
 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

875

THE MOST EFFECTIVE METHOD FOR FINDING REGULAR
EXPRESSIONS IN DOCUMENT DATABASES

1KOTESWARA RAO KODEPOGU, 2MOLIGI SANGEETHA, 3RAVI UYYALA, 4CHALLAPALLI
SUJANA, 5NARESH VURUKONDA, 6DR. SIVUDU MACHERLA,7CHETLA CHANDRA MOHAN

1Assoc. Prof, Dept. of CSE, PVP Siddhartha Institute of Technology Vijayawada, Andhra Pradesh

2Sr Asst. Professor, CSE DEPARTMENT CVR COLLEGE OF ENGINEERING, HYDERABAD.
3Assoc Professor, Department of CSE. Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad,
4Asst Prof, Dept. of CSE, Aditya College of Engineering and Technology, Surampalem, Andhra Pradesh,
5Dept. of AI, School of Technology Management and Engineering, SVKM's Narsee Monjee Institute of
Management Studies (NMIMS) Deemed-to-Be-University, Hyderabad Campus, Jadcherla-509301,

6Asst Professor, Dept. of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P, India.
7Asst Professor, Dept. of IT, PVP Siddhartha Institute of Technology Vijayawada, Andhra Pradesh

,
Email: drkoteswararao83@gmail.com

Abstract

Considering a list of n strings with a maximum length of k, where l is the longest string. The goal is to use
as few regular expressions as possible to cover the strings (r1, r2, r3……………..,rm for m≥1) so that: a)
Every text in the database meets at least one ri and b) Any string "X" of length at most K satisfying
r1+r2+r3+And so on.The distance between a string "y" in the database and +rm is at most p, where "p" is a
specified constant parameter. We presume that the database is in the form of B+ tree. We begin with leaf
nodes and gather all of the database's longest strings. The goal of the paper is to create a process for
detecting regular expressions in databases that is comparable to that for Boolean formulae (in DNF or
CNF), where function values and don't care words are supplied.

Keywords: CNF, DNF, Document, Databases, Effective Method.

1. INTRODUCTION
A document database is a sizable collection of
documents from a variety of sources, including
books, research papers, news stories, e-mail
messages, websites, and digital libraries. The
majority of text databases contain semi-structured
data, which is material that is neither entirely
unstructured nor entirely structured. An example of
this would be a document that has some structured
fields, such titled, authors, publications, and so on,
but also has entirely unstructured text components,
like abstract and contents. The database is assumed
to be a B+ tree. In this case, the database will
contain the dictionary's data. The data is at the leaf
level, and since the leaves can be connected, the
data can be accessed sequentially when the leaves
are reached. Additionally, they indicate that interior
nodes serve as a pointer to the information stored in
leaves and only include referential data. We start
with the leaf nodes and gather all of the database's
longest strings. The dynamic programming
approach (DPA) serves as the foundation for the

distance computation technique, which in this study
is the edit distance.
To compensate for edit errors in the database
strings, a precision parameter is employed. The
most widely used generic class of formal symbolic
representations for describing character strings,
including words, sentences, or any other arbitrary
text that is specified by a pattern, are regular
expressions. Automata-realization in regular
expressions are sequential circuits that decide
whether to go on to the next state just by looking at
the current symbol in the automaton's scanned state.
Sequential circuits are implementers of Boolean
functions of a fixed number for binary strings of a
fixed length. These circuits can also be extended, or
at least attempted to be extended, for the realization
of regular expressions.
 While the general class of regular expression
operators include UNION, CONCATENATION,
and KLEEN Star, the work's goal is to demonstrate
the transformation required for an extension of the
state minimization rules using the general class of
Boolean operations AND, or, and not. The (normal)

