts has been widely 
recognized, and significant results have been 
achieved in practice. The Ethereum community 
has also turned to formal methods to solve the 
demands for high-assurance contracts. Besides, 
using formal methods to validate smart contracts 
can provide a rigorous mathematical model for 
verifying smart contracts. By analyzing the 
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model, we can more easily discover logic errors 
or other new vulnerabilities. The formal 
verification of smart contracts tends to have an 
excellent potential for development in the future. 

3.1.1 Program-based Formal 
Verification  

A smart contract's essence is the program 
executed on the blockchain. Verifying the 
correctness of the program is a vital part of 
ensuring the safety and reliability of smart 
contracts. Successful practical cases and 
theoretical studies have been conducted on 
program-based verification of smart contracts. At 
the 3rd Global Blockchain Summit in 2017, a 
blockchain formal verification team of the 
University of Electronic Science and Technology 
presented the VaaS (Verification as a service) as 
an EOS formal verification platform. In addition 
to the EOS blockchain platform, VaaS supports 
other common platforms such as Ethereum and 
Fabric. The principle of the VaaS platform is to 
translate programs written in the Solidity scripting 
language into the Coq code, thus establishing a 
standard formal model for smart contracts and 
then verifying the correctness of the smart 
contract by verifying the correctness of the Coq 
language. Similarly, Bhargavan et al. proposed a 
verification method based on programming 
language. They translated the Solidity language 
into an F* language to check if the contract was 
correct. In most cases, we can only get the binary 
code running on Ethereum, and we cannot get the 
source code of the smart contract. So, in the 
absence of source code, they decompiled the 
binary files on Ethereum into F* language and 
analyzed whether at least some of the attributes to 
be reached by the contract were satisfied. The 
complete F* language for any smart contract had 
not yet been implemented because of enormous 
work. Moreover, verifying whether the F* 
language translated by Solidity language was 
consistent with the decompiled binary code was 
challenging for the same contract. Furthermore, 
Grishchenko et al. used the F* language proof 
assistant to successfully validate the official 
Ethereum test suite. 

3.1.2 Behavior-based Formal 
Verification  

Model checking is well adopted in 
behavior-based verification. It can conveniently 
model the interaction between the user and the 
program to verify whether the smart contract can 
interact with the user reliably and securely. Some 

good examples of behavior-based formal 
validation are demonstrated below. Ellul et al. 
proposed a runtime verification method. It was a 
novel state-based technique that ensured the 
violating party provided insurance for correct 
behavior. They used the finite state machine to 
model the contracts, and this method had been 
partially implemented in a proof-of-concept tool, 
ContractLarva. Their method referred to the 
methods proposed by Fenech et al. and Gorin et 
al., which validated the properties of the contract. 

3.2 Need for Formal Verification of 
Smart Contracts 

The blockchain application known as 
DeFiLending exemplifies a decentralized finance 
platform where users can deposit cryptocurrency, 
withdraw funds, borrow assets, and repay debts. 
This system facilitates crucial financial 
interactions and must uphold high security, 
accuracy, and reliability standards to avoid 
financial loss and safeguard user assets. In the 
contract, users deposit funds into a shared pool, 
providing collateral for potential borrowing; the 
platform then allows users to borrow assets 
proportionate to their deposit value. This ensures 
the system has enough liquidity to perform loans 
but maintains stringent collateral requirements of 
150% or more of a single loan. As such, a smart 
contract relies on complicated computations and 
handles high-value financial assets, so it must use 
formal verification to ensure that it behaves as 
desired while not introducing risk.  

Correct collateral management is a 
critical element of lending systems based on smart 
contracts. Incorrect calculations or modifications 
on the collateral part could lead users to borrow 
more than needed, putting the platform's liquidity 
at risk and raising the possibility of insolvency. 
Facilitating formal verification would also help to 
avoid overborrowing, as deposits, collateral, and 
amounts that can be borrowed should always be 
valued using the intended logic on your platform. 
For smart contracts to ensure that consumers can 
obtain funds deposited into accounts, accurate 
tracking of deposits and withdrawals is also 
required. This is to prevent cases when a user 
withdraws more than he has, which leads to losing 
funds for other users. Formal verification could 
help confirm that quantities on the platform are 
equal to those provided by customers, making 
payments and withdrawals more accurate and 
ensuring confidence.
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Figure 1: Illustrates the flow of the DefiLending application’s smart contract 

Protection is essential when creating 
smart contracts since reentrancy assaults and 
other flaws could allow dishonest users to keep 
performing operations like `withdraw` and 
`borrow,` thus exhausting the contract's cash. An 
attacker may start a money transfer more than 
once before the system amount is updated if they 
attempt to enter a contract again while a 
transaction is underway. Before any funds are 
transferred, platforms can expressly verify that 
operations, such as fund deductions and other 
state changes, are adequately protected against 
reentrancy. Furthermore, smart contracts could be 
impacted by integer overflow and underflow 
problems, especially in previous Solidity 
versions. 

Both unwanted consequences may 
happen when dams overflow or underflow, 
passing a value above its upper bound and below 
zero. With things like deposits and debts able to 
be automatically analyzed, formal verification 
techniques come in handy for ensuring that big 
transfers or edge-case inputs cannot cause 
unforeseen financial disasters by ensuring they 
are always kept within defined bounds. Last but 

not least, verifying an authority also ensures 
compliance with lending regulations (such as 
needing enough collateral before approving a 
loan). Besides fulfilling the collateral 
requirements, our formal verification gives a 
mathematical assurance that no borrower can 
draw more than their collateral can bear. This 
behavior is vital to the long-term sustainability of 
the platform and ensuring other people can hold 
their assets there without risk. 

