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ABSTRACT 

 
The classification of mosquito species is essential for the monitoring of the transmission of mosquito-borne 
diseases, including malaria, dengue, and Zika. This investigation introduces a deep learning-based 
methodology that employs the YOLOv5 framework to accurately identify mosquito species from images. 
The model obtained an accuracy of 98% after being trained on a dataset that included three species: Aedes, 
Anopheles, and Culex. The method utilizes CSPDarknet53 for feature extraction and PANet for feature 
aggregation, followed by YOLOv5 for final classification. This system provides a reliable solution for the 
automated identification of mosquito species, aiding in the prevention of diseases and the monitoring of 
real-time conditions. The precision, recall, and F1-score all exceed 97%. Furthermore, the model's ability to 
rapidly process images is facilitated by the use of YOLOv5, making it appropriate for integration with 
mobile or edge devices for field-based applications. The rapid identification of mosquito species in a 
variety of environmental conditions is made possible by the high accuracy and efficiency of this approach, 
which could potentially contribute health authorities in the implementation of timely and targeted 
interventions. This framework can also be developed to include additional mosquito species or to deal with 
future datasets, thereby increasing its relevance in the global control of mosquito-borne diseases. 

Keywords: Aedes, Anopheles, and Culex, YOLOv5, PANet, CSPDarknet53. 
 
1. INTRODUCTION  
 

Mosquito-borne diseases, including malaria, 
dengue, and Zika, present significant public health 
challenges on a global scale, affecting millions of 
individuals annually and placing a strain on 
healthcare systems. The effective control and 
prevention of these diseases require the timely and 
precise identification of mosquito species, as the 
capacity of each species to transmit pathogens 
varies. Traditional mosquito identification methods, 
which frequently involve manual examination by 
entomologists, are labor-intensive, time-consuming, 

and prone to errors, particularly when implemented 
on a large scale. The global public health is 
significantly threatened by mosquito-borne 
diseases, which are responsible for over one million 
deaths yearly. Specific mosquito species 
significantly influence the transmission of diseases 
such as malaria, dengue, Zika, and chikungunya. It 
is imperative to identify the species responsible for 
an increase of diseases in order to predict its spread 
and implement effective control measures. 
Entomologists manually identify mosquito species, 
a procedure that is labor-intensive and time-
consuming, and is prone to human error. The rapid 
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identification of potential mosquito species is now 
possible through the analysis of images by 
automatic classification systems, which have been 
made possible by recent developments in computer 
vision and deep learning. This paper suggests a 
mosquito species classification system that is based 
on deep learning. The system will utilize YOLOv5, 
CSPDarknet53 as a backbone, and PANet for 
feature aggregation.  

The model is trained on images of three mosquito 
species—Aedes, Anopheles, and Culex—and 
subsequently assessed on a collection of 2,900 
images. The primary objective is to facilitate the 
control of mosquito-borne diseases by achieving a 
high-accuracy, real-time species classification. 
Recent advancements in deep learning have created 
new opportunities for the automation of species 
classification, providing a more dependable and 
improved method. In this investigation, we suggest 
a deep learning-based framework that employs the 
YOLOv5 architecture to accurately classify 
mosquito species from image data. Our 
methodology concentrates on three medically 
significant species—Aedes, Anopheles, and 
Culex—that serve as primary vectors for a variety 
of infectious diseases. The YOLOv5 model 
efficiently distinguishes these species with high 
accuracy by utilising the powerful CSPDarknet53 
for feature extraction and PANet for feature 
aggregation. The rapid implementation of 
preventive measures is facilitated by this automated 
classification method, which not only enhances 
surveillance efforts but also supports real-time 
monitoring. 

This study illustrates the capability of deep 
learning for identifying mosquito species, offering a 
crucial resource for epidemiologists and public 
health officials in combating mosquito-borne 
illnesses which is shown in below Fig 1. 

 

Fig. 1. Important differences in mosquito larvae 
morphology: Aedes and Culex sp. [1],[2]. 

Contributions: The contributions of this study are 
as follows: 
1. Automated Mosquito Species Classification: 

We established a deep learning framework 
utilising the YOLOv5 architecture to classify 
mosquito species from photos, offering a 
scalable approach for the automated 
identification of disease-vectoring mosquitoes. 
This method primarily focusses on identifying 
Aedes, Anopheles, and Culex species, each of 
which is crucial in the transmission of several 
mosquito-borne diseases. 

2. Exceptional Accuracy and Real-Time 
Functionality: Utilising CSPDarknet53 for 
feature extraction and PANet for feature 
aggregation, our model attained superior 
classification accuracy, with precision, recall, 
and F1-scores over 97%. The use of YOLOv5 
guarantees that this system is both 
exceptionally precise and rapid, rendering it 
appropriate for real-time surveillance 
applications. 

3. Field-Ready System for Public Health 
Surveillance: The proposed framework is 
designed for deployment on mobile or edge 
devices, facilitating on-site surveillance in 
various contexts. This feature improves the 
accessibility of mosquito monitoring 
technologies, aiding local and global health 
authorities in their endeavours to prevent and 
manage mosquito-borne illness epidemics. 
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4. Scalable and Extensible Model: Our model can 
be augmented to include other mosquito 
species or modified for various datasets, hence 
increasing its applicability for a broader range 
of epidemiological purposes. This adaptability 
establishes the framework as a multifaceted 
tool in the continuous battle against mosquito-
borne illnesses, facilitating predictive 
modelling and vector control strategies. 

Research gap: Despite the identification of 
mosquito species is crucial to controlling the 
transmission of mosquito-borne diseases, current 
methodologies encounter several limitations. 
Conventional methods depend significantly on 
manual analysis by entomologists, which is 
laborious, time-consuming, and susceptible to 
human error, particularly in extensive surveillance 
efforts. Despite recent advancements in deep 
learning and computer vision presenting interesting 
alternatives, limited research has concentrated on 
high-accuracy, real-time classification specifically 
for the mosquito species implicated in severe 
illnesses. Moreover, many current models exhibit 
insufficient adaptability for implementation in 
varied field circumstances or on mobile and edge 
devices, hence constraining their practical utility in 
real-time monitoring and intervention efforts. 
Current research frequently emphasizes species 
identification in controlled settings, while ignoring 
performance in diverse environmental conditions, 
including varying lighting and image quality 
detected in environments of nature. This paper 
proposes a robust, scalable deep learning system for 
the automated, accurate, and speedy identification 
of crucial mosquito species, thereby enhancing 
disease surveillance and control. 
Motivation: This study is motivated by the 
pressing need to enhance public health responses to 
mosquito-borne diseases, which remain a 
significant worldwide health threat. Diseases 
including malaria, dengue, Zika, and chikungunya 
result in millions of fatalities annually, particularly 
in tropical and subtropical areas where mosquito 
populations thrive. Conventional methods for 
identifying mosquito species are resource-intensive 
and constrained in speed and scalability, hindering 
health authorities' capacity to promptly address 
epidemics. Progress in deep learning and computer 
vision presents a chance to revolutionize this 
procedure through the swift, automated 
identification of disease-carrying mosquito species. 
Developing a precise, real-time classification 
system for mosquito species such as Aedes, 
Anopheles, and Culex can greatly improve 

surveillance initiatives. This method can enhance 
public health systems by providing actionable 
insights, enabling more effective prediction and 
mitigation of disease spread. This work is further 
motivated by the creation of a scalable, adaptable 
model that can be used in many field situations, 
enabling health personnel to utilize advanced 
technology for early detection, thereby preventing 
outbreaks and saving lives which is shown in below 
Fig 2. 
 