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

876

set UNION operation and the Boolean OR
operation are identical, but the others are not.
Therefore, by using an analogy with Boolean
circuits, we examine a more useful class of regular
expression operators (found in Unix utilities) that
permit or make it easier to formulate the state
minimization criteria.
 There are certain unusual operators in the practical
class of regular expressions that can be combined
using state-based rules. The grep command in
UNIX handles or permits the practical regular
expressions. The grep command line utility looks
for lines of text that match one or more regular
expressions given a list of files or standard input to
read. Depending on the options provided, it either
prints the lines that match or the lines that don't
match (with the –v option). For the best
representation of patterns in queries, the grep
commend enables the generation of regular
expressions using a variety of meta characters,
including +,., *,?,\{n,m}\, substring, and finite
extent repeaters. The following patterns can be used
with the finite extent repeaters:

 . match any
single character except< newline >

 * match zero or
more instances of the single character (or meta-
character) immediately preceding it (equivalent
to the regular expression matching the full set of
strings)

[ABC]correspond to any character in the enclosed
[a–d]correspond to any character in the range that is
contained.
[\exp] correspond to any character that isn't in the
expression ^abcThe regular expression needs to say
"Anchor" at the start of the line.
The regular expression abc$ must terminate at the
line's end (Anchor); take the following character
literally. This is typically used to get around special
characters like "." and "*."
The regular expression that comes before this must
be matched at least n times and at most m times by
\{n,m|} (0 through 255 are acceptable for n and m).
Consider the \{and \} sets as single operators.. In
this case the \ preceding the bracket does not
escape it special meaning , but rather turns on a
new one.
As long as it is a single word, / will match the
contained regular expression. Word boundaries are
defined as ending with the same character or an
end-of-line character, or starting with or anything
other than a letter, number, or underscore(_). Once
more, \< and \> sets should be viewed as individual
operations.
The contained pattern is saved in a buffer by abc\).

It is possible to save up to nine patterns for every
line. These latter can be referred to using the
character set. Once more, the \(and \)set should be
viewed as a single operator.
\n where n is between 1and9. This matches the nth
expression previous saved for this line. Expressions
are numbered starting from the left. The\n should
be thought of as a single operation .& print the
previous search pattern (used in the replaced

 There are a few meta-characters used only
by awq and egrep.

 These are
 + match one or more of the preceding

expression (same as kleene star excluding the
 null string)
 ? match zero or once of the

preceding expression
 | match either the preceding or

following expression
. match any single character except

<newline>
() group the regular expressions

within
Command/syntax:
grep/ egrep/fgrep[options] ‘search string’

file
`Search the argument (in this case

probably a file) for all occurrences of the search
string, and list them .

To find generalized regular expressions in UNIX
files, using the grep program. When using the grep
program, it is recommended to specify regular
expressions like the ones above in apostrophes or
single quotes. An expanded set of meta-characters
can be used for searching with the egrep function.
Below are some samples, the grep utility's syntax,
and some of the settings that are available.
.Syntax:

grep [options] regexp [file[s]]
 common options:

 -I ignore case
 -c report only a count of

the number of lines containing matches ,
 -v invert the search,

displaying only lines that do not match
 -n display the line number

along with the line on which a match was found
 -s work silently ,reporting

only the final status:
 0, for match(es) found
1. For no matches
2. For errors

1.1 survey of the paper
The purpose of the paper is to find R.E. in text
databases. Here, we examine what a text database

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

877

is. How regular expressions are handled. Regular
expressions that function as Boolean expressions.
B+ tree, DPA for editing distance, regular
expressions, Boolean operators with regular
expression, state minimization, and grep are some
of the chapters in this thesis. The chapter on B+
trees covers topics such as what a B+ tree is, how it
is constructed, and where data is stored. This
chapter discusses the current work on editing
distance using the dynamic programming method.
We shall go over the definitions of regular
expression and Boolean expression in the chapter
on regular expression. Here, we solve for Boolean
expressions by applying the methods for solving to
regular expressions. The circuit minimizing
techniques utilized in Boolean circuits can also be
extended for regular expression realizations in the
State minimizing chapter. The chapter grep will
explain what grep is and what practical regular
expressions are handled or permitted by the Unix
grep tool. The grep command line utility looks for
lines of text that match one or more regular
expressions when given a list of files or standard
input to read. Depending on the options you
choose, it will either output the lines that match or
the lines that don't match (with-v option).Finally,
we will conclude with a bibliography and online
references.