Thereon, the agreement must then be 
completed (completed formally/initially), and 
after that, the complete pre-conditions to 
provision and deposit of the loan should be 
checked. It can also be systematically enforced for 
plausible adherences. Official inspection models 
invariant properties (e.g., deposits>=debts) and 
analyzes a mathematical procedure with each 
transaction to guarantee that overdraws are 
avoided, ensuring the contract's validity. By a 
strict methodology, the integrity of each 
transaction is guaranteed and protected from 
threats, which brings customers' trust and safety 
to the DeFiLending program. 
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Table 1: Acronyms  Used In This Paper 
Acronym Description 
BIP Behavior, Interaction, Priority 
FSM Finite State Machine 
SMV  Symbolic Model Verifier 
CTL Computation Tree Logic 
nuXmv Symbolic Model Checker Tool  

 
3. PROPOSED FRAMEWORK 
We created a formal method for 

checking smart contracts. SmartScan technology 
was developed to evaluate complex blockchain 
smart contracts for accuracy and security. The 
source code and contract definition are 
transformed into an FSM (Finite State Machine), 
which is a mathematically rigorous model. The 
framework of an FSM fostering this analysis can 
uncover surprising behaviors and potential 
shortcomings by easing the application of model-
checking tools. Once the FSM is ready for 
efficient validation, The framework creates a 
Behavior, Interaction, Priority (BIP) model. 
Symbolic model checkers such as nuXmv analyze 
the state space of a BIP to detect security flaws or 
violations of predefined properties. The result is a 
complete verification report containing the 
evaluation results and any problems identified. 
SmartScan aims to build trust in inaccessible 
networks and improve smart contracts' safety, 
reliability, and value by automating the 
verification process. So, the architecture is 
demonstrated in Figure 2 of SmartScan. 
SmartScan enhances the efficiency of complex 
blockchain smart contract processes. This 
paradigm posits that formal definition, 
verification, and modeling are interconnected 
processes. A smart agreement's accuracy and 
security features are described in the Contract 
Specification, the first document in the Formal 
Specification Phase. Using user-defined 
correctness qualities, these specifics can be 

adjusted to meet the terms of the contract. 
However, security features address common 
security issues in smart contracts by leveraging 
these pre-existing components. 

Those qualities are reflected in 
Computation Tree Logic (CTL) equations, a 
temporal logic used in model verification that 
dictates the order in which certain events must 
occur in a system. The contract can be expressed 
as a finite state machine (FSM) capturing its 
behavior regarding states and transitions. 
Identifying potential weaknesses in the channels 
over which the contract runs is necessary. We 
recommend exploring the limitations of this FSM. 
FSM modeling: SmartScan can detect any 
vulnerabilities resulting from the nature of smart 
contracts and ensure they are accurately 
represented in security and functionality. The 
Solidity contract source code is first converted 
into a formal language known as BIP (Behavior, 
Interaction, Priority) in the Modeling Phase. This 
allows for a deeper behavioral analysis of the 
contract. The BIP model is then translated into 
FSM (FSM-SC) for the state-based analysis, 
thereby completing formal verification. So, this 
method transforms the solidity code into one that 
can be validated completely. In the Verification 
Phase, nuXmv [15], a symbolic model checker, is 
used to check the CTL formulas defined from the 
security and correctness properties specified in 
the first phase. 
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Figure 2: Architectural Overview Of The Proposed Framework Named Smartscan For Efficient And 

Optimized Formal Verification Of Complex Blockchain Smart Contracts 
Based on the contract, NuXmv 

characterizes all states and transitions of the 
contract to assist the framework in ensuring the 
presence of required attributes. Based on the 
results of this verification process, an elaborate 
Verification Report is generated to demonstrate 
that the contract conforms to the specifications. 
Apart from highlighting the noted flaws, it comes 
with a handy report for developers and analysts to 
rectify the contract. SmartScan formal 
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integrated into a multi-phase process to bring a 
thorough, rigorous, and careful approach to 
blockchain smart contract verification. Formal 
code models must be generated and analyzed to 
enhance the security and reliability of smart 

contracts deployed on blockchain systems and 
ensure that all correctness and safety properties 
are satisfied. 
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can be evaluated for correctness, safety, and 
security. To move Solidity, also known as code, 
to BIP, it is necessary first to deconstruct it into its 
component functions, state variables, and control 
flow structures. Solidity transforms user-defined 
functions, such as fallback and receive, into BIP 
behaviors. These exercises explain how the smart 
contract interacts with other parts and changes 
states. The BIP model of Solidity would depict a 
behavior that updates the system's state as a 
function that modifies a state variable, like 
`setData().` 

The BIP model captures state variables, 
which make up the permanent data of the contract, 
just like Solidity does. Balances and ownership 
data are examples of variables that BIP transforms 
into states. The BIP paradigm requires that any 
changes to a smart contract's state when functions 
are called be explicitly stated as state transitions. 
Control flow structures such as `if,` `for,` 
`require,` and `assert` are essential for ensuring 
that the logic of the contract operates correctly. 
BIP links these to guards or transitions that 
regulate the style and timing of specific actions. 
This is followed by determining and mapping the 
functions, state variables, and control flow of the 
Solidity code to the formal designs of the BIP 
framework.  