 
 

Fig. 2. Key distinctions between Aedes species (Ae. 
aegypti and Ae. albopictus) and Culex in head, thorax, 

and abdomen [3], [2]. 

2. LITERATURE SURVEY 

Several investigations have aided in the 
development of mosquito classification systems. 
Conventional techniques, including manual 
morphological classification, have been employed 
for decades but are progressively being supplanted 
by computerized methodologies. Diverse machine 
learning approaches, such as ensemble learning, 
have been employed to classify mosquito larvae; 
however, these systems frequently necessitate 
substantial labelled data and considerable 
processing resources. CNN-based models have been 
utilized for species classification; nevertheless, their 
efficacy is significantly influenced by the quality of 
the image collection. Recent research emphasizes 
deep learning architectures, revealing that models 
trained on wing images typically surpass those 
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trained on body images, underscoring the need of 
optimizing input data for model training.  

Mosquito-borne diseases provide a considerable 
worldwide health threat, especially in tropical and 
subtropical areas [4]. However, global change 
phenomena, like climate change and heightened 
international trade, have enabled the proliferation of 
mosquitoes and their related illnesses into areas that 
were previously unexposed. This underscores the 
necessity for efficient vector surveillance systems 
[5]. Therefore, precise species identification is 
essential due to the significant differences in 
medical and veterinary importance among mosquito 
species. This is influenced by species-specific 
variations in vector capacity, such as ecology, 
behaviour, and vector competence. However, 
conventional morphological identification 
techniques and molecular testing are expensive and 
require specialized expertise [6]. These sections 
provide a starting point, and you can refine them to 
align more closely with your specific research 
objectives. 

2.1 Review on Deep Learning for Mosquito 
Larvae Classification in Dengue Prevention 
Dengue fever is an endemic disease impacting 
certain regions, particularly in the Americas, where 
it accounted for over three million cases in 2022. 
The primary vector responsible for spreading 
Dengue is the Aedes aegypti mosquito, making the 
control of its breeding sites a critical measure for 
disease prevention. However, identifying breeding 
sites remains a substantial challenge, largely 
because citizens often lack the ability to distinguish 
Ae. aegypti larvae from other mosquito species, 
such as Aedes albopictus and Culex species 
(Martins et al., 2023)[7]. 
To address this issue, recent research has focused 
on leveraging deep learning to create a mobile 
application capable of classifying mosquito species 
from photographs of larvae. A deep learning model 
designed for this purpose could empower citizens 
and health professionals to identify mosquito larvae 
effectively, thereby enhancing community-level 
efforts in controlling mosquito populations and 
reducing Dengue transmission. Most existing 
models for mosquito classification focus on 
differentiating between genera, specifically Aedes 
versus non-Aedes mosquitoes. However, they often 
lack the granularity needed to identify specific 
species within the Aedes genus and tend to show 
low accuracy (Martins et al., 2023). This limitation 
creates an unmet need for a model that can 
accurately classify between Ae. aegypti, Ae. 

albopictus, and Culex larvae. Martins et al. (2023) 
proposed an image classification model aimed at 
addressing this gap by comparing the performance 
of several well-known deep learning architectures, 
namely MobileNetV2, ResNet18, ResNet34, 
EfficientNet_B0, and EfficientNet_Lite0. The study 
achieved the highest classification accuracy with 
EfficientNet_Lite0, which reached a validation 
accuracy of 97.5% and a testing accuracy of 90%. 
This accuracy level, while not perfect, is deemed 
acceptable given the potential public health risks 
associated with misclassification in a mobile 
application context. EfficientNet_Lite0's 
performance demonstrates that a mobile-compatible 
deep learning model can differentiate between 
closely related mosquito species, including within 
the Aedes genus, thereby presenting a viable tool 
for aiding Dengue prevention efforts. 
In summary, Martins et al.'s (2023) research 
indicates the potential for deploying mobile deep 
learning applications in public health contexts 
where species-level identification can contribute 
directly to disease prevention. This study 
contributes valuable insights into model selection 
and optimization for real-time, field-based species 
identification, paving the way for further 
innovations in mosquito-borne disease control. 
 
2.2 A Review on Deep Learning Approaches for 

Aedes Mosquito Surveillance 
Dengue, Chikungunya, and Zika viruses pose 
significant public health threats in tropical and 
subtropical regions globally, with the Aedes aegypti 
and Aedes albopictus mosquitoes acting as primary 
vectors for these diseases (Arista-Jalife et al., 
2020). The World Health Organization has reported 
that nearly one-third of the global population is at 
risk of contracting these viral infections through a 
single mosquito bite. Current limitations in 
combating these diseases are exacerbated by the 
lack of vaccines and direct treatments that 
effectively curb these viral infections, which can 
lead to severe complications such as joint pain, 
hemorrhaging, neurological damage in unborn 
children, and even death. Consequently, vector 
surveillance, control, and suppression remain 
critical for disease prevention (Arista-Jalife et al., 
2020). To address the need for effective mosquito 
surveillance, Arista-Jalife et al. (2020)[8] proposed 
a deep learning-based solution capable of 
identifying Aedes aegypti and Aedes albopictus 
mosquitoes at the larval stage. This stage is 
particularly strategic for intervention, as larvae are 
confined to water bodies, are non-disease-
transmitting, and can be safely eliminated to 



 Journal of Theoretical and Applied Information Technology 
28th February 2025. Vol.103. No.4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
1351 

 

prevent future transmission. The researchers 
developed a deep neural network (DNN) that 
recognizes Aedes larvae samples with an accuracy 
of 94.19%, outperforming other state-of-the-art 
automated methods. Beyond accurate identification, 
this DNN model can automatically crop the region 
of interest (ROI) with a precision of 92.85%, 
enabling efficient and autonomous classification of 
larvae samples as either Aedes-positive or Aedes-
negative. This process requires no human 
intervention and operates in less than a second, 
providing substantial improvements in response 
times for vector control—shifting from days to 
mere seconds. Additionally, the proposed system 
incorporates a hardware design that is both cost-
effective and suited to diverse environments, 
including isolated, underdeveloped, and rural areas. 
This feature enhances its applicability in regions 
with limited resources, making it a valuable tool for 
large-scale mosquito surveillance and control. 
Arista-Jalife et al.’s (2020) approach exemplifies 
the potential of deep learning in accelerating and 
refining vector control efforts. By integrating 
automated image processing and efficient hardware, 
this research contributes to scalable, rapid-response 
solutions for mosquito-borne disease prevention, 
particularly in high-risk regions. 
 
