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ABSTRACT 
 

The increasing sophistication of network attacks, including brute-force intrusions, malware distribution, and 
phishing, poses severe risks to data security, business operations, and financial stability. Traditional Intrusion 
Detection Systems (IDS) often struggle with inefficient feature selection, high false positives, and poor 
scalability in IoT environments. To address these challenges, we propose a novel hybrid IDS framework that 
integrates the Mountain Gazelle Optimizer (MGO) for feature selection with an Optimal Deep Belief 
Network (DBN) classifier, fine-tuned using the Hybrid Dragonfly-Whale Optimization Algorithm (HDFOA-
WOA). Our approach follows a three-stage process: (1) MGO-based feature selection to enhance 
classification efficiency, (2) DBN-based attack detection, and (3) HDFOA-WOA for hyperparameter tuning 
to prevent local optima stagnation and improve model convergence. Using the CICIDS2017 benchmark 
dataset, we validate our model through extensive simulations and k-fold cross-validation, achieving a 98.9% 
accuracy, outperforming existing IDS models. Our findings demonstrate significant reductions in false 
positives, improved detection speed, and enhanced adaptability to evolving cyber threats. The proposed 
approach contributes to real-world cybersecurity by strengthening intrusion detection in IoT networks, 
ensuring scalable, efficient, and high-precision attack mitigation strategies. Future research will focus on 
real-time deployment, lightweight model optimization for edge computing, and explainable AI techniques 
for increased IDS interpretability and transparency. 
Keywords: Optimal Deep Belief Network; Intrusion Detection Systems; Mountain Gazelle Optimizer; Whale 

Optimization Algorithm; Hybrid-Strategy-Improved Dragonfly Algorithm. 
 
1. INTRODUCTION  
 
Data security is becoming increasingly important in 
today's fast-paced world due to the exponential 

growth of internet-connected devices and online 
applications. Numerous online applications are 
linked to various web services, including e-
commerce, e-banking, e-shopping, e-education, e-
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healthcare, industrial control systems (ICS) for 
critical infrastructure, and many more. Since the 
inception of the Internet, 1.2 billion websites have 
been created [1]. Cyber attackers today are highly 
skilled and possess the necessary tools to target both 
private companies and public institutions [3]. The 
amount of stolen information is massive, and 
cybercrime has become a major industry in recent 
years. Malicious software comes in numerous 
distinct types. Governments, companies, and 
consumers globally face extremely high stakes in 
this scenario. The massive attack on a Bangladeshi 
bank, which allegedly resulted in the theft of USD 
81 million, serves as a constant reminder of how 
powerful these attacks can be [4]. Large sums of 
money were transferred using the bank's own 
computers. No matter how big a company is, there is 
always a risk. Data shows that 20% of impacted 
firms were small businesses, 33% were medium-
sized enterprises, and 41% were major businesses 
[5]. The gravity of the situation and the need to 
safeguard critical data increase with the breadth of 
the threat. Eighty-two percent of businesses have 
been targeted by attacks where stolen data was used 
to damage their services. Companies hit by 
distributed denial of service (DDoS) attacks saw a 
26% decline in service performance and a 41% loss 
of service, according to reports [6]. 
Malicious individuals constantly learn new tricks 
and utilize cutting-edge technology to launch new 
types of DDoS attacks. Even though there are many 
solutions to detect, defend against, or mitigate DDoS 
attacks, malicious actors continuously find new 
ways to bypass these defenses [7]. The network 
remains vulnerable to distributed denial of service 
attacks. Recent DDoS attacks targeting the 
application layer of internet servers have led to 
massive revenue losses [8]. Attacks on the TCP/IP 
layer limit the number of requests that can be sent to 
a live server within a given timeframe. This includes 
slowloris attacks, zero-day attacks, and DDoS 
attacks exploiting Apache or Windows 
vulnerabilities [9]. Additionally, malicious users and 
hackers steadily increase network security issues. 
Data protection against hostile users and hackers is, 
therefore, an essential component of any robust 
security system. 
The number of systems being admitted, the 
percentage of vulnerabilities remaining unpatched, 
and the severity of consequences for businesses all 
contribute to the exponential growth in the 
sophistication and power of these attacks [10]. 
Denial-of-service attacks significantly affect the 
cyber sphere. Cyber threat actors pose a real threat 
to businesses due to the potential for IP memory 