The BIP converts each function into a 
behavior the other system components can 
communicate. It demonstrates how various 
contract components or functions alter standard 
state variables and how they are directly or 
indirectly connected. BIP's priority design ensures 
that specific tasks are completed in a predefined 
order because systems such as blockchain 
contracts may enable the execution of several 
processes at once. Preventing the overriding or 
erroneous execution of critical procedures is 
crucial. 

 
BIP organizes the contract pieces to 

generate a formal representation that is subject to 
analysis and validation. BIP-SMV integrates BIP 
with symbolic model checking techniques such as 
nuXmv to check the fidelity of the agreement. 
Properties of interest include safety (e.g., the 
contract never reaching an undesirable state) and 
liveness (e.g., specific tasks eventually being 
carried out) verification using symbolic model 
checking. Using CTL (Computation Tree Logic) 
and other varieties of temporal logic, you can state 
the desired properties that the contract should 
eventually conform to, such as avoidance of race 
conditions or that a transaction has been 

completed. SOL to BIP Conversion ensures the 
security and accurate functionality of Smart 
Contracts by rigorously representing and formally 
verifying smart contracts. This allows developers 
to verify all possible scenarios before deployment, 
discovering potential vulnerabilities, deadlocks, 
or other weird behaviors that traditional testing 
methods cannot check for. BIP framework can be 
used to analyze Solidity contracts to ensure they 
are secure and deploying as intended in a 
blockchain environment. 
3.2 Modelling BIPs to FSM 

It is necessary to convert a BIP formal 
description into an illustration in which the 
system's conversations, actions, and phases are 
represented as states and transitions in an FSM to 
map BIPs to FSMs. In mathematics, the FSM 
defines a finite number of state systems. These 
systems can either remain in a single state 
continuously or undergo state changes in response 
to specific events or situations. This improvement 
is required to formally validate systems, like 
smart contracts, where the objective is to 
investigate and guarantee acceptable behavior in 
all possible states and transitions. The process 
begins by assigning a state in the FSM to each 
behavior in the BIP model, which represents the 
activity or system component. These actions 
usually correlate to system actions, such as a 
function being executed or the system's state 
changes. BIP typically characterizes behaviors as 
discrete actions that can alter or interact with other 
parts of the system. Nonetheless, these behaviors 
in FSM reflect the state or mode of the system at 
that moment. For example, an FSM state 
representing the contract processing the data 
would be mapped to an intelligent contract 
behavior like "setData" that modifies a state 
variable. 

Then, in the FSM, the interactions 
between behaviors in the BIP model are 
represented as transitions. BIP defines how 
components interact or communicate with one 
another, and in FSM, these interactions are 
converted into transitions that change the system's 
state. The FSM would show a transition between 
two states, for instance, if one behavior, like 
`setData,` causes another, like `getData.` Events, 
circumstances, or inputs typically bring about 
these changes; in the case of smart contracts, these 
could be transactions, outside calls, or 
adjustments to state variables. The priority 
element is essential in BIP for modelizing FSM as 
it defines the order in which interactions or 
behaviors occur. 
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In the presence of multiple potential 
transitions, the system uses this data to decide 
which transitions to start or how to handle them if 
there are several simultaneous events. FSM's 
turnover chain and limitations illustrate this 
importance. It ensures precedence in certain 
machine operations, such as executing smart 
contracts that rely on timeliness and ordering for 
deadlines. Behaviors, interactions, and priorities 
can be mapped to states and transitions so that the 
FSM paradigm allows for official verification. In 
the FSM paradigm, system analysis is more 
comprehensive since every state and transition is 
guaranteed to be present, with no states being 
wrong or missing. This is useful when searching 
for race conditions, deadlocks, or sometimes 
incorrect system behavior. Tools such as model 
checkers, which provide formal guarantees on 
correctness, reliability, and assurance, make 
validating that the system meets its specifications 
easier once the BIP model has been translated into 
an FSM. 

Finally, converting BIPs into FSM 
facilitates the analysis of complex smart contracts 
by allowing these contracts to have a formally 
mathematical and computationally realistic 
representation. Programmers need to do this step 
because it is necessary for proper smart contract 
validation. This means considering every possible 
state and contact, ensuring the system behaves as 
it should. FSM can identify minor errors that 
routine testing can overlook, thus enhancing the 
system's overall accuracy. 
3.3 BIP to SMV 

The BIP-to-SMV method allows the 
formal verification of smart contracts taken from 
model-checking tools that analyze large systems 
driven by behavior. Suppose we transform our 
BIP model into an SMV (Symbolic Model 
Verification) format. It enables complete contract 
behavior exploration via high-performance 
formal verification tools such as nuXmv 
(https://github.com/nuprl/nuXmv) or Cadence 
SMV. Providing an analytical tool for the entire 
lifecycle of a smart contract, including every state 
and transition where correct functioning is 
implemented, is vital; this version does just that. 
This ensures that the transaction will proceed as 
intended under certain conditions. 