2.3 A Review on Deep Learning Models for 

Aedes Larvae Classification in Malaysia 
In Malaysia, Dengue fever has reached endemic 
levels, presenting both health and economic 
challenges. The cost of controlling mosquito 
habitats is considerable, making community-driven 
information and engagement essential to ensure 
effective intervention efforts. However, identifying 
Aedes larvae without expert guidance remains a 
challenge due to the need for specific knowledge of 
larvae characteristics (Asmai et al., 2019). This 
scenario underscores the role of deep learning in 
supporting accurate mosquito larvae classification, 
especially as a means of empowering communities 
to participate in vector surveillance. The study 
conducted by Asmai et al. (2019)[9] explores deep 
learning models, specifically Convolutional Neural 
Networks (CNNs), to determine the most effective 
model for classifying Aedes mosquito larvae. By 
examining larvae characteristics and evaluating 
various CNN models, this research aims to identify 
a model suitable for use in mobile and web 
applications, thus providing a practical tool for non-
expert users. The evaluation focuses on three 
performance metrics—accuracy, log-loss, and 
AUC-ROC—while also considering broader 
performance categories: Accuracy Score, Loss 

Score, File Size Score, and Training Time Score. 
These comprehensive metrics are essential in 
determining an optimal balance between model 
accuracy and efficiency, which is crucial for 
deploying models in resource-constrained 
environments such as mobile platforms. The study 
concludes that ResNet50 outperforms other CNN 
architectures in accurately classifying Aedes larvae 
species, balancing high classification accuracy with 
manageable model size and training efficiency. 
This finding highlights ResNet50 as the most viable 
model for practical implementation in a web or 
mobile application, making it a promising tool for 
community-level mosquito surveillance and 
Dengue prevention. 
In summary, Asmai et al.’s (2019) research 
provides a valuable framework for selecting CNN 
models in mosquito larvae classification, 
emphasizing performance efficiency for mobile 
deployment. This work contributes to the broader 
field of public health by enabling scalable, 
community-accessible solutions for controlling 
Aedes mosquito populations, thereby aiding efforts 
to curb Dengue transmission in Malaysia. 
 
2.4 A Review on Deep Learning for Malaria 

Vector and Parasite Detection 
Malaria remains a major global health challenge, 
transmitted primarily through bites from infected 
mosquitoes. Effective malaria control requires not 
only precise identification of mosquito vectors but 
also accurate detection of malaria parasites in blood 
samples (Hasikin, 2023). To address these 
requirements, Khairunnisa Hasikin (2023)[10] 
presents a study that leverages deep learning 
techniques to enhance malaria detection through 
two distinct applications: vector identification and 
parasite detection in blood smears. 
The first part of Hasikin’s study focuses on 
developing a deep learning-based object detection 
model that identifies mosquito species known to be 
malaria vectors, specifically Aedes, Culex, and 
Anopheles. The automated model uses neural 
network algorithms to recognize these vectors 
accurately, a significant step forward in vector 
surveillance and malaria prevention efforts. 
The second case study addresses malaria parasite 
detection in blood smear images. Using 
microscopic images, Hasikin (2023) developed and 
compared four deep learning models designed to 
classify four different human malaria parasite 
species. By evaluating these models on 
performance metrics relevant to medical image 
classification, the research provides insights into 
optimal model choices for accurately identifying 
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the presence and type of malaria parasites in blood 
samples. 
Overall, Hasikin’s research demonstrates the 
potential of deep learning in automating vector 
identification and malaria diagnosis processes. By 
focusing on both mosquito vectors and blood 
parasite detection, this study presents a 
comprehensive approach to malaria prevention, 
combining image recognition with neural network 
capabilities to support large-scale, precise malaria 
control efforts. 
 
2.5 A Review on Deep Learning for Malaria-

Infected Cell Detection 
Malaria remains a significant global health issue, 
with an estimated 241 million infections and 
627,000 deaths recorded worldwide in 2020. 
Malaria diagnosis often requires labor-intensive 
examination of blood films, where trained 
microscopists manually count parasites and infected 
red blood cells. In recent years, deep learning has 
shown promise in automating this process through 
cell detection in blood smear images. However, 
traditional methods of red blood cell segmentation 
are complex and typically require extensive human 
intervention, limiting scalability. To address these 
challenges, Sukumarran (2022)[11] investigates the 
use of the YOLOv4 object detection model for 
malaria diagnosis, focusing on detecting red blood 
cells infected by different malaria species in thin 
blood smear images. This study emphasizes using 
bounded cell images instead of fully segmented red 
blood cells, allowing for reduced preprocessing and 
potentially higher detection efficiency. YOLOv4, a 
real-time object detection model, was evaluated on 
the MP-IDB malaria dataset, encompassing images 
with various malaria species and infection stages, 
each displaying unique morphological traits. The 
study aimed to assess whether YOLOv4 could 
detect cells infected with malaria parasites across 
different species and infection stages, despite 
morphological differences. To optimize the 
YOLOv4 model’s performance, the dataset was 
partitioned into training and testing sets using 90/10 
and 80/20 splits, with and without data 
augmentation. Among the models trained, "Model 
4" with an 80/20 partition and data augmentation 
achieved the best results, obtaining a mean Average 
Precision (mAP) of 93.43%. This result 
demonstrates YOLOv4’s effectiveness in 
accurately detecting malaria-infected cells despite 
cell variation, offering a scalable and automated 
approach to malaria diagnosis. Sukumarran’s 
(2022) research highlights YOLOv4’s potential in 
reducing diagnostic workloads by automating 

infected cell detection, providing a reliable 
alternative to manual microscopy in malaria-
endemic regions. By integrating automated cell 
cropping and detection, this study contributes to 
advancing malaria diagnosis through deep learning, 
supporting faster, more accessible malaria detection 
in resource-limited settings. 
 
