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ABSTRACT 
 

Recent advancements in Artificial intelligence (AI) and Deep learning have facilitated the rapid development 
of machine translation technologies, among them, Neural machine translation (NMT) models have 
demonstrated impressive performance, especially in handling multiple language pairs. However, due to their 
complexity and lack of appropriate data, contemporary NMT models still have a lot of challenges when 
applied to isolated languages, despite their great accomplishments. This paper proposes a multi-source neural 
model that employs two different encoders to process both the source word sequence and the linguistic feature 
sequences of isolating languages. Unlike traditional NMT models, this approach improves the encoders’ input 
embeddings by incorporating a second encoder that integrates the linguistic elements, including part-of-
speech (POS) tags and lemma. To enhance the source sentence's context representation, this article combines 
the encoders' conditional data with the outputs of the decoders using a serial combination technique. In this 
way, different metrics such as METEOR and BLEU are examined to assess the suggested model's precision 
of translation. Experimental results indicate that our methodology works efficiently for isolating language 
translation, as evidenced by the improvement of +3.9 BLEU and +3.2 METEOR scores on translation tasks 
conventional NMT models perform. This highlights a significant advancement in integrating linguistic 
features to enhance translation accuracy for isolating languages. 

Keywords: Artificial Intelligence, Neural Machine Translation, Linguistic Features, Isolated Language, 
BLEU, METEOR 

 
1. INTRODUCTION  

Artificial intelligence (AI) is increasingly 
transforming fields like healthcare, finance, 
transportation, and natural language processing 
(NLP) [1]. One notable AI application in NLP is 
neural machine translation (NMT), which leverages 
deep learning models to facilitate language 
translation. NMT creates smoother translations than 
statistical machine translations (SMT) by combining 
all aspects of the translation process into a single 
model. Moreover, NMT employs an architecture of 
encoders and decoders where the target sentence is 

produced by the decoder after the encoder has 
processed input embeddings. Additionally, NMT 
models have gained power with advancements like 
gated recurrent units [2], transformers, and long 
short-term memory [3], which enhance translation 
accuracy and handle complex contexts more 
effectively [4]. By minimizing semantic 
discrepancies, this technology fosters improved 
communication across different cultural 
backgrounds [5]. 
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NMT models have demonstrated notable efficacy 
in a variety of language pairings, including both 
commonly used languages like French and under-
resourced ones like Tagalog and Khmer [6], [7]. 
However, integrating linguistic features into NMT 
systems poses challenges [8], especially for isolating 
languages like Vietnamese and Chinese. First, the 
diversity and complexity of these languages 
complicate the identification and encoding of 
relevant linguistic attributes. Each language 
possesses unique structural and expressive 
characteristics, necessitating a flexible 
methodological approach to processing. 
Additionally, obtaining vast and diverse datasets to 
represent linguistic traits is extremely challenging 
and requires a combination of advanced technology 
and linguistic expertise [9]. Finally, optimizing 
hyperparameters to enhance linguistic feature 
representation without compromising overall 
performance is complex task [10]. 

Table 1: Some challenges for NMT [9] and examples. 
Challenge Example 

Data Training 
Size 

A Vietnamese - English 
model may misinterpret "đá" 
(stone or to kick) due to a 
lack of quality training data 
that covers its different 
meanings and contexts. 

Long Sentence  "The little boy kicked the 
ball into the garden" could be 
incorrectly translated into 

Chinese as "小男孩把球踢
进了商店," which means 
"The little boy kicked the ball 
into the store" instead of "the 
garden." 

Word 
Alignment 

"She sells seashells by the 
seashore" could be 
mistranslated as "She sells 
the seashore" 

Beam Search The model might choose 
"She is happy" instead of 
"She is very happy" if the 
beam size is too small. 