In the BIP paradigm, the behavior of the 
smart contract is represented in a placeholder 
manner. By encapsulating the basic logical 
structure and restrictions that control the 
contract's execution, developers can use BIP to 
specify the contract's interactions, priorities, and 

functions. In BIP, interactions define the 
connections and information flow between 
various activities, whereas behaviors denote a 
function or a state-altering activity within the 
smart contract. Because BIP priority rules 
guarantee that specific behaviors occur in a 
particular order, they help manage the sequence of 
transactions or prevent conflicting state changes 
in a contract. This BIP model offers an ordered, 
component-based representation of the smart 
contract, facilitating the transition to SMV. 

Following its establishment, the BIP 
model is converted into the SMV format, 
designed especially for symbolic model 
verification. The contract is represented as a 
finite-state machine in SMV, where each 
transition indicates an action or modification in 
the behavior of the contract, and each state 
indicates a possible configuration of its variables. 
This change is essential in SMV tools since all 
conceivable states are systematically checked 
using symbolic representation. BIP actions are 
transformed to produce SMV model 
representations using the BIP-to-SMV translation 
method. When the concurrent model is based on 
contracts, contract activity can be studied 
deterministically and linearly by converting 
priorities and interactions into conditions and 
transitions of a dynamically changing state. 

Then, the SMV model is syntactically 
checked using the nuXmv tool, which explores 
the state space with symbolic model-checking 
techniques. Built-in tools for verifying CTL 
(Computation Tree Logic) temporal logic 
properties Features such as safety properties that 
guarantee the contract never becomes inactive and 
liveness properties that ensure a particular action 
will eventually be executed can help developers 
define essential behavioral assumptions. The 
SMV program analyzes all possible execution 
paths to determine if the contract complies with 
these rules or to identify specific states in which a 
violation may occur. 

To formalize verification, the BIP-to-
SMV approach is a valuable strategy for detecting 
smart contract issues. Issues appeared, such as 
reentrancy attacks, state changes we did not 
expect, and concern about the state transition 
during the model checking phase. For instance, if 
an smart contract allows calls to a specific 
function repeatedly without inflicting massive 
state changes, the SMV model checker reveals 
errors by exploring these states in which the 
contract enters into a loop unexpectedly. Standard 
testing approaches typically only exercise a small 
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subset of possible contract behaviors, making this 
integrated automated analysis challenging. BIP-
to-SMV offers a firmer assurance of the security 
and validity of smart contracts than traditional 
testing. 

This method ensures the contract always 
operates correctly and safely by providing a 
mathematically proven specification. This 
strategy primarily benefits high-value blockchain 
applications, as logical contract errors can put 
security or revenue at risk. The BIP-to-SMV 
pipeline is a necessary instrument for 
programmers and accountants in the blockchain 
ecosystem, as it increases the reliability of smart 
contracts. We create a nuXmv formula for each 
CTL (Computation Tree Logic) formula. 
3.4 CTL Formulas to nuXmv (Symbolic Model 
Checker Tool) 

SmartScan is a tool to formally verify the 
complex properties of blockchain smart contracts 
with CTL (Computation Tree Logic) equations. 
SmartScan checks the accuracy, security, and 
robustness of every possible bright contract state 
and transition. The logical claims that build CTL 
formulations specify limits the smart contract 
needs to operate under. By writing these 
properties in CTL, SmartScan can use the nuXmv 
symbolic model checker to validate smart contract 
behavior exhaustively on all execution channels. 
With SmartScan's CTL formulae, representing 
temporal characteristics or conditions we expect 
to hold through the contract is a breeze. These 
features are essential to reduce application 
blockchain vulnerabilities, ensure error-free 
execution patterns, and avoid situations that could 
lead to a security breach. For example, to prevent 
deadlocks and infinite loops, they apply a CTL 
formula like "if the transaction is started, then it 
must eventually finish." This attribute is 
represented in CTL as AG(request -
>AF(response)). To ensure upholding the 
contract, a response condition ({AF) is triggered 
if a request condition({AG) globally holds. 

The different CTL features are encoded 
into nuXmv using the SmartScan tool [25] so that 
each CTL formula corresponds to a unique bright 
contract verification target. The nuXmv model 
checker inspects all possible states and transitions 
to determine whether the contract's BIP-SMV 
(Behavior, Interaction, Priority - Symbolic Model 
Verification) representation satisfies a CTL 
formula. SmartScan then maps BIP interactions to 
SMV states and transitions and precisely checks 
contract behaviors like sequence validation, 
mutual exclusion, and condition management. 

With its symbolic power, NuXmv can explore 
each possible execution and avoid tedious 
simulations. One example of a CTL formula that 
SmartScan may want to use to verify the proper 
processing of funds is ~AG(balance >= 0)) This 
would eventually make financial malpractice 
more likely or misappropriation because it 
wouldn't allow the balance to drop below zero. 
Similarly, EF(error_state) can be used with 
SmartScan to help identify such issues and ensure 
these problematic channels are excluded before 
deployment. These CTL compositions will 
always be relevant to the essential safety aspects 
throughout the contract execution. 