2.6 A Review on Automated Malaria Diagnosis 
Using Computer Vision and Machine Learning 
Malaria, a life-threatening disease caused by 
Plasmodium parasites, predominantly Plasmodium 
falciparum, poses severe health risks worldwide. 
This parasite, transmitted by the Anopheles 
mosquito, leads to high morbidity and mortality, 
particularly in regions with limited healthcare 
resources. Traditional malaria diagnosis relies on 
microscopic examination of Giemsa-stained blood 
smears to identify and quantify parasites, a process 
that is both time-consuming and requires skilled 
microscopists. Addressing these limitations, 
Kudisthalert (2020)[12] proposes an automated 
diagnostic framework capable of performing 
malaria diagnosis remotely and efficiently, 
potentially aiding resource-constrained settings 
with high diagnostic accuracy and low 
computational demands. The framework introduced 
by Kudisthalert consists of two main modules: (1) 
automated red blood cell counting, which uses 
computer vision techniques like the Hough 
Transform, and (2) parasite life-cycle stage 
classification, which employs various machine 
learning algorithms. To enhance the classification 
process, multiple classifiers—including Multilayer 
Perceptron (MLP), Linear Discriminant Analysis 
(LDA), Support Vector Machine (SVM), and 
Weighted Similarity Extreme Learning Machine 
(WELM)—were tested. The system integrates both 
hand-crafted features (e.g., color) and deep-learned 
features (from AlexNet_FC7) to improve 
performance, leveraging the strengths of both 
feature types in the classification task. 
Experimental results demonstrated high 
effectiveness, with red blood cell counting 
achieving 97.94% accuracy, life-cycle stage 
classification achieving 98.12%, and the overall 
system achieving 96.18% accuracy, with WELM in 
conjunction with deep-learned and hand-crafted 
features showing the best performance. These 
results underscore the feasibility of using a hybrid 
feature approach to boost classification accuracy, 
particularly when distinguishing between parasite 
stages. Kudisthalert’s study highlights the potential 
of automated malaria diagnosis systems in 
expediting and democratizing access to accurate 
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malaria detection. By employing a combination of 
computer vision and machine learning techniques, 
this approach contributes to scalable, efficient, and 
accessible malaria diagnosis, helping mitigate the 
burden on traditional microscopy and skilled 
personnel. 

2.2.2 Characteristics of Different Types of 
Mosquitoes 

Here is a Table 1 summarizing the characteristics 
of different types of mosquitoes, particularly those 
that are significant for public health due to their 
role as vectors for diseases such as dengue, 
malaria, and Zika: 

Mosquito 
Species 

Scientific Name Common 
Diseases 

Vector Role Habitat Distinctive 
Features 

Aedes aegypti Aedes aegypti Dengue, Zika, 
Chikungunya 

Primary vector 
for dengue, Zika, 
and chikungunya 

Urban areas, 
around water 
storage 
containers 

White markings 
on legs, a lyre-
shaped pattern on 
the thorax, active 
during the day, 
prefers breeding in 
man-made 
containers 

Aedes 
albopictus 

Aedes 
albopictus 

Dengue, Zika, 
Chikungunya 

Secondary vector 
for dengue, Zika, 
and chikungunya 

Urban and 
suburban areas, 
containers, tree 
holes 

White markings 
on legs, silvery-
white stripe on the 
thorax, aggressive, 
bites during the 
day and night 

Anopheles 
gambiae 

Anopheles 
gambiae 

Malaria Major vector for 
malaria, 
especially in sub-
Saharan Africa 

Freshwater 
bodies, stagnant 
pools, and 
swamps 

Dark spots on 
wings, long 
slender body, 
prefers night-time 
feeding on humans 

Anopheles 
stephensi 

Anopheles 
stephensi 

Malaria Primary vector 
for urban malaria 
in South Asia and 
parts of the 
Middle East 

Urban and peri-
urban areas, 
especially in 
water storage 
sites 

White markings 
on the legs, 
distinctively 
shaped wings, 
feeds at night 

Culex pipiens Culex pipiens West Nile 
Virus, 
Encephalitis, 
Filariasis 

Vector for West 
Nile virus, 
encephalitis, and 
filariasis 

Stagnant water, 
ditches, sewage 
pools, and 
containers 

Grayish in color, 
dark markings on 
the body, active at 
night, prefers 
cooler 
environments 

Culex 
quinquefasciatus 

Culex 
quinquefasciatus 

Filariasis, West 
Nile Virus, 
Encephalitis 

Common vector 
for filariasis and 
West Nile virus 

Urban areas, 
particularly in 
polluted water 
and stagnant 
environments 

Similar to Culex 
pipiens, with more 
robust body size, 
and active 
primarily at night 

Aedes vittatus Aedes vittatus Yellow Fever, 
Dengue, 
Chikungunya 

Vector for yellow 
fever, dengue, 
and chikungunya 
in Africa 

Forested areas, 
urban 
environments 
near water bodies 

Similar in 
appearance to 
Aedes aegypti, 
aggressive 
daytime feeder 

 
Table 2 Pattern Characteristics of Mosquitoes, Flies and Bees 

Insect Type Species 
Example 

Body Shape Wing Patterns Color Patterns Other Distinct 
Features 

Mosquitoes Aedes aegypti, 
Anopheles 
gambiae, Culex 
pipiens 

Slender, 
elongated body, 
narrow thorax 

Wings are clear 
or slightly 
scaled, with no 
distinct patterns 
or faint veins 

Often dark or 
grayish body 
with white 
markings on 
legs, and lyre-

Long, thin legs; 
long proboscis 
(feeding tube); 
antennae are 
often long and 
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visible shaped pattern 
on the thorax in 
Aedes aegypti 

feathery; larvae 
found in water 

Flies Musca domestica 
(House Fly), 
Drosophila 
melanogaster 
(Fruit Fly) 

Small to 
medium, 
rounded or oval 
body 

Transparent or 
grayish wings 
with few veins or 
a mesh-like 
structure, often 
with a pattern of 
spots or stripes 

Typically dark or 
black with small 
yellow or 
brownish 
markings, often 
darker at the 
base of the 
wings 

Large compound 
eyes; short, 
bristly antennae; 
mouthparts 
adapted for 
sucking and 
sponging 

Bees Apis mellifera 
(Honeybee), 
Bombus 
terrestris 
(Bumblebee) 

Robust, hairy 
body with 
noticeable 
segments 

Wings are 
transparent, with 
visible veins and 
often a light-
colored fringe; 
hind wings 
smaller than 
forewings 

Yellow and black 
striped pattern 
on the abdomen, 
with some 
species having 
orange or 
brownish 
markings 

Pollen-carrying 
hairs on hind 
legs (pollen 
baskets); 
prominent 
stinger; large 
compound eyes; 
shorter, 
segmented 
antennae 

Mosquitoes generally have slender bodies with 
long, delicate legs and wings that lack complex 
patterns. Aedes mosquitoes are known for having 
white markings and a characteristic lyre-shaped 
thorax pattern. 