1.2Flow of the Paper:
 Step 1: Assume that the database is a B+ tree. The
dictionary's data will be the database. We begin
with leaf nodes and gather all of the database's
longest strings.
Step 2: We use the dynamic algorithm (DPA) as
our distance method to modify the programming
distance with the appropriate precision value.
Step 3: Which regular phrase is appropriate for
describing text? Although they are equal, the
regular expression specifications permitted by the
UNIX egrep program are utilized because they are
composed of more practical operators than those
found in the formal definitions.
Step 4: Regular expressions are combined using the
same rules as Boolean expressions.
Step 5: Reducing superfluous states using a state
minimization algorithm
Step 6: Report and collect feedback if needed.
2.B+ Tree: It is assumed that the database is a B+
tree. We begin with leaf nodes and gather all of the
database's longest strings. The interior nodes of a
B+ tree do not contain any data. Since all of the
information is contained at the leaf level, the leaves
can be connected to one another, enabling
sequential access to the data after the leaves reach

T. This implies that interior nodes serve as a guide
to the data stored at leaves and solely include
referential data. A dynamic index structure that
adapts well to insertion and deletions is the B+tree.
The tree is in balance.
Leaf pages are not allocated sequentially .they are
linked together pointers(a doubly linked list)

2.1 B+ tree properties
 B+ tree is a rooted tree satisfying the

following properties.
 All paths from root to leaf area of the same

length
 Each node that is not a root or a leaf has

between [n/2] and n children.
 A leaf node has between [(n-1)/2 and n-1

values special cases:
 If the root is not a leaf, it has at least 2

children.
 If the root is a leaf (that is there are no

other nodes in the tree), it can have between 0and
(n-1) values

2.2 Main characteristics
 Maintain a balanced tree height while
inserting or removing at log N F caste.(N= #leaf
pages, f=fan-out). 50% occupancy minimum (root
excluded). There are d<=m<=2d entries in every
node. The order of the tree is denoted by the
parameter d. effectively supports range searches
and equality. A B+ tree is a type of data structure
that can hold a large amount of data. Large volumes
of data that cannot be stored in main system
memory are typically stored in B+ trees. To view
this, the tree's leaf nodes are stored on secondary
storage, often a disk. Computer memory only
contains the interior nodes of the tree.
The only nodes in a B+ tree that genuinely store
data items are the leaf nodes. The remaining nodes,
referred to as index nodes or i-nodes, merely store
"guide" values that enable us to navigate the tree
structure from the root down to the leaf node that
contains the desired data item. These leaf nodes
each hold many data items because disk I/O is more
slower than memory access. Actually, under most
operating systems, the data structure will function
best in a leaf node size that closely resembles a disk
sector.
. Therefore, we still need to read that data node
from the disk and search its contents when we
search a B+ tree (by going from the root node down
to the correct dat node). Maintaining a memory
cache of previously read nodes is another technique
to increase query operation speed. A structure
called a B-tree, in which data items can be stored in
any node on the tree, is the ancestor of the B+-tree.

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

878

The B+-tree is a little more robust and complex
version of the B-tree.
2.3 Example of a B+ -tree

Fig.2.1 B+ tree

The B+ tree index is a balanced tree where data
entries are found in the leaf nodes and the search is
guided by the internal nodes (the top two levels).All
that is needed to search for a record is a traversla
from the root to the relevant leaf node. The height
of the tree is the distance from the root to a leaf,
which is often two or three. We follow the leftmost
child pointer from the root (as 9<10) to look for
entry 9*. The correct child pointer is then followed
at level two (since 9>6). Data entries can be located
consecutively after arriving at the leaf
node.Because the leaf nodes are connected, range
queries can be used with it.

 Fig.2.2 B+ tree

 The records can be accessed via an index or in
insertion order.