Another essential element that CTL 
equations may capture is priority limits, which are 
part of the BIP architecture used by SmartScan for 
smart contract verification. If both are feasible, a 
hypothetical CTL formula in nuXmv states that 
one of the two events must always happen first. 
The equation `AG (request1 -> AF request2)` 
forces `request2` to follow `request1` to do this, 
provided that `request1` is met. This directive will 
be applied globally. This prevents other problems 
from impacting the contract and jeopardizing the 
validity of its execution. Traditional testing 
cannot achieve the rigor that nuXmv for 
SmartScan's symbolic model verification enables. 
SmartScan uses symbolic verification and the 
expressive capability of CTL to traverse an 
unlimited state space with few representations by 
setting sophisticated, high-level criteria. The CTL 
formulas from nuXmv are used by SmartScan to 
confirm that smart contracts are safe 
methodically, work as planned, and adhere to the 
intended operational logic in a range of situations. 
Therefore, a robust and trustworthy contract 
verification that can recognize and correct such 
errors improves blockchain systems' overall 
security and validity. 

 
4. CASE STUDY: DeFi Lending 

Smart Contract Verification Using SmartScan 
In this case study, the smart contract of a 

DeFi loan application is validated using the 
SmartScan tool. It demonstrates how SmartScan 
ensures the contract is accurate, dependable, and 
secure in various circumstances. Through a DeFi 
lending operation, users can deposit, borrow, and 
pay interest on Bitcoin. However, problems like 
reentrancy attacks, inadequate fund management, 
and erroneous interest rates could arise with these 
smart contracts. To help, SmartScan legally 
validates that the contract meets all standards and 
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offers adequate protection against common 
vulnerabilities. 

Step 1: Define Contract Requirements 
and Properties 

We use Smart Scan only once we have 
established the leading security and behavioral 
components of the DeFi Lending contract.  

 
1. Fund Safety: Confirm that the funds 

deposited are secure and cannot be stolen. 
2. Reentrancy Prevention: Prevent any 

functions from being called repeatedly in a 
manner that exploits the contract’s state. 

3. Interest Correctness: Verify that 
interest calculations are accurate and non-
exploitative. 

4. Liquidation Conditions: Confirm that 
liquidation only occurs when collateralization 
falls below a specified threshold. 

These properties can be expressed using 
CTL (Computation Tree Logic) formulas to 
specify the smart contract's required temporal 
behaviors. 

Step 2: Model the Contract in BIP 
(Behavior, Interaction, Priority) 

The smart contract is then translated into 
a BIP representation. Behaviors represent the 
contract’s functions: deposit, withdrawing, 
borrowing, and repaying. Interactions are the 
logical connections between behaviors, defining 
how different functions interact (for example, 
withdraw can only be executed after a deposit has 
occurred). Priorities enforce execution order, 
ensuring that actions that exit critical sections take 
precedence and disallow reentrancy. 

Algorithm 1: Behavior 
Transformation Algorithm   

1. Extract all functions and define 
them as behaviors. 

2. Identify function calls within other 
functions to establish interactions. 

3. Set priorities to disallow reentrant 
calls or disallowed sequences. 

 
Step 3: Convert BIP Model to SMV 

for Symbolic Model Checking 
The BIP model is then converted to SMV 

format, which SmartScan uses to create a finite 
state machine (FSM) representation. States in 
SMV correspond to distinct states in the DeFi 
Lending contract, such as FundsDeposited, 
FundsBorrowed, and FundsRepaid. Transitions 
represent possible changes, such as moving from 
FundsDeposited to FundsWithdrawn. 

Algorithm 2: BIP-to-SMV 
Transformation Algorithm   

1. Map each behavior in BIP to a 
corresponding state in SMV. 

2. Translate interactions into state 
transitions. 

3. Encode priority constraints as 
transition conditions in SMV. 

 
Step 4: Encode Properties Using CTL 

Formulas 
For verification, the necessary attributes 

are defined in SmartScan using CTL formulas: 
1. Fund Safety: Make sure that in every 

state, the balance stays positive: 
   CTL Formula: AG (balance >= 0) 
2. Reentrancy Prevention: Declare that a 

function cannot call itself until the previous call 
has finished: 

   CTL Formula: AG (¬(function_call → 
AF (¬function_call))) 

3. Interest Correctness: Verify that every 
interest update stays within the anticipated 
bounds: 

   CTL Formula: AG (interest >= 
min_interest & interest <= max_interest) 

4. Liquidation Condition: Make sure that 
liquidation only takes place when there is not 
enough collateral: 

   CTL Formula: AG (collateral < 
threshold → AF liquidated) 

Step 5: Run Symbolic Model Checking 
with nuXmv 

To verify all CTL formulas, SmartScan 
uses nuXmv to examine every state and transition 
the DeFi Lending contract model may have. 
Every potential configuration of the contract is 
represented by a state space graph created by the 
nuXmv tool. NuXmv assesses whether each state 
satisfies the CTL characteristics. If a violation is 
discovered, it offers a counterexample illustrating 
how to get to the state. 

Algorithm 3: Symbolic Model 
Checking Algorithm   

1. Generate all possible states for the 
DeFi contract. 

2. For each state, apply CTL formulas 
to check property compliance. 

3. If a violation occurs, output a 
counterexample detailing the failing sequence. 

Step 6: Analyze Counterexamples and 
Correct Contract Logic 

Smart Scan will give a counter-example 
that shows the ordering of function calls that led 
to the problem when a CTL property is violated. 
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One such attack is reentrancy, wherein an external 
call to withdraw allows entry multiple times 
before the state change occurs. The liquidity 
indicators for long positions preserve the risk of 
premature liquidations due to poorly positioned 
liquidation levels. The developer can then tweak 
the smart contract code to ensure it meets all 
requirements and plugs any vulnerabilities. 