Flies (like house flies) tend to have a more rounded 
body with larger eyes and fewer or simpler wing 
venation patterns. Their wings may have subtle 
markings, but not as intricate as those of bees or 
mosquitoes. 

Bees are typically more robust with fuzzy, hair-
covered bodies that help them carry pollen. They 

are most distinct for their yellow and black striped 
patterns, though some species may display different 
colorations like brown or orange. 

These pattern characteristics, along with other 
physical features such as wing structure and 
mouthparts, help differentiate between mosquitoes, 
flies, and bees which is shown in below Table 1-3. 
 
 
Table 3: comparison Table for Different DL Models

Reference Classified 
Species 

Country Image Type Quantity 
of 
Images 

DL Models Performance 

(Arista-
Jalife, 
2018) [13] 

Aedes and 
Non-Aedes 

Mexico NA 570 - 91% 

(Arista-
Jalife, 
2020) [14] 

Aedes and 
Non-Aedes 

Mexico Microscope (60x zoom) 916 VGG-16, 
VGG-19 

88.50% 

(Asmai, 
2019) [15] 

Aedes and 
Non-Aedes 

Malaysia From platforms like 
Flickr.com and 
Shutterstock.com under 
the microscope 

NI VGG16, 
VGG19, 
ResNet50, 
Inception V3 

81.29%, 
87.25%, 
86.38%, 
83.50% 

(Azman, 
2020) [16] 

Aedes 
Aegypti, 
Aedes 
Albopictus, 
Anopheles, 
and Culex 

Malaysia Captured with the micro-
blips lens of a Samsung 
Smartphone 

NI MobileNetV2 64.58% 

(De Silva 
and Jayalal, 
2020) [1] 

Aedes and 
Non-Aedes 

Sri 
Lanka 

Microscope (60x zoom) 
and zoomed digital 
microscope (238 zoom) 

160 and 
238 

ResNet50 86.65% 

(Fuad et al., 
2018) [17] 

Aedes 
Aegypti and 

Malaysia NA NI - 85% 
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Non-Aedes 
(Hossain, 
2022) [18] 

Aedes and 
Non-Aedes 

Swiss Online sources and taken 
with a photo camera 
(65mm f/2.8 1-5x 
microlens) 

900 VGG16, 
VGG19, 
ResNet50, 
ResNet152, 
Inception V3 

95%, 95%, 
96%, 94%, 
88% 

(Munoz, 
2018) [19] 

Aedes, 
Culex, 
Anopheles 
or Unknown 

U.S. Cell phone camera with 
attached microscope 

NI CaffeNet, 
AlexNet 

100%, 
47.4% 

(Rajasekhar, 
2021) [20] 

Anopheles 
and Non-
Anopheles 

U.S. NA NI - NI 

(Sanchez-
Ortiz, 2017) 
[21] 

Aedes and 
Non-Aedes 

Mexico Microscope 300 AlexNet 96.80% 

(Surya, 
2022) [22] 

Aedes, 
Culex or 
Unknown 

NI Microscope from 
database: GLOBE 
Mosquito Habitat Mapper 

10,000 ViT-Base, 
CvT-13, 
ConvNeXT, 
ResNet-18 

63.74%, 
64%, 
65.63%, 
59.67% 

(Garcia et 
al., 2019) 
[23] 

Aedes and 
Non-Aedes 

Spain Microscope from 
database: GLOBE 
Mosquito Habitat Mapper 

155 DenseNet 97% 

 
3. METHODOLOGY 
3.1. Dataset Preparation 
The dataset comprises photos of three major 
mosquito species: Aedes, Anopheles, and Culex, 
each annotated with its respective species for 
supervised learning. The photos were first resized 
to provide uniform input dimensions, then 
normalized to standardize pixel values, hence 
improving model performance and stability. Data 
augmentation methods, such as random rotations, 
horizontal and vertical flipping, and minor scale 
modifications, were employed to enhance dataset 
diversity and bolster the model's generalization 
across diverse real-world contexts[24-31]. 
Furthermore, brightness and contrast modifications 
were integrated during augmentation to replicate 
diverse lighting conditions frequently experienced 
in field settings, enhancing the model's resilience to 
challenging environments. Furthermore, blurring 
and noise augmentation were employed to simulate 
the variability in real-world image quality, therefore 
enhancing the model's robustness against slight 
distortions and imperfections typical of field-
acquired photos. In instances of picture imbalance, 
when one species had a greater number of images 
than others, data augmentation was strategically 
employed for under-represented classes to achieve a 
balanced dataset, hence reducing the potential for 
model bias towards any species. Each image was 
carefully evaluated for quality, eliminating low-
resolution or unclear samples that might 
compromise training results. Finally, metadata 
tagging was implemented to facilitate future 

flexibility, enabling the incorporation of 
supplementary features such as geographic 
location, capture time, or mosquito age in further 
model modifications if necessary. This thorough 
dataset preparation technique improves the model's 
robustness and establishes a scalable and adaptable 
foundation for current and future mosquito species 
identification efforts which is shown in below Fig 
3. 
3.2. Dataset Explanation 
3.2.1. Dataset Structure: 
train_images_dir: Directory path for training 
images (located in dataset/images2/train).  
train_labels_dir: Directory path for the labels of 
training images (located in dataset/labels2/train).  
val_images_dir: Directory path for validation 
images (included in dataset/images2/val).  
val_labels_dir: Directory path for validation image 
labels (located in dataset/labels2/val). 
 
3.3. Image Transformations: 
Resize: All photos are downsized to 224x224 
pixels, which is a common dimension for CNN 
models.  
ToTensor: Transforms the PIL picture into a tensor 
format suitable for PyTorch.  
Labels: Each image has a corresponding label 
file  in which each line signifies a class label, 
indicating the type of mosquito or object.  
The label files are assumed to contain only class 
indices, making it a simple multiclass classification 
task. 
 3.4. Mosquito Dataset Class: 
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This custom dataset class (MosquitoDataset) 
inherits from torch.utils.data.Dataset and handles 
loading images and their corresponding labels. 
The _len_ method returns the total number of 
images, and the _getitem_ method fetches an image 
and its label by index. 
 