 

The effectiveness of machine translation systems 
is largely influenced by the parallel corpus utilized 
during training, especially regarding its quantity and 
quality [11]. Nevertheless, creating a parallel, high-
quality corpus is difficult and costly, especially for a 
particular domain-parallel corpus. Additionally, the 
commonly used recurrent neural network (RNN) 
model struggled to fully convey the significance of 
longer documents, leading to the low-quality 
translation [12]. Due to limitations in data 
augmentation and base RNN models for large 

documents, few researchers have focused on 
integrating linguistic features into NMT models. 
This integration can significantly enhance translation 
accuracy, particularly for languages with flexible 
grammatical rules and patterns [13]. Zhang applied a 
CAEncoder that enhances NMT models by learning 
both historical and future contexts, improving upon 
traditional bidirectional encoders [12]. Studies on 
translation tasks from Chinese to English revealed 
that the suggested model performed better than the 
standard RNN system. Sennrich et al also 
demonstrated that the NMT model could effectively 
integrate linguistic features into the attentional 
encoder-decoder architecture [13]. Their approach 
incorporated morphological traits, POS tags, 
lemmas, and dependency labels in experiments on 
English - German and English - Romanian 
translations. The improvements in these tasks 
highlight the benefits of leveraging linguistic 
properties. 

 
Figure 1: Knowledge-Based Encoder’s Input Embedding 

Layer [13] 

The above studies, however, do not take into 
account the issue of isolating language translation 
without inflectional morphology and the heavy 
reliance on context cues. Instead, their primary focus 
is on high-resource machine translation issues that 
need sufficient semantic analysis tools and vast 
amounts of parallel data. This article provided a 
multi-source neural model to extend NMT model’s 
capacity to represent the source-side sentence’s 
linguistic information. In this literature, our 
contributions include: 

● For the purpose of capturing underlying context, 
our multi-source NMT utilizes the inherited 
linguistic traits of isolating languages into a 
knowledge-based encoder. 

● For the linguistic representation, the knowledge-
based encoder's input embedding layer is altered to 
simultaneously encode each word's linguistic 
attributes. 

● Conditional information of the source sequence 
is combined hierarchically from the encoders, 
enabling NMT to acquire improved context 
representation on the source-side sequences. 
Initially, a compressed vector is produced by fusing 
the source-side linguistic information with the target 
sequence representation. This vector then integrates 
with the source sentence's representation to produce 
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a context vector. Lastly, each target-side word is 
predicted orderly using the context vector. 

2. RELATED WORKS 

Recent developments in machine translation 
emphasize multi-source methods to boost efficiency, 
especially for isolated and low-resource languages. 
In this context, Cao et al. explored language-specific 
latent spaces for fine-tuning multilingual NMT 
models [14], while Brazier and Rouas integrated 
emotional context into large models [15]. In 2024, 
Zeng used generative adversarial networks to 
augment data [16], and Honda developed context-
aware NMT for business dialogue [17]. Furthermore, 
additional research includes Nzeyimana, who 
applied advanced modeling techniques to NMT for 
low-resource languages [18], and Her who assessed 
the performance of NMT models for these languages 
[19], focusing on Bavarian as a case study. Besides, 
Sennrich et al proposed using sub-word units to 
manage rare words [20], aiding models in handling 
previously unseen terms in isolating languages. In 
addition, Li applied multi-source techniques to 
enrich semantic and contextual understanding [21], 
and Zoph et al demonstrated that multi-source 
methods and transfer learning can greatly enhance 
the caliber of translations for languages with limited 
resources [22]. 

 

The original multi-source NMT system for 
crosslingual translation was developed by Zoph and 
Knight from the foundation of single-source NMT 
[23]. By assigning each source language to a 
synthetic four-layer encoder, it encodes its own 
secret si and cell state cj to an intermediate unit 
called combiner blocks. Under the hood, this block 
combines states from encoders into single output s 
and c states without the modified dimension, then 
passes them to only a four-layer decoder for target 
language prediction. 

 

Figure 2: Model of Multi-Source Encoder-Decoder For 
MT [23] 

In Figure 2, two source sentences (A B C D and K 
O P Q) in different languages. Each language is 
processed by its own encoder, which outputs final 

secret states and cell states. These states are then 
passed to a collection of combiners (illustrated in 
blue) that merge them into a unified representation. 
This novel architecture has been consecutively 
improved to facilitate low resource language and 
corpus scarcity by data augmentation [24], [25] 
while several researchers raised the translation 
accuracy by injecting linguistic representations as 
main contributions [12], [26], [27]. 