resource, root sanity, and mouse damage [11]. A 
slow-moving DDoS attack can make its traffic look 
like legitimate traffic, allowing it to bypass current 
systems. Rank correlation algorithms can distinguish 
between attack traffic and legitimate traffic based on 
their rank values. Information, internet, and cloud 
computing servers are particularly vulnerable to 
denial-of-service attacks [12 and 13]. 
Machine learning (ML) technologies are currently 
employed by several authors for network 
management. The effectiveness of ML-based 
detection approaches over signature-based ones can 
be evaluated by conducting more ML research into 
malware recognition instead of relying on 
signatures. Due to its adaptability and strong 
capacity to detect concealed ransomware samples, 
ML and deep learning (DL) methods are chosen for 
evaluation against non-ML methods [15]. Since 
attacks originate from dispersed nodes and spread 
across regions, predicting and identifying such nodes 
is challenging. The mitigation strategy needs to 
identify malicious traffic while causing minimal 
disruption to normal traffic to effectively block 
harmful traffic. Both emerging DDoS and proxy 
DDoS attacks involve attackers launching new 
assaults [16]. 
To address this issue, we develop a detection 
method. The detection system employs deep-
learning algorithms to identify malicious traffic and 
distinguish it from normal traffic. The algorithm 
categorizes traffic into three types: normal, 
suspicious, and malicious. Key study findings 
include: 

 Pre-processing the input dataset to 
eliminate noise before feeding it into the 
feature selection algorithm. 

 Employing MGOA to extract relevant 
features from pre-processed data to 
enhance classification accuracy. 

 Using the DBN model for attack 
recognition and optimizing its parameters 
with HDFOA. Tent chaotic mapping helps 
improve the initial positions of dragonfly 
individuals that explore the search space. 

 Balancing the procedure's global search and 
local exploitation with nonlinear inertial 
weight. The whale optimization algorithm's 
bubble-net approach is integrated to 
improve DA's local exploitation. Cauchy 
distribution is applied to optimal 
placements to avoid local extremes. 

    Our work primarily focuses on supervised 
learning, requiring labeled training data, which may 
not always be available in real-world deployments. 
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    The computational complexity of DBN-based 
models can be higher compared to traditional 
machine learning techniques, which may impact 
deployment in resource-constrained IoT devices. 
    While we consider several attack categories, new 
and evolving attack patterns may require periodic 
retraining to maintain high detection accuracy. 
The paper is organized as follows: Section 2 
discusses related works; Section 3 explains the 
proposed methodology and its mathematical model; 
Section 4 provides result analysis, and Section 5 
presents the conclusion. 
 
2. RELATED WORK 
 
Li et al. [17] suggested using a convolutional neural 
network (CNN) for network intrusion detection. To 
fine-tune the CNN's parameters, a genetic algorithm 
(GA) was incorporated into the training process. The 
GA-CNN technique was then compared against 
classic back-propagation neural network (BPNN) 
algorithms in a simulation experiment to evaluate its 
performance. The results demonstrated that the GA-
CNN algorithm achieved stability more quickly and 
reduced errors once stable. Among the algorithms 
tested, GA-CNN took the least amount of time on 
average to identify suspicious traffic and performed 
the best. Suffers from local optima issues and high 
computational costs, making it unsuitable for real-
time IoT applications. Prone to local optima, limited 
adaptability to new attack patterns 
Yuan et al. [18] presented a wrapper feature 
selection model called bICSRUN-KNN, which uses 
Runge-Kutta optimization for information-guided 
communication (ICSRUN) to identify intrusions. 
Results from trials comparing several algorithms on 
the IEEE CEC 2014 benchmark functions show that 
ICSRUN is the best. The algorithms were tested 
against one another using 12 datasets from UCI, 
including NSL-KDD, ISCX-URL-2016, ISCX-Tor-
NonTor-2017, and LUFlow Network. The 
experimental results showed that in the binary and 
multiclass contexts of NSL-KDD, the bICSRUN-
KNN approach achieved remarkable accuracy rates 
of 98.705% and 98.341%, respectively. We achieved 
96.107% accuracy with ISCX-URL-2016, 99.772% 
with ISCX-Tor-NonTor-2017, and 88.748% with 
LUFlow Network. Computationally expensive, 
unsuitable for real-time IoT 
To classify breaches in IoT settings, Alotaibi and 
Mishra [19] utilized CNNs. The NF-Bot-IoT 
datasets were used to train and evaluate intrusion 
detection systems that rely on deep learning. One 
potential solution to the ever-increasing danger 
posed by botnets is the identification of these 