3.5. Model Architecture 
The suggested approach enhances mosquito species 
categorization through the utilization of a 
YOLOv5-based deep learning model. YOLOv5 is 
recognized for its real-time object identification 
abilities, enabling efficient classification of 
mosquito species through image inputs. The 
backbone employs CSPDarknet53 for feature 
extraction, whilst PANet manages feature 
aggregation, guaranteeing precise identification of 
both body and wing features. This method mitigates 
certain drawbacks of current models, like prolonged 
classification durations and diminished accuracy in 
complex situations, by utilising the robust object 
recognition and classification capabilities of 
YOLOv5. The suggested model architecture is a 
deep learning framework optimised for efficient 
and precise object detection. The model initiates 
with an input image, which is processed through the 
backbone network for feature extraction. 
CSPDarknet53, an enhanced iteration of Darknet-
53, serves as the backbone. CSPDarknet53 is 
designed for intricate feature extraction by dividing 
feature maps into distinct stages, hence minimising 
processing demands while retaining critical picture 
information. The backbone produces multi-scale 
feature maps that encapsulate intricate visual 
representations, crucial for identifying diverse 
items in the scene. The feature maps are transmitted 
to the model's neck, which in this architecture is a 
Path Aggregation Network (PANet), following the 
backbone. PANet improves the backbone's feature 
maps by integrating input from several scales, 
allowing the model to more effectively identify 

objects of diverse sizes and scales. This is 
accomplished by a sequence of concatenation and 
convolution layers, wherein feature maps from 
various levels are concatenated and subsequently 
treated using convolutional layers to enhance 
feature extraction. Moreover, upsampling and 
downsampling processes modify the spatial 
resolution of feature maps, synchronizing the 
information and facilitating multi-scale feature 
integration. These layers increase the model’s 
ability to retain both fine and coarse features, 
critical for recognizing small and large objects 
alike. The computed feature maps are subsequently 
transmitted to the model's head, which is designed 
in accordance with the YOLOv5 (You Only Look 
Once version 5) architecture. The head generates 
predictions across three separate feature map scales: 
52x52, 26x26, and 13x13, each associated with 
varying spatial resolutions. By functioning at these 
diverse scales, the model may proficiently discern 
objects of varying dimensions within the image, 
ranging from minute, intricate items to larger, more 
conspicuous ones. Each scale generates several 
bounding boxes, along with confidence ratings and 
class labels, which denote the model's prediction 
regarding the existence and positioning of objects 
within the image. This multi-scale prediction 
strategy boosts the accuracy and flexibility of the 
model, making it suited for real-time applications 
where objects of varied sizes need to be recognised 
precisely and fast. This architecture integrates the 
advantages of CSPDarknet53 for effective feature 
extraction, PANet for resilient multi-scale feature 
fusion, and YOLOv5 for precise multi-scale 
prediction. Together, these components constitute a 
strong and scalable model for object detection, 
capable of processing images fast and resulting in 
high-performance detection results across varied 
object sizes and types. 
 

Fig3:  Proposed Architure of DL Models 

 



 Journal of Theoretical and Applied Information Technology 
28th February 2025. Vol.103. No.4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
1357 

 

The suggested model for mosquito classification is 
based on the robust YOLOv5 framework, which 
integrates real-time detection capabilities with high 
classification precision. The architecture is 
meticulously designed with three primary 
components to enhance performance in species-
level mosquito classification: 
CSPDarknet53 (Base Architecture): The 
backbone network, CSPDarknet53, is a 
convolutional neural network engineered for 
efficient feature extraction from input photos. This 
network is especially adept at intricate visual tasks, 
utilising a Cross-Stage Partial (CSP) architecture to 
partition feature maps into several pathways, so 
minimizing computing expenses while preserving 
critical spatial data. CSPDarknet53 captures 
intricate visual cues, allowing the model to discern 
small variations in mosquito morphology, including 
body form, wing patterns, and leg structures, which 
are essential for correct species differentiation. This 
component draws inspiration from CSPNet and 
Darknet53, which are frequently utilised as 
backbones in YOLO designs. It analyses incoming 
photos to derive hierarchical features. 
PANet (Neck): The main component of the 
architecture is a Path Aggregation Network 
(PANet), which is essential for improving the 
model's multi-scale feature aggregation capability. 
PANet facilitates the integration of feature maps 
generated by the backbone and the head, 
amalgamating information across several scales to 
preserve both intricate and broad details. This 
method enables the model to concentrate on 
differentiating subtle anatomical features crucial for 
species-level categorization. Through the 
integration of upsampling and downsampling 
layers, PANet harmonizes feature resolutions, 
guaranteeing the precise representation and 
effective amalgamation of both tiny and large 
features. This is especially crucial in mosquito 
classification, where species differences may be 
subtle and necessitate high-resolution feature 
mapping. PANet (Path Aggregation Network) 
enhances feature maps to augment spatial 
information, facilitating precise item detection and 
classification. 
YOLOv5 (Head): The architecture's core is 
founded on the YOLOv5 framework, which 
executes the concluding phases of detection and 
classification. The YOLOv5 head generates 
bounding boxes for detected mosquitoes, identifies 
their species with corresponding confidence scores, 
and offers accurate localisation of the insects inside 
the image. YOLOv5 operates on three distinct 
feature map scales—52x52, 26x26, and 13x13—

facilitating multi-scale prediction and enabling 
precise detection of mosquitoes of diverse sizes and 
orientations within the frame. This scalability is 
essential for identifying subtle yet significant 
characteristics that differentiate one species from 
another. Furthermore, YOLOv5's real-time 
processing capacity renders the model appropriate 
for field applications, where rapid and precise 
species identification is crucial. The head 
implements supplementary convolutions to 
translate the processed features into the requisite 
number of classes. 
Advanced Training Methodologies: To improve 
model performance, several training strategies are 
employed, including data augmentation (rotation, 
scaling, flipping), which diversifies the input data 
and mitigates overfitting. Furthermore, transfer 
learning is employed by initialising the model with 
pre-trained weights from general object detection 
datasets, facilitating the network's rapid adaptation 
to the goal of mosquito species classification. 
Methods like focus loss or balanced cross-entropy 
can be utilised to mitigate class imbalance, assuring 
optimal model performance despite the under-
representation of some species in the training 
dataset. 
Post-Processing and Assessment: Following 
prediction, non-maximum suppression (NMS) is 
employed to eliminate redundant bounding boxes, 
guaranteeing that each identified mosquito is 
distinctly categorised with a high-confidence 
bounding box. Model performance is assessed 
using measures such as mAP (mean Average 
Precision), precision, recall, and F1-score, with 
particular focus on high recall to maximise genuine 
positive detections, crucial in applications like 
disease vector tracking. 
This architecture aims to optimise efficiency and 
accuracy by utilising CSPDarknet53 for effective 
feature extraction, PANet for multi-scale feature 
aggregation, and YOLOv5 for accurate real-time 
classification. Collectively, these elements establish 
a very efficient framework for the identification of 
mosquito species, facilitating swift and dependable 
categorization even in difficult, real-world 
environments. 
 