 

Supervised learning in NLP relies on large labeled 
datasets, but limited labeled data requires leveraging 
additional resources. Pitler et al reviewed linguistic 
quality metrics in text summarization, achieving 
90% accuracy in system comparison and 70% in 
summary ranking [26]. Hashimoto et al. (2017) 
introduced a multi-task model [29], such as POS 
tagging, NER, and syntactic analysis, optimizing 
weights and achieving strong results. Gururangan et 
al. (2018) found large NLI datasets contain clues for 
identifying labels, with a simple model achieving 
67% accuracy on SNLI and 53% on MultiNLI [30]. 

3. MATERIAL AND METHOD 

3.1 Standard NMT Model 
This article used the Transformer architecture-

based NMT model that was first put out by Vaswani 
et al [31]. This model followed a typical encoder–
decoder structure operating on single-source 
translation. We utilized the basic Transformer model 
as the foundation to enhance machine translation 
performance. For comprehension, Figure 3 
summarizes several main points of this. 

Figure 3: Base Architecture of Transformer Model With 
Single Source: Encoder-Decoder Framework [32] 

The inputs to both the encoder and decoder use the 
same embedded logic. The inputs to both the encoder 
and decoder use the same embedded logic. Let x = 
(x1 ,x2, .. , xm) represent the source sequence and  y = 
(y1 ,y2, .. , yn ) denote the target sequence. As input 
embeddings, each source word xi is represented by a 
corresponding vector while output embedding is 
responsible for vector conversion from each target 
word yi orderly. Generally, a sequence is mapped 
into an embedding matrix e = (e1 ,e2, .. , el ) by the input 
as well as the output embedding layers. Each 
embedding ei calculated as follows: 

     ei = ai . Ea  (1) 
with: 

● ai  ∈ 𝑅௄ೌ  : the one-hot vector representing 
the 𝑖௧௛ word. 
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● Ea ∈𝑅௄ೌ.ௗೌ  : matrix of word embedding, da 
the embedding size and Ka is the vocabulary 
size. 

 

Figure 4:  Embedding Process For The Sequence ‘I come 
from Vietnam’ 

Following the embedding process, the 
Transformer model applies positional encoding (PE) 
to capture each word’s position in the input 
sequence. A PE matrix with the same dimension as 
the sequence matrix is created by encoding these 
positions. PE uses sine functions for even elements 
and cosine functions for odd ones [33], allowing the 
model to assign positions and determine distances 
between elements (Figure 5). 

PE(pos,2i) = sin൭
௣௢௦

ଵ଴,଴଴଴

మ೔
 ೏೘೚೏೐೗

൱,    (2) 

PE(pos,2i +1)= cos൭
௣௢௦

ଵ଴,଴଴଴

మ೔
 ೏೘೚೏೐೗

൱      (3) 

with: 
● i refers to the dimension within the 

positional encoding vector. 
● pos  is the word's position in the sequence 

(e.g., the 1௦௧, 2௡ௗ word, etc.). 
●   dmodel is the dimension index for input 

embedding. 

 
Figure 5:  PE Matrix For The Sequence ‘I come from 

Vietnam’ 

Once applying positional encoding to establish 
word positions, the positional input embedding X’ is 
formed by combining the input embedding with the 
positional encoding matrix (Figure 6). The Encoder 
then uses X’ in self-attention to learn contextual 
relationships among words, evaluating how each 
word relates to others regardless of distance. Each 
word is represented by three vectors: Query (Q), Key 
(K), and Value (V), as illustrated in Figure 7. 

 

Figure 6: Positional Input Embedding X’ For The 
Sequence ‘I come from Vietnam’ 

 

Figure 7:  Queries, Keys and Values For The Sequence ‘I 
come from Vietnam’ 

The attention score is calculated by comparing a 
word’s Query with the Keys of other words and 
applying softmax normalization. This converts raw 
scores into a probability distribution that sums to 
one, enabling the model to weigh the Value vectors 
effectively for the final output [31], [34]. The 
softmax function and core attention function are 
defined as:. 

𝜎(𝑧௜) =
௘೥೔

∑ ௘೥೔೙
೔సభ

  ,   

    Attention(Q, K, V) = softmax൬
ொ௄೅

ඥௗೖ
൰V (4) 

with:   
● zi represents the attention scores.  
● dk is the key vectors' dimension. 