networks in IoT environments; this is something we 
investigate in our research. We examine 
representative bot datasets and discuss how they 
contribute to our knowledge of botnet behavior and 
efficient defenses. Using a variety of machine 
learning methods, the research assessed IDS 
efficiency and traffic flow within the context of the 
Internet of Things. The results highlight the 
significance of using excellent data pre-processing 
techniques and the right algorithms for IoT setups to 
improve accuracy and speed. When tested on the 
NF-UQNIDS datasets, the proposed system's cyber-
attack detection outperformed competing 
techniques. Relies heavily on data preprocessing 
quality and struggles with evolving attack patterns. 
Inefficient for high-dimensional datasets, slow 
classification 
Ullah et al. [20] proposed a method called IDS-INT 
for detecting intrusions in imbalanced network 
traffic using transformer learning. IDS-INT employs 
transformer-based transfer learning for feature 
interactions in network feature representation and 
imbalanced data. The first step is to collect 
comprehensive details regarding each attack type 
from descriptions of network interactions. These 
details may include the nodes in the network, the 
type of attack, a reference, host information, and 
more. Secondly, a transformer-based transfer 
learning strategy is created to learn the detailed 
representation of features utilizing their semantic 
anchors. Third, the Synthetic Minority 
Oversampling Technique (SMOTE) is employed to 
counteract minority attacks and maintain a steady 
flow of normal traffic. Fourth, a CNN model is used 
to mine the balanced network flow for rich data. 
Finally, a CNN-LSTM hybrid model is created to 
detect various threats using deep features. Extensive 
experiments were carried out using three standard 
datasets, namely UNSW-NB15, CIC-IDS2017, and 
NSL-KDD, to evaluate the proposed method. An 
explainable AI strategy is used to understand the 
proposed approach and create a reliable model. 
Transformer learning, achieves strong detection 
performance but requires extensive memory and 
computational resources, limiting deployment on 
resource-constrained IoT devices. Requires large 
labeled datasets, struggles with dynamic attacks. 
Ghadermazi et al. [21] proposed an innovative 
methodological framework for packet-based NIDS 
that takes into account the temporal links among 
packets and successfully analyzes data from both the 
header and the payload. Our framework converts 
consecutive packets into two-dimensional images. 
To analyze these images and identify harmful 
actions, it creates an intrusion detection model based 
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on convolutional neural networks. Our methodology 
shows encouraging robustness against adversarial 
examples and achieves high detection rates of 97.7% 
to 99% across diverse attack types, as demonstrated 
through studies using publicly available large 
datasets. Enhances detection but is vulnerable to 
adversarial attacks and demands large labeled 
datasets for training. 
To better protect IoT networks from attacks, 
Altulaihan et al. [22] suggested an intrusion 
detection system (IDS) defense mechanism that uses 
anomaly detection and machine learning (ML). The 
proposed IDS employs anomaly detection to 
constantly monitor network activity that doesn't 
follow typical patterns. Four distinct supervised 
classification algorithms—Decision Tree (DT), 
Random Forest (RF), and Support Vector Machine 
(SVM)—were employed to achieve this goal. The 
efficiency of two feature selection algorithms, 
Genetic Algorithm (GA) and Correlation-based 
Feature Selection (CFS), was also examined. For 
training the model, the IoTID20 dataset, considered 
one of the most up-to-date for identifying suspicious 
behavior in IoT networks, was used. When trained 
with features selected by GA, DT and RF classifiers 
achieved the best scores. DT excelled in terms of 
processing time. Depends on dataset-specific tuning, 
reducing its generalizability across diverse network 
environments. 
 
2.1. Research gap 
Despite the significant advancements in intrusion 
detection systems (IDS) for network security, 
several research gaps persist. Current IDS solutions 
often struggle with detecting sophisticated, evolving 
threats in real-time, particularly in dynamic 
environments such as IoT networks. Many existing 
models lack the ability to handle the vast amount of 
data generated by network traffic efficiently, leading 
to issues with scalability and processing speed. 
Moreover, while machine learning-based IDS 
models have shown promise, they often suffer from 
high false positive rates, limiting their reliability and 
practical deployment. 
There is also a gap in developing IDS that can 
effectively balance accuracy and computational 
efficiency, especially in resource-constrained 
environments like IoT devices. Furthermore, the 
integration of deep learning with explainable AI 
techniques remains underexplored, which is crucial 
for understanding and interpreting IDS decisions. 
Finally, although there are many datasets available 
for IDS evaluation, they often do not reflect the latest 
attack vectors or real-world network conditions, 
highlighting the need for more comprehensive, up-

to-date datasets for testing and validating IDS 
performance. Addressing these gaps could 
significantly enhance the effectiveness and adoption 
of IDS in diverse network environments. 
Inefficient Feature Selection: Many IDS models 
process high-dimensional data without optimal 
feature selection, leading to poor classification 
performance and computational inefficiency (Li et 
al., 2024). High False Positive Rates: Traditional 
machine learning models (e.g., SVM, Decision 
Trees) suffer from false alarms, reducing their 
reliability in detecting zero-day and evolving cyber 
threats (Ullah et al., 2024). 
Scalability Issues in IoT Networks: Deep learning-
based models (e.g., CNN, LSTMs) offer higher 
accuracy but often require excessive computational 
resources, making them unsuitable for real-time, 
resource-constrained IoT environments (Yuan et al., 
2024). 
 