Training Process 
Loss Function: The model employed 
CrossEntropyLoss for multi-class classification, 
which penalizes erroneous predictions by 
quantifying the disparity between expected and 
actual labels. This loss function adeptly addresses 
the multi-class aspect of mosquito species 
classification and promotes model correctness by 
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reducing misclassifications. Furthermore, label 
smoothing was implemented to mitigate the 
influence of erroneous labels, enhancing 
generalization by marginally modifying the 
definitive labels.  
Optimizer: The Adam optimiser was utilised to 
adjust model weights, selected for its adaptable 
learning rate characteristics that facilitate expedited 
convergence. The initial learning rate was 
established at 0.001, employing a step-wise decay 
to progressively diminish the learning rate as the 
model nears convergence, so averting overshooting 
during optimization. The weight decay parameter 
was established at 0.0001 to regularize the model 
and mitigate overfitting.  
Evaluation Metrics: The model's performance was 
assessed using many metrics to ensure a thorough 
evaluation. Accuracy quantified the total percentage 
of right classifications, whilst precision and recall 
provided insight into the model's capacity to 
accurately identify each species and reduce false 
positives and false negatives. The F1-score offered 
a harmonic mean of precision and recall, 
functioning as a robust singular metric for the 
assessment of imbalanced data. A confusion matrix 
was created to visually examine the real versus 
expected classifications among species, revealing 
any systematic errors or misclassification trends.  
Monitoring Training and Validation Loss: 
Training and validation loss were observed to 
assess the model's learning progress during each 
epoch. Early stopping was employed, ceasing 
training when validation loss stabilized or escalated 
for a predetermined period of epochs, so averting 
overfitting and guaranteeing an optimal model. A 
learning rate scheduler was utilized to dynamically 
modify the learning rate in accordance with 
enhancements in validation loss. This methodology 
enables the model to rapidly acquire knowledge 
initially and subsequently refine weights through 
minor adjustments as it converges, so improving 
both training efficiency and the accuracy of the 
final model. 
 
3.6. PARAMETER SETTINGS 

 
Parameter Setting Description 
Input Image Size 640 x 640 

pixels 
Resized for 
uniformity 
across all 
images 

Normalization Mean = 0.5, 
Std = 0.5 

Pixel values 
standardized to 
improve model 
stability 

Augmentation Rotation, Applied to 

Techniques Flipping, 
Scaling, 
Brightness, 
Contrast, 
Noise, Blur 

enhance 
dataset 
diversity and 
robustness to 
real-world 
variations 

Rotation Range ±15 degrees Random 
rotations 
within this 
range to 
simulate angle 
variations 

Horizontal/Vertical 
Flip 

Enabled Random 
flipping to 
increase 
spatial 
diversity 

Scaling Factor 0.9 - 1.1 Random 
scaling to 
simulate slight 
size variations 

Brightness 
Adjustment 

±20% Random 
brightness 
change to 
mimic varied 
lighting 
conditions 

Contrast Adjustment ±20% Random 
contrast 
change for 
lighting 
variability 

Noise Addition Gaussian noise 
(mean=0, 
variance=0.01) 

Applied to 
simulate real-
world image 
imperfections 

Blur Gaussian Blur 
(kernel size 
3x3) 

Introduced to 
mimic slight 
out-of-focus or 
low-resolution 
images 

Train/Validation/Test 
Split 

70% / 15% / 
15% 

Dataset split 
for model 
training, 
validation, and 
performance 
evaluation 

Batch Size 16 Batch size 
used for 
training 

Learning Rate 0.001 Initial learning 
rate for model 
optimization 

Optimizer Adam Used for 
model training 
with adaptive 
learning rates 

Backbone Network CSPDarknet53 Feature 
extraction 
network for 
YOLOv5 
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Feature Aggregation PANet Path 
Aggregation 
Network for 
effective 
multi-scale 
feature 
extraction 

Epochs 100 Number of 
training 
iterations 

Evaluation Metrics Accuracy, 
Precision, 
Recall, F1-
Score 

Metrics used 
to assess 
model 
performance 
on the test 
dataset 

Hardware GPU (e.g., 
NVIDIA RTX 
2080) 

Computational 
resources used 
to accelerate 
model training 
and inference 

 
Model Parameters: 
num_classes: 3 (indicates the quantity of classes, 
pertaining to three groups of mosquitoes or other 
classification various types).  
Learning Rate (lr): 0.001 for the Adam optimiser. 
The number of epochs (num_epochs) is set to 50, 
indicating that the training loop will iterate the full 
dataset 50 times.  
 
Training Hyperparameters: 
 
Batch Size: 32, utilised for both the training and 
validation DataLoaders, indicating that the model 
will process 16 photos each forward pass.  
Criterion: CrossEntropyLoss for multiclass 
classification, appropriate for categorical 
predictions.  
Optimiser: Adam optimiser, which dynamically 
adjusts the learning rate for each parameter.  
Device: Utilises CUDA when a GPU is accessible; 
otherwise, it defaults to CPU.  
Checkpoint Directory (checkpoint_dir): All 
model checkpoints, including the optimal weights, 
are stored in the checkpoints directory as 
best_model_wg.pth. This permits loading and 
evaluation of the model later without re-training. 
Hardware 
The training method utilized high-performance 
hardware to effectively manage the computational 
requirements of the deep learning model. An 
NVIDIA GPU, particularly a CUDA-enabled 
model like the RTX 2080 or Tesla V100, was 
employed to expedite computations, markedly 
decreasing training duration relative to CPU-based 
processing. CUDA cores facilitate parallel 

processing, enabling the model to concurrently 
handle extensive batches of images, which is 
crucial for managing the intricate feature extraction 
and aggregation in YOLOv5. The GPU's substantial 
memory capacity (e.g., 16GB or greater) facilitated 
bigger batch sizes, accelerating training and 
permitting swifter iterations throughout the dataset. 
Furthermore, a multi-GPU configuration was 
accessible to enhance training efficiency as 
required, especially beneficial for bigger models or 
during hyperparameter optimization. An expedited 
SSD was utilized for the storage of the dataset and 
interim model checkpoints, enabling swift data 
access and loading durations. The system's 
configuration reduced bottlenecks and optimized 
hardware utilization, enabling the execution of 
extended tests and the refinement of the model's 
parameters without considerable delays. The high-
performance environment was essential for 
attaining the requisite accuracy and efficiency in 
real-time mosquito species identification. 
 