 

In the context of Multi-Head Self-Attention, each 
encoder layer identifies relationships among words 
in a sentence (Figure 8) by mapping the Q, K, and V 
sets into an attention matrix [31]. Multi-head 
attention enhances single attention by using multiple 
heads for Q, K, and V. Each head computes attention 
values by multiplying Q, K, and V with their 
respective weight matrices 𝑊௜

ொ,𝑊௜
௄ , and 𝑊௜

௏  from 
all heads are concatenated using the Concat function, 
then multiplied by the embedding matrix  WE to 
produce the final attention matrix. 

headi= Attention(𝑄𝑊௜
ொ

⬚

⬚
, 𝐾𝑊௜

௄  , 𝑉𝑊௜
௏), 

MultiHead(Q,K,V) = Concat (head1 , .. ,headh)WE  (5) 
 

with:   
● 𝑊௜

ொ ,  𝑊௜
௄  , 𝑊௜

௏   being the weight matrices 
for each attention head. 

● Q being the query set, K the key set, and V 
the value set. 
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Figure 8:  Multi-Head Self-Attention Approach For The 
Sentence ‘I come from Vietnam’ 

After the multi-head attention value has been 
determined, the output is run through a fully 
connected feed-forward network consisting of two 
linear layers with a ReLU activation function. This 
adds non-linearity to the model by computing 
position-wise transformations on the attention layer's 
output X and filtering out negative values. As 
illustrated in Figure 9 

FFN(X) = max(0,XW1+ b1 )W2+ b2        (6) 
with:    

● b1 ,b2 are bias terms.  
● W1 ,W2 weight matrices. 

 
Figure 9: Feed-Forward Network Based On Position In 

Transformer Model 

The decoder has a structure that closely resembles 
that of the encoder, as it generates a contextual 
representation from the inputs and processes this 
representation through a feed-forward network [31]. 
Ultimately, the target word sequence is predicted 
using a softmax function and a linear layer, which 
determines the likelihood of every word in the 
lexicon and selects the most likely term to be the 
output. To improve training stability and efficiency, 
layer normalization and residual connections (Figure 
10) are also applied after every sub-layer. 

 

Figure 10: Process Of Residual Connection For Sentence 
‘I come from Vietnam’ 

3.2 Multi-Source Neural Model 
This article developed the Multi-source model 

from the standard NMT model to enhance natural 
language processing capabilities by integrating 
information from multiple sources. While the 
standard NMT model uses a word-based encoder to 
encode word-level source information, the Multi-
Source model uses two distinct encoders—a 
knowledge-based encoder as well as a word-based 
encoder [35]. This makes it possible to encode 
source-side linguistic information and source word 
features efficiently. Figure 11 shows the suggested 
multi-source neural model’s framework. Model sub-
layers have an output dimension of of dx=512, with 
dk and  dv defined as dk=dv=dx/h. This paradigm is 
described in depth in the parts that follow. This 
paradigm is described in depth in the parts that 
follow. 

Figure 11: The Suggested Multi-Source Neural Model’s 
Architecture [35] 

3.2.1 Word-based encoder 
The word-based encoder is essential for encoding 

the source words’ features, operating similarly to the 
encoder in traditional Neural Machine Translation 
(NMT) models. It processes each word in the source 
sequence to produce a detailed representation vector 
H1 that captures essential contextual information and 
semantic features [35]. In addition to this 
representation, the encoder outputs the sets of 
vectors Q , K , and V, which facilitate the attention 
mechanisms. By leveraging these outputs, the NMT 
model effectively encodes and interprets the nuances 
of the source language, enabling more accurate and 
contextually appropriate translations. 

3.2.2 Knowledge-based encoder 
Unlike the encoder of the regular NMT model, the 

knowledge-based encoder’s input embedding layer 
is enhanced to incorporate linguistic features such as 
lemma and POS tags for each source word. The 
model’s capacity to convey meaning and context is 
enhanced by this integration, as shown in Figure 12, 
and is particularly useful for languages with complex 
structures. 

 

Figure 12: Input Embedding Layer With The Knowledge-
Based Encoder's Linguistic Features 

Based on the following calculation, linguistic 
annotation sequences k1 = (k11, .. , k1m) and  kF = (kF1, 
.. , kFm) are transformed into an embedding matrix 
e*=(𝑒ଵ

∗, ..,𝑒௠
∗ )  via the embedding layer [35]. 