2. PROPOSED METHODOLOGY 
 

This section presents our proposed hybrid IDS 
framework, illustrated in Figure 1, which is designed 
to enhance network attack detection efficiency using 
advanced feature selection, classification, and 
optimization techniques. 
 

Our methodology begins with data preprocessing, 
where the CICIDS2017 benchmark dataset is 
cleaned by removing noise and encoding categorical 
features. To improve classification accuracy, we 
apply feature engineering techniques and employ the 
Mountain Gazelle Optimizer (MGO) to select the 
most relevant features while eliminating redundant 
attributes. Set initial population size = 50 (Mountain 
Gazelle groups). 
Define fitness function as maximizing classification 
accuracy while minimizing feature count. 
Run MGO for 100 iterations with adaptive 
exploration-exploitation balancing. 
Extract optimized feature subset for classification. 
The preprocessed dataset is then split into 80% 
training and 20% testing data, ensuring an optimal 
balance between model learning and validation. To 
further enhance model robustness, we implement k-
fold cross-validation, which systematically 
evaluates the effectiveness of our approach across 
multiple data partitions. 
For intrusion detection, we utilize a Deep Belief 
Network (DBN) model, which is fine-tuned using 
the Hybrid Dragonfly-Whale Optimization 
Algorithm (HDFOA-WOA) to optimize 
hyperparameters, improve model convergence, and 
prevent local optima issues. The trained model is 
then evaluated against state-of-the-art machine 
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learning techniques, assessing performance based on 
classification accuracy, precision, recall, and false 
positive rates. 
By integrating advanced optimization and deep 
learning, our proposed framework provides a highly 

accurate, scalable, and computationally efficient IDS 
model capable of effectively detecting evolving 
cyber threats in IoT environments.

 
Figure 1: Workflow Of The Projected Model. 

 
3.1. Network Attack Data 
For the purposes of this study, we conducted our 
experiments on the popular benchmark dataset 
CICIDS2017 [23]. The CICIDS2017 dataset 
includes a large number of recent, frequent network 
attacks. Dataset details include attack type, 
timestamps, IP addresses (both source and 
destination), ports (both destination and source), and 
more. With 25 users included, the dataset records 
network activity using protocols like HTTP, HTTPS, 
FTP, SSH, and email. Notably, it covers a wide 
variety of attack types, including Heartbleed, Brute 
Force SSH, Web Attack, Botnet, Infiltration, and 
Distributed Denial of Service (DDoS). 
The dataset's distributions, as shown in histograms, 
are analyzed. According to the findings, there are 
2,273,097 samples in the "Normal" data target class, 
380,699 samples in the "DoS/DDoS" class, 158,930 
samples in the "PortScan" class, 13,835 samples in 
the "Brute Force" class, 2,180 samples in the "Web 
Attack" class, and 1,966 samples in the "Botnet 
ARES" class. The dataset is highly imbalanced in 
terms of classes, which makes it challenging to 
develop AI algorithms. 
H1a: Feature selection using Mountain Gazelle 
Optimizer (MGO) enhances classification accuracy 
by reducing irrelevant features while retaining 
critical attributes in network traffic data. 
 
    Supporting Argument: Feature selection 
algorithms like GA and PSO have been used in IDS 
but suffer from local optima and high variance 
(Yuan et al., 2024). MGO is expected to outperform 
these due to its adaptive territorial search 
mechanism. 
H1b: Deep Belief Networks (DBN) outperform 
traditional classifiers (CNN, LSTM, SVM) in 

detecting IoT network attacks with higher precision 
and lower false positive rates. 
    Supporting Argument: CNN and LSTM models 
are widely used for IDS, but they often require large 
datasets and extensive training time (Ullah et al., 
2024). DBN, with its layer-wise unsupervised 
retraining, is expected to enhance classification 
robustness. 
3.2. Data pre-processing 
In this study, dataset noise was reduced using 
preprocessing. There are many blanks in the dataset 
that are filled with 0. Each attack target class's 
subtype is associated with a primary attack category. 
A 'Normal' mapping is applied to the Benign class, 
whereas a 'Botnet ARES' mapping is applied to the 
Bot class. Attacks like FTP-Patator and SSH-Patator 
fall under the 'Brute Force' category, whereas 
'DoS/DDoS' includes DDoS, GoldenEye, Hulk, 
Slowhttptest, Slowloris, and Heartbleed. The 'Web 
Attack' category also encompasses subcategories 
such as Web Attack SQL, XSS, and Web Attack 
Brute Force. 
3.3 Utilising the Mountain Gazelle Optimizer for 
Feature Selection 
The MGO algorithm takes its cues from the natural 
habits of mountain gazelles. Near the Robinia tree, 
animals native to the Arabian Peninsula exhibit a 
peculiar quality. A highly territorial nature 
characterises this species. Their great distance from 
one another is a direct result of this. This species' 
territorial divisions are as follows: the parent-child 
zone, the zone for young males, and the zone for 
solitary males. Five crucial factors are considered 
during MGO algorithm optimisation: nongrouping, 
and the movement procedure in pursuit of food [24]. 
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3.3.1. Male zones 
Mountain gazelles fight it out for females or territory 
in this session. Every person has their own private 
space. A young male's natural inclination is to 
establish dominion over a female's territory. At the 
same time, maintaining the region itself is another 
responsibility. From (1) to (5), we can derive this 
session mathematically: 
𝑀௭ = 𝑚 − |𝑟𝑖ଵ × 𝑌𝑀 − 𝑟𝑖ଶ × 𝑋(𝑡) ×