3.DPA To Edit Distance: The dynamic
programming algorithm (DPA) is the distance
method we use to modify distance with the
associated precision parameter. Because the terms
"computer" and "commuter" are so similar,
changing just one letter—from p to m—will turn
the former become the latter. The word "sport" can
be transformed to "sort" by removing the letter "p,"
or vice versa, "sort" can be changed to "sport" by
adding the letter "p." When two strings, s1 and s2,
are edited, the edit distance is the smallest number
of point mutations needed to transform s1 into s2,
where a point mutation is one of

 Change a letter,
 Insert a letter or
 Delete a letter

The following recurrence relations define the edit
distance, d(s1,s2), of two strings s and s2:

d(“ “) = 0 --“ = empty string
d(s,”) = d(“,s) = |s| --i.e length of s
d(s1+ch1, s2+ch2) = min (d(s1,s2) +if

ch1=ch2 then 0 else 1 fi, d(s1+ch1,s2)+1,
d(s1,s2+ch2)+1)
The first two rules above are obviously true , so it
is only necessary consider the last character,ch1
and ch2 respectively. Somehow , ch1 and ch2
have to be explained in an edit of s1+ch1 into
s2+ch2. If ch1 equals ch 2, they can be matched
for no penalty i.e 0, and the overall edit distance is
d(s1,s2). If ch1 differs form ch2 then ch1 could be
changed into ch2, i.e . 1,giving an overall cost
d(s1,s2)+1. Another possibility is to delete ch1 and
edit s1 into s2+ch2, d(s1,s2+ch2)+1. the last
possibility is to edit s1+ch1 into s2 and then insert
ch2, d(s1+ch1,s2)+1.There are no other
alternative . we take the least expensive i.e. min,
of these alternatives.
Examination of the relations reveals that d(s1,s2)
depends only on d(s1,s2) where s1 is shorter than
s1, or s2 is shorter than s2, or both. This allows the
dynamic programming technique to be used.

A two-dimensional matrix, m[0..|s10|,o
…|s2|] is used to hold the edit distance values:

M[I,j] = d(s1[1…i],s2[1….j])
M[0,0] = 0
M[I,0] = I, I=1….|s2|
M[I,j] = min(m[I-1,j-1] +if s1[1]=s2[j]

then o else 1 fi, m[I-1, j]+1, m[I,j-
1]+1)I=1…|s1|,j=1..|s2|
M[.] can be computed row by row. Row
m[I,]depends only on row m[I-1]. The time
complexity of this algorithm is O(|s1|*|s2|). If s1
and s2 have a ‘similar’ length, about ’n’ say, this
complexity is O(n2), much better than exponential

1.1 Algorithm
edit distance(A[1….m],B[1….n])
for i 1 to m
 edit[i , 0] i
for j 1to n
 edit[0 ,j] j
for i 1to m
 for j 1 to n
 if A[i] = B[j]
 Edit[I,j] min{ edit[i-

1,j]+1,Edit[I,j-1]+1,Edit[i-1,j-1]}
Else
 Edit[I,j] min { Edit[i-

1,j]+1, Edit[I,j-1]+1,Edit[i-1,j-1]+1}

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

879

Return Edit[m,n]

3.1.1 Example

let us consider an example where we are editing
form strings sport to sort.So we follow the
dynamic programming algorithm for editing
distance. i.e sport to so? Rt.Form the algorithm we
get the distance as
Solution: 1. 3.1 Table for example

So the distance (sport , sort) is 1.