𝑒ଵ
∗ = ∑ 𝑘௧௜

ி
௧ୀଵ . 𝐸௧  (7) 

with:  
● ∪ being the operator for vector 

concatenation. 
● kti ∈ 𝑅 ଵ ௫ ௄೟    being the one-hot vector. 
● Kt being the vocabulary size of the t-th 

feature. 
● Et ∈ 𝑅 ௄೟ ௫ ௗ೟  is the the embedding matrix of 

the t-th feature. 
● dt being the embedding size of the t-th 

feature such that ∑ 𝑑௧
ி
௧ୀଵ = 𝑑௫. 

Together with the Q* ,K*, and V* vectors utilized 
in the attention mechanism, the knowledge-based 
encoder also produces the H2 representation vector 
for linguistic feature. 

3.2.3 Serial combination approach 
To effectively merge the encoders' outputs, we 

utilize a serial combination method. This approach 
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concatenates the representation vectors H1, H2 into  a 
single vector. The  tanh activation function 
transforms the output to a range of -1 to 1, ensuring 
non-linearity and enhancing learning, followed by 
linear and non-linear transformations applied to the 
resulting vector: 

  H = [H1 ;H2], h = tanh(WθH) (8) 
with: 

● Wθ the trainable weight matrix that 
determines the importance of the inputs. 

● H is the input vector containing information 
from both encoders. 

In order to merge conditional data generated by 
encoders with the decoder's output, a serial 
combination approach is used [34]. Furthermore, a 
second multi-head attention layer is added to the 
decoder to carry out the attention function [35]. 

Initially, knowledge-based encoder vector sets 
K*, V*, and Q from the previous sub-layer of the 
decoder are mapped by the multi-head attention to 
produce an attention matrix: 

 AttF(Q,K*,V*)= Concat(head1,.., headh )WF      (9) 
 

Next, the multi-head attention layer that follows 
converts the word-based encoder's sets of vectors K 
and V as well as the attention matrix into a context 
representation: 

  AttC(AttF,K,V)= Concat(head1,.., headh )WC      (10) 
 

Subsequently, the context representation is 
subjected to a fully linked feed-forward network in 
the manner described below: 

FFN(AttC)= max(0,AttCW1H, +b1H)W2H +b2 H (11) 
 

Finally, the result of the feed-forward network is 
subjected to a linear layer and a softmax layer in 
order to produce the desired word sequence. 

3.3 Neural Model Comparisons 
In this section, the evaluation compared single-

source neural models to the suggested multi-source 
neural model. 

● Single-source neural model: An improved 
NMT model that provides a better 
representation of source words by 
integrating linguistic elements into the 
input-embedding layer [11]. 

● Multi-source neural model: A model with 
two encoder blocks—one for source word 
features and another for linguistic 

features—designed to improve context and 
translation accuracy. 

4. EXPERIMENT 

This section outlines the tests intended to assess the 
neural machine translation model that has been 
suggested for language isolation. The experiments 
focus on the integration of linguistic features and the 
effectiveness of the training datasets. The complete 
code for the experiments is available and can be 
accessed at the https://github.com/ 
multi_source/corpus_sentence_extraction_script. 
4.1  Linguistic Features 

Three linguistic characteristics of isolating 
languages are used in this article. Lemma is a trait 
that is frequently utilized in information retrieval. 
Normalization allows different forms of a word to 
share a common representation, thereby improving 
the efficiency of information retrieval [37]. The 
second feature is POS tags, which provide 
information about syntactic roles within context. 
According to Clark, assigning POS tags to words in 
Chinese helps identify grammatical functions, 
supporting syntactic analysis and clarifying the 
structure of the language [38]. 

4.2  Experimental Data 
In the context of isolating languages, we chose 

three medium-sized corpora derived from Asia. 
Leveraging Opus, an open-access platform for 
parallel corpora storage, we accessed diverse 
datasets. For Vietnamese - English, a data collection 
of translated movie subtitles: OpenSubtitles [39], 
QED [40] and wikimedia [41] as a training dataset, 
and 10% of the training dataset was reused as a 
validation dataset, while utilizing the ,wiki- media 
[41], TED2020 [42], NeuLab-TedTalks [41], and 
QED [40] as four test datasets. For Chinese-English 
translation, this article utilized wikiMatrix [43] 
corpus for training, validating and testing. Tables 2 
and 3 present the training sample dataset's statistics 
for the language pairings Chinese-English and 
Vietnamese - English, as well as samples from the 
corresponding corpora used in this investigation. 