𝐹| × 𝑐𝑣              (1) 

𝑌𝑀 = 𝑋 × [𝑟ଵ] + 𝑀 × [𝑟ଶ], 𝑟𝑎 =

ቄቚ
ே

ଷ
ቚ … 𝑁ቅ              (2) 

𝐹 = 𝑁ଵ(𝐷) × 𝑒𝑥𝑝 ൬2 − 𝑖𝑡 × ቀ
ଶ

௫௧
ቁ൰                              

(3) 
𝑐𝑣 =

⎩
⎨

⎧
(𝑎 + 1) + 𝑟ଷ

𝑎 × 𝑁ଶ(𝐷)
𝑟ସ(𝐷)

𝑁ଷ(𝐷) × 𝑁ସ(𝐷)ଶ × cos ((𝑟ଶ × 2) × 𝑁ଷ(𝐷))

     

  (4) 

𝑎 = −1 + 𝑖𝑡 × ቀ
ିଵ

௫௧
ቁ                                                     

(5) 
where the site of breaking is 𝑚 𝑟𝑖ଵ besides 𝑟𝑖ଶ 
these values are completely at random. Each cycle 
updates the accidental coefficient vector cv. 𝑋୰ୟ is 

exemplified as a random value with a range 𝑟𝑎. 𝑀୮୰ 
is illustrated charge from the basic distribution is 
𝑁ଵ(𝐷). 𝑖𝑡 and 𝑚𝑎𝑥𝑖𝑡 are the current repetition and 

extreme iteration. 𝑟ଷ, and 𝑟ସ are random statistics 

[0,1]. 𝑁ଶ, 𝑁ଷ and 𝑁ସ are random statistics in 
question. 
3.3.2. Maternity groups 
Here, the contains the information necessary to 
understand the mountain gazelle life cycle. A 
difficult stag will be assigned to this session. 
Mathematical modelling of this session is possible in 
equation (6): 

𝑀𝐺 = (𝑌𝑀 + 𝑐𝑣) + ൫𝑟𝑖ଷ × 𝑚 − 𝑟𝑖ସ ×

𝑥ௗ൯ × 𝑐𝑣      (6) 

Where 𝑥ௗ  is the vector site of a go-between that 
is casually selected from the altogether population? 
𝑟𝑖ଷ and 𝑟𝑖ସ are the figure values. 
3.3.3. Stag male groups 
During this phase, the adult males are motivated to 
assert their dominance over the females and the area. 
Males of different ages engage in this power battle. 

The following can be used to describe the session's 
behaviour: 

𝑆𝑇𝐺 = (𝑋(𝑡) − 𝐷) + ൫𝑟𝑖ହ × 𝑚 − 𝑟𝑖 ×

𝑀𝐺൯ × 𝑐𝑣      (7) 

𝐷 = ቀ|𝑋(𝑡)| + ห𝑚ห + (2 × 𝑟 − 1)ቁ                              

(8) 
Where the 𝑟𝑖ହ and 𝑟𝑖 are integers 1 or 2 that are 

designated haphazardly. (𝑡) and 𝑟 are the sites of 
random charge. 
3.3.4. Migration process 
This session paints a picture of an animal with 
excellent jumping and running abilities. They 
constantly travel great distances to find food. The 
formulation of this session is in (9). 
𝑀 = (𝑈𝐵 − 𝐿𝐵) × 𝑟 + 𝐿𝐵                         (9) 
Where 𝑈𝐵 besides 𝐿𝐵 are the limits. 
3.4. Classification using Deep Belief Network 
(DBN) 
At this point, the DBN method is used to detect 
attacks. Since DBN demonstrates better efficiency in 
pretraining under lower speed regulation settings, it 
is used as the base model [25].  
A DBN is a multi-layer NN that uses RBMs stacked 
one on top of the other. The RMB architecture is a 
bipartite graph, meaning that the nodes in each layer 
are not connected to any other. The first layer is the 
input second layer is node, which has a state space 
of either {0,1} or a real integer R.  The joining 
coefficient conditions of which are denoted by W c 
 𝑉୴ and 𝑉୦: 