4.REGULAR EXPRESSIONS :

To specify a set of strings, such as the set of all
valid email addresses or the set of all binary strings
with an even number of 1s, use a regular
expression. We cannot just list all of the members
of the set because it may include an unlimited
number of them.We are creating a process that is
comparable to that for Boolean formulas (DNF and
CNF), where function values and don't care are
defined, in order to find regular expressions in
databases. Regular expression: simple expressions
can readily explain the language that finite
automata accept. Strings of characters (words,
sentences, or any random text) are described by
regular expressions. It is a collection of characters
that define a style. In addition to unions,
concatenation, and kleene closure (or closure), we
assume AND & OR operations. The general classes
of regular expression operators are
UNION,KLEEN STAR and
CONCATENATION.A formal recursive definition
of regular expressions over ∑ as follows

1. Λ and Ø are regular expressions, as are any
terminal symbol (that is, an element of ∑ n).
An in ∑ is represented by a when we consider it to
be a regular expression.
2. R1+R2, which is the union of two regular
expressions R1 and R2, is likewise a regular
expression.
3. Two regular expressions R1 and R2 concatenated
as R1, R2 is likewise a regular expression.
4. A regular expression R* is an iteration (or
closure) of a regular expression R.

5. (R) is also a regular expression if r is a regular
expression.
6. The recursive results of applying rules 1–5 once
or more times are the exact regular expressions
across ∑.

4.1 Identities For Regular Expressions

These are useful for simplifying regular
expressions.

Ø + R= R
ØR=R Ø= Ø
ΛR=RΛ=R
Λ*=Λ and Ø*=Λ
R+R=R
R*R*=R*
RR*=R*R
(R*)*=R*
 Λ+RR*=R*= Λ +R*R
(PQ)*P=P(QP)*
(P+Q)*=(P*Q*)=(P*+Q*)*
(P+Q)R= PR+QR and R (P+Q) =RP+RQ
If R=Q+RP by Ardens theorem r=QP*.
4.2 Regular expressions notation
The language operations are union, Kleenstar,
concatenation

4.2.1Concatenation operator
If x,y Є I * , then the concatenation of x and y is
written as

Z=x,y
X=101 |x|=3.
Y=111 |y|=3.
Z=x,y -> 101111 |z|=6
Concatenation of any string with null string results
in the original strings.

x.e = e.x = x.
x. Λ = Λ .X=X.
Note : e & Λ are null strings
Example :- x=100 e=Ø.
 x.e--> 100
concatenation is associative :
x=101 y=111 z=110
x.(y.z) = (x.y).z
101111110=101111110
4.2.2 Kleene star.
If L C= I* is a language , then
L* is the set of all strings obtained by concatenating
zero or more strings of L.

Concatenation of zero strings is Λ.
Concatenation of one strings is the string itself.
L+ = L*-{ Λ}.
Eg:- L = {0,1}
L*
{
Λ,0,00,000,………………….0*,1,11,111………

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

880

…………….1*,01,001,0001,…………0*1………
……..}

L={ab, f}
L* = { Λ,ab,abf,fab,ffab,ffabf………….}
Ø*  { Λ}
If l = { Λ.} then L* = { Λ}.
Let I = {a}
L=language((ab)*)
{ Λ,a,b,ab,aab,abb,……..}
The laguage of all strings a’s and b’s in which the
a’s if any come before b’s.

4.2.3 union

 L = {001,10,11} ,m= { Є,001}

 L U m = { Є,10,001,11,001,10+001,11+001}
 If E &F are RE’s then E+F is a RE’s denoting the
union L(E) and L(F).

 L(E+F) l(E) U L(F).
4.3 Boolean ‘OR’
1. distribute over concatenation
 L=language((a+bc)c*b)
 L = language(ac*b+bcc*b)
 Which is the laguage of all strings beginning with
a ending with b and having non or more L’s in the
middle and All strings beginning and ending with
b and having atleast one ‘L’ in the middle

 2.distribute when it is inside a kleene starred
expression, but only incertain ways.

L = Language ((a+bc)*b) = (a+bc)(a+bc)(a+bc) Λb.
≠a*b+bc*b
≠(ab+bcb)*.
(a+b)* the set of V(for all) strings of a&b of any
length.

L=Langyage((a+b)*){Λ,
ab,abab,abaab,abbaab,bbb,…………….}

If L C =I* is finite then L is regular .
If L2 and L2 are regular , so are
L3= L1 UL2
L4 = L1.L2={x1.x2/x1Є L1 ,x2ЄL2}
If L is regular, then so is L* ,where * is the Kleene
star.