 
Step 7: Re-Verify and Finalize the 

Smart Contract 
Upon fixing it, we run SmartScan so that 

no new violations arise and CTL properties are 
upheld from the verification. This is repeated until 
nuXmv guarantees full compliance, i.e., the 
contract meets all the requirements. This study 
analyzes the DeFi lending contract using 
SmartScan to verify critical safety and functional 
correctness. SmartScan identifies defects at all 
phases, including Wrong interest predictions, 
inappropriate funds management, and reentrancy 
bugs. This official verification process lowers the 
risk of cash loss. It raises user trust in DeFi 
networks by showcasing the strength and 

reliability of SmartScan as a blockchain 
application security solution. 

 
5. EXPERIMENTAL RESULTS 

This evaluates the ability of the 
SmartScan to catch critical errors in DeFi Lending 
smart contracts and confirm correct security 
features. It evaluates its ability to calculate 
interest accurately, risk check fund safety, 
reentrancy guard against, and liquidation 
compliance. MSSmartScan is a net platform 
utility developed with the C# programming 
language. An Intel(R) Core(TM) i7-1355U 13th 
Gen CPU with ten cores, 12 logical processors, 
and 1700 MHz serves as the implementation 
environment. The computer runs Windows 11. 
The tool is executed using the Visual Studio 2022 
version. Presenting experimental results for 
SmartScan with a DeFi Lending example involves 
detailing the verification process's effectiveness, 
efficiency, and reliability in identifying potential 
vulnerabilities or confirming property adherence. 
Here’s a structured approach to presenting these 
results, covering critical metrics, result tables, and 
analysis points to communicate findings. 

5.1 Metrics and Evaluation Criteria 
Metrics used for the evaluation of SmartScan are provided here. 

Metric Description 
Verification Time Time taken by SmartScan to check each 

CTL property. 
Detection Rate Number of vulnerabilities correctly 

identified. 
False Positive/False Negative Rates Instances of incorrect alerts or missed 

vulnerabilities 
Counterexample Quality Clarity and utility of counterexamples 

provided for detected issues 
Property Satisfaction Rate The percentage of properties successfully 

verified. 
Table 2: Performance metrics used to evaluate SmartScan 

5.2 Results 
This section provides detailed findings 

for each evaluated property, organized into tables 
and charts with the case study application verified 
by SmartSca.

 
Property CTL Formula Verification 

Time (seconds) 
Result 

Fund Safety AG 
(balance>=0) 

3.5 Satisfied 

Reentrancy 
Prevention 

AG 
(¬(function_call → AF 
(¬function_call))) 

4.1 Violated 
(counterexample) 

Interest 
Calculation Accuracy 

AG (interest 
>= min_interest & 
interest <= 
max_interest) 

5.2 Satisfied 
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Liquidation 
Condition 

AG (collateral 
< threshold → AF 
liquidated) 

6.0 Satisfied  

Table 3: Verification time comparison 
As shown in Table 3, verification Time 

shows the time required to analyze each property. 
Notably, the Reentrancy Prevention property is 
violated, prompting further investigation.  

Property Violation 
Type 

Counterexample 
Provided 

Steps in 
Counterexample 

Reentrancy 
Prevention 

Reentrancy 
Attack 

Yes Call to 
withdraw() → 
Reentrant call to 
withdraw() without 
state update 

Liquidation 
Condition 

- No - 

Fund Safety - No - 
Table 4: Vulnerability detection and counterexamples 

Table 4 outlines any detected issues, the 
type of vulnerability, and whether a 
counterexample was provided. For example, 
Reentrancy Prevention displays a reentrancy 

vulnerability where the withdraw() function was 
called before the state updated, confirming a 
vulnerability. 

Metric Value 
Total verification time 18.8 seconds 
Properties verified 4 
Properties violated 1 
False positive rate 0% 
False negative rate 0% 
Average counterexample depth 3 steps 

Table 5: SmartScan performance measures 

 
Figure 3: Verification time for each property of DeFi Lending in smart contract verification using 

SmartScan 
Figure 3 illustrates the verification times 

for various DeFi lending smart contracts 
properties, as assessed by the SmartScan 

framework. The properties examined include 
Fund Safety, Reentrancy Prevention, Interest 
Calculation Accuracy, and Liquidation Condition. 
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The visualization reveals that the verification time 
for each property varies. It just takes around 3.5 
seconds to validate Fund Safety, the fundamental 
component that guarantees the security of 
customers' money. An essential security measure 
to guard against evil assaults, Reentrancy 
Prevention, takes roughly 4.1 seconds to 
complete. Interest Calculation Formula Accuracy 
(which this check falls under) requires a more in-
depth verification process. It costs around 5.2 
seconds to run the check with an accurate output 
guarantee for interest rate calculations. The 
verification period for the Liquidation Condition 
is the longest, taking approximately six seconds, 
and so is crucial for the emergency withdrawal of 
funds.  

The above examples help demonstrate 
the difficulties in validating specific properties of 
DeFi loan smart contracts. While Fund Safety and 
Prevention of Reentrancy is critical, Interest 
Calculation Accuracy and Liquidation are 
complex enough to require more extensive 
verification efforts. The following presents an 
example of how the SmartScan framework could 
investigate the quality and safety of DeFi lending 
smart contracts. While the system provides a 
detailed account of how long it takes to verify 
each attribute, developers, and users can see the 
system's confidence level across multiple 
domains. 