Table 2: Some challenges for NMT [9] and examples. 
Language # Sentences # Tokens 
Vietnamese 5,248,771  77,016,972  

English 
(Vietnamese) 

5,248,771 59,578,519 

Chinese  786,512  1,516,164 
 English 

(Chinese) 
786,512 16,750,129 

Table 3: Translation corpus sample of Vietnamese to 
English & Chinese to English. 

Language Source 
sentence 

Target 
sentence 
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Vietnamese 
- English 

Điều này có 
lẽ khác với 
những gì bạn 
mong đợi 

This might 
have been 
different 
from what 
you 
expected. 

Album đó bán 
được nhiều 
hơn những 
album trước 
đó 

The album 
sold more 
copies than 
previous 
releases of 
the band. 

 
 
 
 
 
 

Chinese - 
English 

正月，朝其 
主（王) 

He is 
sometimes 
seen having 
arguments 
with his 
lord. 

我也不能找

到任何防止

们 吃人的法
律 

Nor can I 
find any law 
which 
prevents us 
from eating 
people. 

 

Although these datasets were carefully selected 
from diverse sources, the exclusion of data from 
other languages or text genres may limit the model's 
generalizability. Besides, the model’s application in 
high-complexity domains such as healthcare, 
education, and others remains unexplored, and its 
performance with non-isolating or low-resource 
languages is yet to be tested. These factors could 
influence the model's generalizability in real-world 
applications. 

4.3  Data Preprocessing 
For each corpus, first we perform data filtering 

following these steps: remove NaN tokens, remove 
duplicate rows, delete data pairs whose source and 
target sentences are identical, and filter out html tags. 
Merging data from three corpora and training the 
Unigram vocabulary model will help cover all words 
from all three. For the final procedure of data 
processing, we tokenize data by subwording method 
via the Python SentencePiece library to reduce OOV 
in recognizing unseen words in the follow-up 
training step. 

Exclusively in the multi-source training 
procedure, we process POS tagging data for the 
external input. In addition, we utilize specific Python 
libraries specialized to the linguistic characteristics 
of each selected language in three corpuses. We 
employ NLTK for the English dataset. Regarding the 
Vietnamese data, we use VnCoreNLP, and for the 
Chinese corpus, we rely on Jieba. These libraries are 
used for part-of-speech (POS) tagging, as they access 

dictionaries for each language and correctly identify 
the grammatical functions of every word in a 
sentence. Processed POS tag files for each language 
will then be passed into the external input of multi-
source training. 

4.4  Model Parameter Setting 
In order to enhance the Transformer model’s 

functionality in OpenNMT-tf, several modifications 
have been made to the configuration, including the 
incorporation of both token-only input and external 
sources. Table 4 shows the detailed parameter 
settings. 

Table 4: Some challenges for NMT [9] and examples. 
Property Specification 
Toolkit OpenNMT-tf Transformer 

model configuration with 
external input and token-only 
input. 

Oversampling 
Method 

Weighted oversampling with 
ratios 1:10:20 for 
OpenSubtitles, QED, and 
Wikimedia corpora. This 
ensures equal sampling 
without significantly 
increasing the dataset size. 

Batch Size Set to 144, balancing training 
performance, hardware 
utilization, and model 
generalization.  

Training Step  Set to 100,000 steps, 
equivalent to 3.6 epochs, 
sufficient for model data 
coverage as per OpenNMT 
default. 