In this we follow same rules as followed for solving
Boolean expressions for solving regular
expressions using AND, OR.

Given a set.
L= {
0,1,00,11,10,01,100,010,000,110,001,011,101,111
………..}

R1+r2 0+11(AND)
R1.r2 0.1  1 (OR)
R1*.r2 0*1 001

4.4 Basic operations for creating regular
expressions

There are five basic operations for creating regular
expression, and the table below illustrates them by
example.

 Concatenation: Concatenating a group of
symbols one after the other, like aabaab, creates the
most basic kind of regular expression. Only the
single string aabaab is matched by this regular
expression. The concatenation technique allows us
to do basic spell checking. For instance, we could
create the regular phrase neither, and then
determine that neither is misspelled if every word
in a dictionary matches. Logical OR: We can select
among a number of options using the logical OR
operator.. The regular phrase aa| baab, for instance,
matches precisely two strings, aa and baab.
Numerous spam filters, like spam Assaain, function
by looking for a lengthy list of frequently used
spam phrases. A regular expression like
AMAZING| GUARANTEE|viagra might be
formed by them. We can define many strings with a
single regular expression thanks to the logical OR
operator. For instance, we would want to know if
the phonepad prints out any words if our number is
734-8527 (2 = abc, 3 = def, 4 = ghi, 5 = jkl, 6 =
mno, 7 = prs, 8 = tuv, and 9 = wxy);

 All 3^7 possible combinations are
specified by the following regular expression:
(p|r|s)(d|e|f)(g|h|i)(t|u|v)(j|k|l)(a|b|c)(p|r|s). It turns
out that the word regular is the sole English term
that matches (substitute deciphering an instant
message that uses the "phone code" for this
example)
.Replication: We can provide an endless number of
options thanks to the replication operator. The
regular expression ab*a, for instance, matches
a,aba,abba,a,bbb, and so on. Keep in mind that b
may not be replicated 0 times. Grouping: We can
give the different operators precedence by using the
grouping operator. The highest precedence operator
is *, followed by |, and finally concatenation. The
ab pattern must be reproduced jointly, thus we must
first write (ab)*a to specify the set of strings
a,aba,ababa,abababa, and so on.
 Wildcard: the wild card symbol matches
exactly one occurrence of any single character.
4.5 Boolean expression
 A statement using Boolean operators that expresses
a condition that is either true re false. An
expression consisting solely of Boolean variables
and values and Boolean operations, such as and,
or, not, implies, etc

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

881

1. AND operator.
Conjunction: 0 AND 0 =0, 0AND 1 = 0,1 AND 1=
1.

2. OR operator:
Disjunction: 0 OR 0 = 0, 0 OR 1=1, 1 OR0=1,1 OR
1=1.

3. NOT operator:
Negation: NOT 0 = 1, NOT 1= 0 . Also know as
complement.

(1) Of a Boolean , 0 if 1, or 1 if 0.
Of a set A, a set having all the member s
which are in the universe, but not in A.

There are various Boolean algebra rules for solving
Boolean Expressions

5.STATE MINIMIZATION:

Fewer states may mean fewer state variables .
High level synthesis may generate many redundant
states.

Two states are equivalent if they are impossible to
distinguish from the output of finite

state machine , i.e. for any input sequence the
output s are the same.

Two conditions for two states to be equivalent:
 Outputs must be same in both states.
 Must transition to equivalent states for all
input combination.

5.1 Algorithmic Approach To State
Minimization

Goal -- identify and combine states that have
equivalent behavior.

Equivalent states:
 Same output
 For all input combinations, state transition
to same or equivalent states.

5.2 Algorithmic sketch

1. place all the states in one set
2. initially partition set based on output behavior.
3. successively partition, resulting subsets based on
next states transitions.

4. Repeat (3) until no further partitioning is
required

 States left in the same set are equivalent.
5.polynomial time procedure.

5.3 state minimization example1

Sequence detector for 010,110.