 

Figure 4: Property satisfaction rate DeFi lending 
smart contract when formal verification is done 
using SmartScan 

Finally, Figure 4 shows the associated 
property compliance of a DeFi loan smart contract 
after receiving formal approval from within the 
SmartScan framework. And then, because the 
chart distinguishes readily between met and 
unmet criteria, it requires painstaking cross-
checking to guarantee that those contracts have 
true reliability and security. The pie chart shows 
that more than 75% of the characteristics are met. 
The SmartScan framework identified and 
evaluated many bright contract characteristics, 
indicating that smart contracts met the 
requirements. This result is promising because it 
demonstrates the framework's capability to locate 
and confirm essential components necessary for 
the reliable and secure functioning of DeFi 
lending protocols. The other 25% of the pie figure 
has been met on those regulations. Here, we 
highlight abnormal traits compared to the 
intended standard of the smart contract or have a 
potential vulnerability. It has been found that 
features are violated a great deal, leading to 
unnoticed security problems, but this can be fixed 
through formal verification. Figure 1 — Two 
Roles that Smarter Contracts Play: Verification 
and Diagnosis. Because it tells whether the 
specific properties were satisfied, it provides vital 
information regarding the security posture of the 
smart contract and the evidence that verification 
is practical. 
5.3 Performance Comparison 

This segment compares formal smart 
contract verification methods, like the one 
proposed in the SmartScan product. 

FFeatu
re/Tool 

Ssma
rtScan 
(Proposed) 

MM
ythril 

OOy
ente 

ZEU
S 

Slith
er 

Verifica
tion technique 

Mode
l checking 
(CTL with 
nuXmv) 

Sym
bolic 
execution and 
analysis 

Sym
bolic 
execution 

Mod
el checking 
and abstract 
interpretation 

Static 
analysis 

Support
ed contracts 

Comp
lex and multi-
function 
contracts 

Gene
ral Ethereum 
contracts 

Gene
ral Ethereum 
contracts 

Solid
ity smart 
contracts 

Gene
ral solidity 
contracts 

Support
ed vulnerabilities 

Reent
rancy, Integer 
Overflow/Und
erflow, Access 
Control, 

Reen
trancy, 
Unchecked 
Calls, Integer 

Reen
trancy, 
Transaction 
Ordering, 

Reen
trancy, 
Overflow, 
DoS 

Reent
rancy, Integer 
Overflow/Und
erflow, Tx. 
Ordering 

75%

25%

Property Satisfaction Rate

Satisfied Properties Violated Properties
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Liquidation, 
State 
Inconsistencie
s 

Overflow/Und
erflow 

Unchecked 
Calls 

Counter
example 
generation 

Yes 
(for violated 
CTL 
properties) 

Limit
ed (only 
symbolic 
traces) 

Limit
ed (only 
symbolic 
traces) 

No No 

Analysi
s speed 

Mode
rate to Fast 

Fast 
for simple 
properties 

Slow 
for complex 
contracts 

Mod
erate 

Fast 

Scalabil
ity  

High Mod
erate 

Low Mod
erate  

High  

False 
positive rate 

Low 
(optimized 
CTL with FSM 
& SMV 
mapping) 

Mod
erate 

High Mod
erate 

Mode
rate 

Usabilit
y for Developers 

User-
friendly 
interface, 
extensive CTL 
support 

Mod
erate 
(command-
line-based) 

Tech
nical 
(command-
line-based) 

Requ
ires 
knowledge of 
formal 
methods 

Easy 
to use 

Static/D
ynamic Analysis 

Static 
(symbolic with 
model-
checking) 

Dyna
mic 
(symbolic) 

Dyna
mic 
(symbolic) 

Stati
c & symbolic 

static 

Unique 
features 

FSM 
& BIP 
conversions, 
strong CTL 
support 

Rich 
in 
vulnerability 
analysis 
options 

Early 
symbolic 
execution 
model 

Kno
wn for policy 
checking and 
DoS checks 

Quic
k static 
analysis with 
warnings 

Table 6: Performance comparison among formal verification tools 
SmartScan performs very different 

verification methods and verification for contracts 
with high verifiability. We summarize in Table 6 
that SmartScan compares to a few notable 
innovative contract verification tools, along with 
their compatibility of contracts, vulnerability 
identification, and overall effectiveness. 
SmartScan integrates CTL-based state 
decomposition, BIP with FSM, and symbolic 
model validation over tetrahedral-based 
representation using nuXmv. Together, this 
allows for complete formal verification and the 
generation of counterexamples for broken CTL 
properties. Mythril and Oyente based their work 
on symbolic execution; specifically, they focused 
more on symbolic traces than thorough model-
checking. 

As symbolic execution benefits many 
vulnerabilities, SmartScan critical state-based 
analysis might be less prone to false positives. 
DeFi applications typically have complex and 
multi-function contracts, but SmartScan is the 

only solution that deals with such compatibility at 
scale. With more complicated or even more 
extensive contract structures, it should be able to 
better handle giant contracts with commutatively 
interacting functions than an Oyente-type tool due 
to its FSM mapping. More generally, ZEUS and 
Mythril broadly support common 
Ethereum/solidity contracts, while SmartScan 
aims to provide discrete increases under very 
complicated situations. 