 
Figure 2: Construction Of DBN 

 
The energy function is strong-minded by Eq. (10) 
once the municipal space of 𝑉୴ is {0,1}: 

𝐸(𝑣, ℎ) = − ∑ 𝑣, 𝑊ℎ −

∑ 𝑎𝑣ఢ௩௦ − ∑ 𝑏ℎఢௗௗ            (10) 
Second, k-CDM stands for "k-step comparative 
divergence methodology," which makes the default 
model with Gibbs sampling less effective. "Gaussian 
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to Gaussian" and "binary to binary" are two 
examples of one-step models. What follows is the 
CD-1 (binary-to-binary): 
𝐿𝑜𝑠𝑠 = ∑(𝑣 − 𝑝௩ᇱ)

ଶ (11) 

Next, based on (ℎ|𝑣), if 𝑝 > 𝑟𝑎𝑛𝑑(0,1) later h 
=1, then, h=0. The re-formed info is reimbursed 
while the calculation is finalized, besides 𝑝(𝑣|ℎ) is 
distinct by computation: 

ቐ

𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣. 𝑊 + 𝑏)     

𝑝௩ᇱ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ℎ. 𝑊ఊ் + 𝑎)

𝑝ᇱ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝௩ᇱ. 𝑊 + 𝑏)

 (12) 

The calculation of 𝑊 , ∆𝑎  and ∆𝑏 are: 

ቐ

∆𝑊 = (𝑣் . 𝑝 − 𝑝௩
் , 𝑝ᇱ)/𝑛

∆𝑎 = ∑(𝑣 − 𝑝௩ᇱ)/𝑛           

∆𝑏 = ∑(𝑝 − 𝑝ᇱ)/𝑛       

 (13) 

Next, 𝑊ାଵ, 𝑎ାଵ and 𝑏ାଵ is evaluated: 

൝
𝑊ାଵ = 𝑊 + 𝑚∆𝑊ିଵ + 𝑟∆𝑊 − 𝑑𝑊

𝑎ୀଵ = 𝑎 + 𝑚. ∆𝑎ିଵ + 𝑟. ∆𝑎                  
𝑏ୀଵ = 𝑏 + 𝑚. ∆𝑏ିଵ + 𝑟. ∆𝑏                  

 

(14) 
In CD-1 energy purpose was re-determined by: 

𝐸(𝑣, ℎ) = − ∑
௩

ఙ



ఙೕ
𝑊 +,

∑
(ି௩)మ

ଶఙ
మఢ௩௦ + ∑

൫ିೕ൯
మ

ଶఙೕ
మఢ௩௦  (15) 

Once the K-step one-step, subsequently𝜎 = 1, 

𝜎 = 1 and the Eq. (12) in the process is different 
too: 

ቐ

𝑝~𝑁(𝑣. 𝑊 + 𝑎, 𝜎), ℎ = 𝑣. 𝑊 + 𝑎         

𝑝௩ᇱ = 𝑁(ℎ. 𝑊் + 𝑏, 𝜎), 𝑣ᇱ = ℎ. 𝑊் + 𝑏

𝑝ᇱ~𝑁(𝑣ᇱ. 𝑊 + 𝑎, 𝜎), ℎᇱ = 𝑣ᇱ. 𝑊 + 𝑎

 

(16) 
While Eq. (13) transformed to: 

ቐ

∆𝑊 = (𝑣் . ℎ − 𝑣ᇱ் . 𝑝ᇱ)/𝑛

∆𝑎 = ∑(𝑣 − 𝑣′)/𝑛             

∆𝑏 = ∑(ℎ − ℎ′)/𝑛             

 (17) 

(3) Constructing DBN: Linking the RBM layer is the 
first step in building the DBN approach. Then, to fix 
the hybrid data fusion issue, the HDBN method 
would be built. 
3.4.1. Hyperparameter Optimization 
To maximise performance while minimising false 
positives and negatives, hyperparameter 
optimisation seeks to discover the ideal 
configuration of hyperparameters for models 
employed in intrusion detection systems [26]. 
Strengthening network security and guaranteeing 
prompt responses to developing threats can be 
achieved by methodically adjusting hyperparameters 

to construct IDS models that are more accurate and 
robust. 
A). Adjacent Position Decision Strategy 
To differentiate between the area close to the ideal 
solution and the area further away, the basic 
dragonfly algorithm [27] uses a radius. Solutions in 
the second range are of lower quality compared to 
those in the effective radius range. At this stage, the 
three processes of formation, update the current 
location of each individual if there are neighbouring 
individuals. Having nearby individuals that aren't 
easily distinguishable lowers solution quality, 
especially if their positions don't positively impact 
the current situation. As a result, the position updates 
of nearby individuals outside the radius range now 
include a judgement condition. 
∆𝑋௧ାଵ =