Fig.5.1 State Minimization Example1

Method for successive partition
(S0 S1 S2 S3 S4 S5 S6) S1 is equivalent to S2
(S0 S1 S2 3 S4 S5)(s4 S5) S3 is equivalent to S5
(S0S1S2)(S3S4)(S4S6) S4 is equivalent to S6
(S0)(S3 S5)(S1 S2)(S4 S6)
Minimized FSM:
State minimized sequence detector for 010 or 110
Minimized state chart:

Fig.5.2 State Minimization Example2

Fig.5.3 State Minimization Example 3

State Transition Table
Grouping states with same next state and same
output:

Table 5.1 State Transition

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

882

Table 5.2 State Transition

5.3 State Transition Table

Fig.5.4 Final Reduced State Diagram

Table 5.4 Reduced State Transition

 15 state (min 4FF) got reduced to 7states
(min 3FF).

6.GREP COMMAND:

Grep is a command for text processing. There are
several different text processing commands
available. By combining regular characters and
special characters, commonly referred to as meta-
characters, with the following rules, several text
processing systems, including grep, egrep, sed,
awk, and vi, allow you to search on patterns rather
than preset expressions. You can use these regular
expressions to match patterns in text material that
has been replicated.
6.1examples

Consider the following file:
{unix prompt 5} cat num.list
1 15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
5 11 eleven
6 10 ten
7 9 nine
8 8 eight
9 7 seven
10 6 six
11 5 five
12 4 four
13 3 three
14 2 two
15 1 one

Here are some grep examples using this file. In the
first we_ll search for the number 15:

{unix prompt 6} grep ‘15’ num.list
 1 15 fifteen
 15 1 one
Now we_ll use the “-c” option to count the number
of lines matching the search criterion:

{unix prompt 7}grep –c ‘15’ num.list 2
Here we_ll be a little more general in out search,
selecting for all lines containing the character 1
followed by either of 1,2 or 5:

 {unix prompt 8} grep ‘1[125]’ num.list
 1 15 fifteen
 4 12 twelve
 5 11 eleven
 11 5 five
 12 4 four
 15 1 one
Now we_ll search for all lines that begin with a
space:
{unix prompt 5} cat num.list
1 15 fifteen

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

883

2 14 fourteen
3 13 thirteen
4 12 twelve
5 11 eleven
6 10 ten
7 9 nine
8 8 eight
9 7 seven
Or all lines that don_t begin with a space:
 { unix prompt 10} grep ‘^[^]’ num.list
10 6 six
11 5 five
12 4 four
13 3 three
14 2 two
15 1 one
 The latter could also be done by using the –v
option with the original search string, e.g:

 {UNIX prompt 11} grep –v ‘^’ num.list
10 6 six
11 5 five
12 4 four
13 3 three
14 2 two
15 1 one
This example will search for any instances of t
followed be zero or more occurrences of eg:

{unix prompt 13}grep ‘te*’ num.list
1 15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
6 10 ten
8 8 eight
13 3 three
14 2 two
This example will search for any instances of t
followed by one or more occurrences of e:

{unix prompt 14} grep ‘tee*’ num.list
 1 15 fifteen
 2 14 fourteen
 3 13 thirteen
 6 10 ten
We can also take out input from a program, rather
than a file. Here we report on any lines output but
the who program that begin with the letter I.

 { unix prompt 15} who| grep ‘^|’
 Icondron ttypo Dec 1 02: 41 (Icondron-pc.acs.)

7.CONCLUSION:

We assume that the database is a B+ tree in order to
identify regular expressions in the text database.
The data will be dictionary-style. Starting with leaf
nodes, we gather the database's longest strings. The

dynamic programming algorithm (DPA) is the
distance method we use to modify distance with the
associated precision parameter. We employ regular
expressions, which are useful for describing text.
The three general classes of regular expression
operators are KLEENE STAR, UNION, and
CONCATENATION. To find regular expressions
with the associated meta characters, we compare
with the UNIX grep program.
. We apply the same rules that we use to combine
regular expressions with Boolean expressions.
Specifically, the grep command only offers
restricted repetition and does not permit Kleene star
operation. These limitations aid in the development
of a unified automaton creation technique for
regular and Boolean expressions. State
minimization reduces superfluous state while
maintaining the same level of external input and
output needs.