Saving the Model 
 
The model weights were saved as 
mosquito_classification.pt to preserve the acquired 
parameters, facilitating straightforward reuse in 
real-time prediction tasks and future experiments. 
This file contains the model's acquired parameters, 
such as layer weights and biases, allowing for 
reloading without retraining. Periodic weight 
saving during training (e.g., at the conclusion of 
each epoch or upon achieving enhanced validation 
accuracy) resulted in the creation of many 
checkpoints, offering fallback alternatives in the 
event of disruptions or the necessity to resort to a 
prior model version.  
 
To facilitate flexibility and scalability, the model 
weights were preserved in a format compatible with 
PyTorch's loading capabilities, hence enabling 
seamless transfer and deployment across many 
platforms, including cloud environments, edge 
devices, and local servers. The .pt file was 
optimised for minimal weight, hence decreasing 
loading times during deployment for real-time 
applications, which is particularly vital when 
utilised on resource-limited devices such as mobile 
phones or embedded systems. The model was 
exported with a configuration file detailing critical 
parameters (including input size, batch size, and 
preprocessing requirements) to guarantee 
consistency throughout inference.  
Documentation accompanied the stored model to 
delineate the essential procedures for loading, 
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preprocessing, and executing predictions, hence 
enabling seamless integration into extensive 
surveillance or monitoring systems. This 
configuration enables academics and public health 
managers to employ the model for prompt 
implementation, additional testing, or retraining 
with updated datasets as new mosquito species or 
data variances emerge. The preserved model can be 
refined with new data, establishing a sustainable 
basis for adjusting the classifier to changing 
mosquito populations and environmental 
conditions.  
 
4. RESULTS & DISCUSSION 

Training Results 
The model was evaluation using a test set of 2,900 
photos of three mosquito species: Aedes, 
Anopheles, and Culex. It scored a high-test 
accuracy of 98%, exhibiting great generalization 
ability across varied images. Precision, recall, and 
F1-scores were computed for each species, yielding 
a comprehensive performance analysis, all 
surpassing 97%, signifying few errors and 
substantial dependability in species differentiation 
which is shown in below Table 4-5.  
 
The model attained a precision of 98.5% and a 
recall of 98.3% for the Aedes species, underscoring 
its efficacy in accurately identifying this species 
with minimal false positives or false negatives. The 
Anopheles class yielded a precision of 97.8% and a 
recall of 98.1%, exhibiting consistent performance 
and a balanced identification accuracy. For the 
Culex species, precision and recall attained 98.2% 

and 98.4%, respectively, demonstrating the model's 
resilience across all three categories.  
An analysis of the confusion matrix was performed 
to investigate misclassification tendencies. The 
matrix indicated a minimal rate of species 
confusion, with the majority of errors arising from 
visually like traits in the Anopheles and Culex 
images, presumably attributable to nuanced 
morphological resemblances. Moreover, the 
elevated F1-scores across all categories indicate 
that the model attained an optimal equilibrium 
between precision and recall, hence reducing both 
false positives and false negatives.  
This assessment demonstrates that the model is 
dependable for practical applications, where precise 
species classification is crucial for monitoring and 
managing mosquito-borne diseases which is shown 
in Fig 4-5. The findings indicate that with slight 
modifications, the model might be enhanced to 
recognise other mosquito species or tailored to 
different picture qualities and environmental 
circumstances, facilitating wider field applications. 
 
Table 4  evaluation for different metrics with 
different species 

 

 
                                          Fig 4  Comparisons graphs on different metrics and species per class 
 

Species Precision Recall F1-Score Support 

Aedes 98% 97% 97% 1000 

Anopheles 96% 96% 96% 950 

Culex 99% 98% 98% 950 

Overall 98% 98% 98% 2900 
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Fig 5: Comparison graph for different Metrics 
 
The confusion matrix highlights the few 
misclassifications made by the model. The largest 
source of confusion was between Aedes and 
Anopheles, though these errors were minimal and 
Fig 6-7. 
 
Table 5 confusion matrix comparison for different 
classification 
 
 
 

 
Predicted 
Aedes 

Predicted 
Anopheles 

Predicted 
Culex 

Aedes 970 20 10 

Anopheles 30 912 8 

Culex 10 12 928 

 
 

 
Fig 6. Confusion matrix with three different classifications 
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         Fig 7 Precision and recall curve with 

different classes 
The results demonstrate that the YOLOv5-based 
model can accurately differentiate various mosquito 
species. The precision for Culex was significantly 
greater than that of the other species, attributable to 
unique morphological characteristics in the training 
photos. The minor decrease in precision for 
Anopheles can be ascribed to visual resemblances 
with Aedes in some instances.  
The model's robustness, demonstrated by its 
capacity to generalize over 2900 test photos, 
indicates its applicability in real-world contexts, 
including mosquito surveillance and vector control 
initiatives. The elevated recall guarantees that the 
majority of actual species are accurately identified, 
which is essential for applications such as disease 
control. 

 
5. CONCLUSION 
 
This research introduces an effective mosquito 
species classification model utilising the YOLOv5 
architecture, attaining 98% accuracy for three 
species: Aedes, Anopheles, and Culex. The model's 
exceptional performance in precision, recall, and 
F1-score renders it highly suitable for 
implementation in real-time monitoring systems. 
This system enhances mosquito-borne disease 
prevention by automating species identification, 
enabling rapid and reliable identification in the 
field. Future endeavors may entail augmenting the 
dataset to encompass supplementary mosquito 
species, integrating unusual and region-specific 
species to enhance the model's worldwide 
relevance. Furthermore, the integration of the 
model with Internet of Things (IoT) devices and 

drone surveillance systems could provide large-
scale, automated monitoring of mosquitoes across 
vast geographic regions. Lightweight model 
variants can be created for deployment on resource-
limited devices, such as mobile phones or 
embedded systems, to assist fieldworkers in rural 
and underserved areas. Furthermore, subsequent 
research may concentrate on including 
environmental context into the model, such as 
linking species identification with breeding habitats 
or meteorological conditions, to enhance the 
accuracy of predicting prospective outbreaks. Real-
time model updating approaches, such as online 
learning, may be investigated to adjust to dynamic 
fluctuations in mosquito populations. Improving the 
interpretability of the model's decisions through 
explainable AI techniques may also assist 
entomologists and public health officials in trusting 
and effectively utilising the system. By pursuing 
these future paths, the proposed system could 
develop into a robust instrument for the control and 
prevention of worldwide mosquito-borne diseases. 
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