൜
𝜔∆𝑋௧ + 𝑟𝑎𝑛𝑑(𝐴 + 𝐶 + 𝑆), 𝑖𝑓 𝑓𝑖𝑡 ≥ 𝑛𝑒𝑖𝑔ℎ_𝑓𝑖𝑡

𝜔∆𝑋௧ + 𝑟𝑎𝑛𝑑(𝐹 + 𝐸 + 𝑆)   𝑒𝑙𝑠𝑒 𝑓𝑖𝑡 < 𝑛𝑒𝑖𝑔ℎ_𝑓𝑖𝑡
 

(18) 
The fitness value of the next dragonfly is denoted by 
neigh_ f it, and f it stands for the individual 
dragonfly in this case. Even when the neighbouring 
position is superior, the neighbouring solution still 
has the most impact on the position update. If things 
are looking up, though, it's important to think about 
foraging, collision avoidance, and adversary 
avoidance behaviours all at once to hone in on the 
best possible person. As a result, the enhanced 
position update formula is more thorough than the 
original single formula, which stops individual 
dragonflies from congregating at pointless locations. 
B) Whale Optimization Algorithm Fusion 
Strategy 
Many different algorithms exist, and they all have 
their own pros and cons. Lots of studies have shown 
that DA works better for worldwide searches than 
for regional ones. Several suggestions for improving 
the algorithm's accuracy when mining on a lesser 
scale have been put forward by researchers. Adding 
a method with strong local development capabilities 
would be a good move for the dragonfly algorithm. 
In this work, the whale method was designed as an 
upgrade to the dragonfly algorithm [28].  
Directly utilising the spiral whale optimisation 
algorithm, the dragonfly swiftly reaches the optimal 
position. While this procedure can enhance 
convergence speed, it also introduces the likelihood 
of local extremes. A probabilistic adaptive threshold 
and a location update technique selected range 
ensured the execution of attack during the local 
progress stage. You may get the adaptive likelihood 
threshold's appearance here. 

𝑝 = 1 − log 2 ቀ1 +
௧

୫ୟ୶ _௧
ቁ (19) 
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p falls in a nonlinear fashion, first falling fast at the 
algorithm's outset and then slowly slowing down as 
t grows. 
There is still a high probability threshold p during 
the global exploration stage.  
When p ≥ 0.5, 

𝐽 = (2𝑟ଵ − 1) ቀ2 −
ଶ௧

୫ୟ୶ _୧୲ୣ୰
ቁ (20) 

𝑋௧ାଵ =

൜
𝜔𝑋௧ + [(𝑠𝑆 + 𝑎𝐴 + 𝑐𝐶 + 𝑓𝐹 + 𝑒𝐸) + 𝐷𝑖𝑠𝑡]. 𝐽,           𝑖𝑓 |𝐽| ≥ 1

𝜔𝑋ା + [(𝑠𝑆 + 𝑎𝐴 + 𝑐𝐶 + 𝑓𝐹 + 𝑒𝐸) + 𝐷𝑖𝑠𝑡]. 𝐽,   𝑒𝑙𝑠𝑒|𝐽| < 0.5
 

(21) 
where r1 is a arbitrary sum in [0, 1]. When limit |𝐽| 
≥ 1, Based on the prior creation of individual 
positions, which is impacted by five behaviours 
besides the best solution, the individual's position is 
updated. In the global exploration period, the 
algorithm searches swiftly. When parameter |𝐽| < 
0.5, The individual dragonfly considers five 
behaviours and the best solution as it searches near 
the solution. The local development stage is reached 
later on by the algorithm. Assuming p is less than 0.5 
before 

𝑋௧ାଵ = 𝜔𝑋ା + 𝐷𝑖𝑠𝑡. 𝑒. cos (2𝜋𝑙) (22) 
As the method is evolved close to the optimal 
solution site, the position is updated in accordance 
with the attack of the whale procedure. 
C) Optimal Position Perturbation Strategy 

Traditional dragonfly algorithms handle the 
issue of potential convergence to local extremes by 
updating the worst-case individual position beyond 
without neighbouring solutions using Levy flying. 
But we don't even think about the best-case scenario. 
So, when the algorithm stops updating the position 
and iteration stops, the global optimal position is 
disturbed by introducing the Cauchy mutation. 

𝑓(𝑥) =
ଵ

గ(௫మାଵ)
, −∞ < 𝑥 < ∞ (23) 

 
4. RESULTS AND DISCUSSION 
The trials are conducted on a PC with an Intel Core 
i5-7200 CPU, 8 GB of RAM, besides a processing 
speed of 2.7 GHz. By utilising a specialised User 
Interface (UI) and Jupyter Notebook (Python 3.7) 
Environment, the operations can be executed on 
Windows 10, a 64-bit operating system. 
4.1. Validation Analysis of Proposed Feature 
Selection classical  

Figure 3 presents the comparative study of 
projected MGOA classical with existing techniques 
in terms of diverse metrics.  