REFERENCES:

[1] ZVI KOHAVI Switching and Finite Automata

theory. Tata McGraw-Hill Edition. Second
edition 2004.

[2] M. Morris Mano . Digital Design, PHI
Publications, second Edition April 2001

[3] John E.Hopcroff, Jeffery D.Ullaman ,
introduction to Automata Theory, languages
computation, narosa publishing house 2001

[4] John Martin , introduction to languages and the
theory of computation. Tata McGraw-Hill
EDITION, third Edition. 2000

[5] Harry R.Lewies , Christos H.Papadamitriou.
Elements of the theory of computation.
Second EDITION, Third Edition. 2000.
 Raghurama Krishna , Johannes gehrke
,Database management systems. Tata
McGraw-HILL EDITION, Third
Edition.2003

[5] Abraham silberschatz, Herry F .Korth,
S.Sudarshan. Database Systems. Tata Mc
Graw-Hill edition. Third EDITION 1997

[6] Zhang, C., Tang, X., & Peng, Y. (2024).
Enhancing regular expression processing
through field-programmable gate array-based
multi-character non-deterministic finite
automata. Electronics, 13(9), 1635.
https://doi.org/10.3390/electronics13091635

[7] Peterfreund, L., Freydenberger, D. D.,
Kimelfeld, B., & Kröll, M. (2019).
Complexity bounds for relational algebra over
document spanners. arXiv preprint
arXiv:1901.04182.
https://arxiv.org/abs/1901.04182

 Journal of Theoretical and Applied Information Technology
15th February 2025. Vol.103. No.3

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

884

[8] Tsang, D., & Chawla, S. (2011). An index for
regular expression queries: Design and
implementation. arXiv preprint
arXiv:1108.1228.
https://arxiv.org/abs/1108.1228

[9] Li, X., Liu, M., Wu, X., & Zhu, S. (2015).
Design issues of JPQ: A pattern-based query
language for document databases. arXiv
preprint arXiv:1504.03770.
https://arxiv.org/abs/1504.03770

[10] Freydenberger, D. D., & Holldack, M. (2019).
Document spanners: From expressive power
to decision problems. ACM Transactions on
Database Systems (TODS), 44(2), 1-43.

[11] Peterfreund, L., & Kimelfeld, B. (2020).
Complexity bounds for relational algebra over
regex formulas. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (pp. 235-
248).

[12] Freydenberger, D. D., & Peterfreund, L.
(2020). A logic for document spanners. In
Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of
Database Systems (pp. 115-129).

[13]Doleschal, J., & Neven, F. (2020). A
framework for learning document spanners. In
Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of
Database Systems (pp. 103-114).

[14] Freydenberger, D. D., & Holldack, M. (2020).
A survey on document spanners. Logic
Journal of the IGPL, 28(5), 877-899.

[15] Peterfreund, L., & Kimelfeld, B. (2021). On
the complexity of enumeration and reliability
for conjunctive queries over document
spanners. ACM Transactions on Database
Systems (TODS), 46(1), 1-38.

[16]Doleschal, J., & Neven, F. (2021). Learning
document spanners with variable
dependencies. In Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (pp. 1-14).

[17]Freydenberger, D. D., & Peterfreund, L.
(2021). A logic for document spanners with
string equality tests. ACM Transactions on
Database Systems (TODS), 46(2), 1-38.

[18] Doleschal, J., & Neven, F. (2022). Learning
document spanners with numeric data. In
Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of
Database Systems (pp. 1-14).

[19]Freydenberger, D. D., & Peterfreund, L.
(2022). A logic for document spanners with

arithmetic expressions. ACM Transactions on
Database Systems (TODS), 47(1), 1-38.

[20]Doleschal, J., & Neven, F. (2023). Learning
document spanners with complex data types.
In Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of
Database Systems (pp. 1-14).