 

5. RESULTS AND DISCUSSION 

Tables 5 and 6 summarize the experimental 
outcomes for Vietnamese to English and Chinese to 
English translation tasks. The outcomes presented in 
Table 5 indicate a quantitative comparison of BLEU 
and METEOR scores obtained through rigorous 
evaluation using SacreBLEU [44] and PyMeteor 
[45]. SacreBLEU is a standard tool known for its 
consistent and reproducible BLEU score 
calculations, while PyMeteor is a Python 
implementation of the METEOR metric, which 
emphasizes semantic similarity in translation 
assessment. Both tools are widely recognized for 
their accuracy in assessing machine translation 
performance. Specifically, the BLEU score for the 
multi-source model reached 25.95, signifying a 
12.22% improvement over the single-source model’s 
score of 23.125. Similarly, the METEOR score 
showed an increase of 4.02%, with the multi-source 
model achieving a score of 39.55 compared to 38.02 
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for the single-source model. These results, validated 
by our team, underscore the multi-source model’s 
superior ability to generate translations that are more 
relevant for the context and more accurate. The 
improvements highlighted by these metrics suggest 
significant advancements in translation quality, 
particularly for challenging language pairs like 
Vietnamese - English. 

Table 5: The outcomes of experiments on machine 
translation tasks between Vietnamese - English. 

 BLEU  
scores 

METEOR 
scores 

Dataset 
Single 
source  

Multi 
source  

Single 
source 

Multi 
source  

wikimedia 23.1 25.7 38.1 39.4 
TED2020 22.9 25.5 37.6 39.2 
NeuLab-
TedTalks 

23.8 26.2 38.5 40.1 

QED 23.7 26.4 37.9 25.6 
 

Likewise, Table 6 elucidates that the multi-source 
model has yielded notable advancements in 
performance within the Chinese-English translation 
task. Although the BLEU score increases modestly 
by 0.5 points (from 17.91 to 18.4), the METEOR 
score reflects a significant increase to 36.44, 
suggesting that higher-quality translations are 
produced using the multi-source paradigm. 

Table 6: Some challenges for NMT [9] and examples. 
Model  BLEU 

scores 
METEOR 

scores 
Single-source 

model 
17.91 35.73 

Multi-source 
model  

18.4  36.44 

 
Table 7 indicates that the Multi-source NMT 

model yields results that are more aligned with the 
target sentences than those of the Single-source 
model. In the first example, the Multi-source NMT 
delivers a more accurate translation by maintaining 
the structure and meaning of the original sentence, 
especially in emphasizing skills and time pressure. 
Similarly, in the second example, the Multi-source 
translation aligns more closely with the target 
sentence by choosing a more natural expression 
rather than using an academic term as seen in the 
Single-source version. This demonstrates that the 
Multi-source NMT has better accuracy and 
contextual relevance, resulting in higher-quality 
translation as opposed to the single-source NMT. 

Table 7: Sample translation results for the pair 
Vietnamese-English and Chinese-English: Single-source 

and Multi-source translation tasks. 

Source 
sentence 1 

Điều này có lẽ khác với 
những gì bạn mong đợi. 

Single-
source 
model 

This could be different 
from your expectations. 

Multi-
source 
model  

This might be different 
from what you expected. 

Target 
sentence 

This might have been 
different from what you 

expected 
Source 

sentence 2 
我也不能找到任何防止

我们吃人的法律 
Single-
source 
model 

I also cannot find any laws 
that prevent us from 

cannibalism 
Multi-
source 
model  

I cannot find any laws that 
stop us from eating people 

either. 
Target 

sentence 
Nor can I find any law 
which prevents us from 

eating people. 
 

6. CONCLUSION 

The heavy reliance on translation context in 
existing high-resource machine translation models 
limits translation performance for isolating 
languages. This study proposed a multi-source 
neural model to address this issue by enhancing the 
representation capability of NMT systems. Two 
independent encoders were utilized to process lexical 
and linguistic features, optimizing language 
representation from multiple sources. Experimental 
results indicated significant improvements, with a 
METEOR score increase of +1.5 and a BLEU 
enhancement of +2.4. These improvements 
demonstrate a more accurate translation output, 
particularly in maintaining semantic coherence and 
lexical consistency, which are critical for 
applications requiring precise cross-language 
communication in fields such as business 
documentation, academic content, and multilingual 
education. Future research will explore 
incorporating advanced linguistic features, attention 
mechanisms, and broader language pairs to build on 
these improvements while assessing real-world 
applications in healthcare and education. 
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Figure 3: Base Architecture Of Transformer Model With Single Source: Encoder-Decoder Framework [32] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Multi-Head Self-Attention Approach For The Sentence ‘I come from Vietnam’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Feed-Forward Network Based On Position In Transformer Model 
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Figure 11: The Suggested Multi-Source Neural Model’s Architecture [35] 

 