SmartScan does a decent job of 
discovering vulnerabilities, especially with DeFi 
programs. SKY can analyze and reason about 
complex contract components like money safety 
or liquidation through its CTL (Computation Tree 
Logic) capabilities. Mythril, Oyente, and ZEUS 
can check for many more straightforward issues 
like integer overflows or reentrancy; however, 
SmartScan is much more advanced than any of 
these. Employing a state-based model-checking 
method lessens ambiguity, providing clearer 
counterexamples to the developer. SmartScan’s 
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CTL method has a lower false positive rate when 
compared with alternatives based on symbolic 
execution only, as this is due to the improved 
specification of contract features and outcomes. 

Based on the powerful CTL formulae 
and FSM usage, SmartScan instantly evaluates 
smart contracts regarding their scalability and 
analysis time for simple and complex cases. 
While not the fastest, it manages to strike a good 
balance between speed and completeness — 
something Oyente usually struggles with on more 
extensive clientele. Developers can quickly get 
acquainted with the SmartScan by leveraging its 
no-sweat interface instead of requiring the same 
degree of technical expertise as they would need 
to use command-line alternatives like Oyente. 
SmartScan enables developers to view state 
changes to the contract with FSM and BIP 
mappings, which helps us understand how a 
contract reacts following specific state changes — 
not so easy with other tools. This is particularly 
useful for preventing complex state changes, such 
as DeFi loans. 

 
6. DISCUSSION 

SmartScan offers a few areas of accuracy 
and verification depth that bring substantial 
advantages. By integrating symbolic model 
checking with CTL-based (Computational Tree 
Logic) capabilities, DeFi applications can assess 
different attributes of smart contract security like 
fund soundness, reentrancy-freeness from 
adversaries, transaction ordering dependencies, 
etc. SmartScan is feature-complete in mapping 
complex interactions and state changes within 
smart contracts by integrating behavior-
interaction-priority (BIP) and finite state machine 
(FSM) modeling approaches. Is it ability is 
essential in high-pressure positions, as using 
complex academic. Reasoning without taking the 
proper safety measures could have disastrous 
results. The nuXmv model checker and 
SmartScan work together to assess features and 
provide counterexamples to assist developers in 
locating and correcting errors. However, 
SmartScan has several problems.  

6.1 Limitations 
The proposed SmartScan has a few 

problems. Testing has been conducted using a 
limited number of smart contracts. The tool's 
capacity and efficiency must be confirmed for 
really complex applications. It is also necessary to 
improve the suggested tool to use smart contracts 
written in languages other than Solidity.  

 

7. CONCLUSION AND FUTURE WORK  
We suggest SmartScan, a comprehensive 

system for the effective and optimal formal 
verification of intricate blockchain smart 
contracts. SmartScan uses a hybrid methodology 
that combines static analysis, optimized 
heuristics, formal approaches, and an improved 
verification procedure to find inconsistencies and 
vulnerabilities in smart contracts efficiently. Two 
of SmartScan's main design objectives are 
robustness and the capacity to manage complex 
connections and interactions between multiple 
components. Reducing computational complexity 
and time streamlines the verification procedure. 
Because SmartScan is scalable, it can validate 
smart contracts for extensive blockchain 
applications. Furthermore, because SmartScan is 
extensible and easy to use, it can seamlessly 
integrate with current apps that oversee the smart 
contract life cycle. In a reasonable amount of time, 
it has successfully confirmed most characteristics, 
found a severe reentrancy flaw, and offered 
insightful counterexamples. This indicates how 
SmartScan works well in decentralized finance 
(DeFi) settings where security is crucial. The 
effectiveness of SmartScan could be further 
enhanced for more complicated properties or 
larger contracts. It would also be possible to detect 
more specific weaknesses, such as flash loan 
hazards, by adding more attributes. 
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Appendix: DeFiLending Application (Used for Formal Verification of Smart Contracts using 
SmartScan) 

Deposit - Allows users to deposit cryptocurrency assets. 
Withdraw - Allows users to withdraw their deposited funds if certain conditions are met. 
Borrow - Allows users to borrow assets based on the value of their deposits, subject to a collateral 

requirement. 
Repay - Allows users to repay their borrowed funds. 

pragma solidity ^0.8.0; 
contract DeFiLending { 
    mapping(address => uint256) public deposits; 
    mapping(address => uint256) public debts; 
    uint256 public constant collateralFactor = 150; // 150% 
    function deposit() external payable { 
        deposits[msg.sender] += msg.value; 
    } 
    function withdraw(uint256 amount) external { 
        require(deposits[msg.sender] >= amount, "Insufficient balance"); 
        require(debts[msg.sender] == 0, "Debt exists, cannot withdraw"); 
        deposits[msg.sender] -= amount; 
        payable(msg.sender).transfer(amount); 
    } 
    function borrow(uint256 amount) external { 
        uint256 collateralRequired = (amount * collateralFactor) / 100; 
        require(deposits[msg.sender] >= collateralRequired, "Insufficient collateral"); 
        debts[msg.sender] += amount; 
        payable(msg.sender).transfer(amount); 
    } 
    function repay() external payable { 
        require(msg.value >= debts[msg.sender], "Repay full debt"); 
        debts[msg.sender] -= msg.value; 
    } 
} 

 
 