 
Figure 3: Visual Representation of proposed feature 
selection 
 
In Figure 3 above, a visual illustration of the 
proposed feature selection is presented. In the 
analysis, the MGOA technique achieved an accuracy 
of 96.67%, a precision of 96.7%, a recall of 96.64%, 
and an F-score of 96.67%. The AFSOA technique 
achieved an accuracy of 95.98%, a precision of 
95.64%, a recall of 95.54%, and an F-score of 
95.59%. The GWO technique achieved an accuracy 
of 94.29%, a precision of 93.26%, a recall of 
95.25%, and an F-score of 93.25%. Lastly, the PSO 
technique achieved an accuracy of 93.27%, a 
precision of 92.27%, a recall of 93.24%, and an F-
score of 92.25%. 
4.2. Validation Analysis of Proposed Classifier 
Figure 4 mentions the graphical comparison of 
anticipated classifier with existing techniques in 
terms of unlike metrics.  

 
Figure 4: Relative Study of Proposed with Existing 
Techniques 
Figure 4 signifies the comparative study of the 
anticipated techniques with existing techniques. In 
the study, the DBN technique achieved an accuracy 
of 98.73%, a precision of 97.72%, a recall of 
98.72%, and an F-score of 97.72%. The AE 
technique achieved an accuracy of 97.80%, a 
precision of 96.80%, a recall of 96.78%, and an F-
score of 96.79%. The XGBoost technique achieved 
an accuracy of 96.97%, a precision of 94.07%, a 
recall of 95.97%, and an F-score of 95.02%. Lastly, 
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the ELM technique achieved an accuracy of 95.03%, 
a precision of 93.15%, a recall of 93.03%, and an F-
score of 94.09%. 
 
Table 1 Comparative analysis of proposed model 
with existing techniques 

Method Accuracy 
GA-CNN (Li et al. 
[17]) 

96.2% 

ICSRUN-KNN (Yuan 
et al. [18]) 

98.3% 

IDS-INT (Ullah et al. 
[20]) 

97.5% 

Proposed MGO-DBN 98.9% 

    Proposed MGO-DBN achieves the highest 
accuracy (98.9%), outperforming all other methods. 
    ICSRUN-KNN (98.3%) is the second-best, 
showing strong classification ability.IDS-INT 
(97.5%) provides competitive results but is still 
lower than the proposed model. 
    GA-CNN (96.2%) lags behind, indicating its 
relative inefficiency for this task. The Proposed 
MGO-DBN model demonstrates superior accuracy 
(98.9%), surpassing traditional methods like GA-
CNN, ICSRUN-KNN, and IDS-INT. This suggests 
that the MGO-DBN approach effectively enhances 
feature representation and classification 
performance, making it a more robust solution. 
 
5. CONCLUSION AND FUTURE WORK 
 
Our study introduced a novel hybrid approach for 
efficient and accurate intrusion detection in IoT 
networks, addressing key challenges such as 
inefficient feature selection, high false positives, and 
computational overhead. We leveraged the 
Mountain Gazelle Optimizer Algorithm (MGOA) 
for optimal feature selection, reducing 
dimensionality while retaining critical attack-related 
features. Using the CICIDS2017 benchmark dataset, 
we developed a Deep Belief Network (DBN)-based 
classifier, fine-tuned with the Hybrid Dragonfly-
Whale Optimization Algorithm (HDFOA-WOA) to 
improve detection accuracy and model convergence. 
Our comparative analysis against four state-of-the-
art machine learning methods (CNN, LSTM, KNN, 
and Autoencoders) demonstrated the superiority of 
our approach, achieving an accuracy of 98.9%, 

outperforming traditional IDS models. The hybrid 
optimization strategy ensured effective 
hyperparameter tuning, minimizing local optima 
issues and enhancing the generalization ability of the 
IDS model. Additionally, a k-fold cross-validation 
strategy was employed to ensure robust evaluation 
and model reliability. The findings of this research 
have significant real-world implications for 
cybersecurity in IoT environments, providing a 
scalable and efficient IDS model capable of 
detecting evolving network threats with high 
precision and low false positive rates. Future work 
will focus on real-time implementation in resource-
constrained IoT devices, lightweight model 
optimization for edge computing, and explainable AI 
techniques for enhanced interpretability in 
cybersecurity applications. 
 
Our future work will focus on developing a graphical 
user interface (GUI) for use by cybersecurity 
professionals, aiming to enhance the practicality and 
accessibility of our proposed model. We also plan to 
further refine our model to reduce computational 
complexity, improving its efficiency and scalability 
in real-world applications. Additionally, exploring 
the integration of explainable AI techniques will be 
a priority to provide better insights into the model's 
decision-making process. 
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