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ABSTRACT 

The growing accessibility of digital image editing tools has led to severe concerns in domains like forensic 
investigations, media validation, and cybersecurity. State-of-the-art image forgery detection approaches tend 
to have limited generalization capabilities across various forgery types (i.e., splicing, copy-move, and AI-
produced manipulations), with the ability to localize tampered areas accurately. Recent studies have shown 
that these limitations arise from inadequate feature refinement mechanisms and adaptability to real-world 
scenarios. Overcoming these challenges requires a high-performing framework to identify forged images and 
localize them at the pixel level. This research presents a unique solution involving deep learning-based 
detection and localization of image forgery, utilizing spatial and channel attention mechanisms to increase 
the sensitivity of features to forgery artifacts. In this work, we propose a multi-scale feature fusion framework 
in a UNet-like encoder-decoder architecture to reconstruct the forgery mask precisely. A combination of 
binary cross-entropy and dice loss is used to optimize this in terms of pixel-wise classification and regional 
overlap. DL-IFDL is systematically applied to the DEFACTO dataset in a pipeline of preprocessing, feature 
extraction, attention-based refinement, and conditional random fields for post-processing. The experimental 
results show that the proposed framework achieves state-of-the-art performance with IoU 96.5% and Dice 
98.1%, compared to the existing best method with IoU 93.2% and Dice 96.4%. These results validate the 
robustness and accuracy of our approach, demonstrating its effectiveness in detecting and localizing forged 
regions with high precision. This research provides a scalable and adaptable solution that can be integrated 
into real-world forensic applications. 

Keywords - Image Forgery Detection, Image Forgery Localization, Deep Learning, Attention Mechanisms, 
Multi-Scale Feature Fusion 

1. INTRODUCTION  

With the increasing use of digital images in many 
areas, from social media to journalism, forensic 
investigations, etc., the concern of discovering 
their authenticity has raised a concern. Various 

image forgery techniques (splicing, copy-moving, 
adjusting by A.I., etc.) have advanced rapidly, 
making it hard to use classic detection methods. 
Deep learning methods have recently made 
significant progress in addressing these 
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challenges by expressing robust feature extraction 
and localization ability.  

Traditional approaches suffer from limited 
transferability when faced with varied forgery 
types due to under-refinement of features and 
limited mitigation of real-world distorting 
factors. Achieving accurate localization of 
manipulation regions whilst being robust against 
various manipulation types is the main challenge. 
To address these limitations, we present research 
incorporating attention mechanisms and multi-
scale feature fusion into a UNet-like architecture, 
enabling more accurate detection of forged 
regions. The proposed model improves sensitivity 
of the feature representation by integrating both 
spatial attention and channel attention 
mechanisms. Moreover, a hybrid loss function 
maximizes the segmentation of forged areas, 
contributing to the model's ability to easily 
distinguish between original and altered regions. 

Nevertheless, as empirically proven through 
recent literature, the current state-of-the-art 
methods suffer from limited generalization ability 
to varied, unseen forgery forms and pixel-perfect 
localization parameterization. While techniques 
like FOCAL and Discrepancy-Guided 
Reconstruction Learning showcase robust 
detection abilities, they often do not employ 
strategies designed for improving feature 
refinement, which can result in compromised 
localization accuracy. And Discrepancy-Guided 
Reconstruction Learning. In addition, Comprint 
and Fake Shield are designed to counter specific 
forgery types, which leads to low versatility in 
diverse real-world scenarios. 

This study aims to fill this gap by providing a new 
deep learning-based framework for detecting and 
localizing image forgeries, which can help 
mitigate the same. The aim is to develop a 
scalable, robust, and precise model for accurately 
detecting the tampered regions. Salient image 
detection also benefits from introducing 
significant novelties in the research, including 
incorporating spatial and channel attention, multi-
scale feature shades to leverage features, and a 
hybrid loss function to maximize network 
performance according to pixel-based metrics and 
regional overlap card metrics. This motivation 
leads us to develop these innovative ideas to 
overcome the limitations of the existing methods 
and provide a complete solution for forgery 
detection. 

While we have made strides in improving image 
forgery detection, these advances face significant 
challenges in terms of developing robust and 
generalizable solutions in the real-world. Most 
existing models are tailored toward specific 
classes of forgery (copy-move or splicing, for 
example) and are unable to properly detect more 
sophisticated attacks such as AI-created deepfake 
changes. Moreover, real-world images are 
commonly subjected to post processing 
operations (e.g. compression, noise addition, 
resizing, etc.) that can obscure forgery artifacts 
and radically decrease detection accuracy. This 
unadaptability and non-scalability of existing 
solutions creates a barrier to deploying forgery 
detection systems in real-world applications such 
as digital forensics, media authentication and 
cybersecurity. To resolve the aforementioned 
issues, this work proposes an initial study aimed 
at developing an efficient framework that can not 
only identify forged images, but also precisely 
localize tampered regions with a pixel-wise 
accuracy to achieve improved reliability on 
different forgery cases. 

As current image forgery detection approaches 
have great challenges in effectively detecting all 
kinds of image forgery attacks, we propose that 
the include of both spatial and channel attention 
mechanisms based on a deep learning framework 
could help improve the model’s sensitivity and 
localization precision fort the fake areas. 
Concretely, the proposed framework utilizes a 
UNet-like encoder-decoder structure with multi-
scale feature fusion, allowing for enhanced 
feature refinement for improved discrimination 
of authentic and manipulated regions. 
Additionally, a hybrid optimization of binary 
cross-entropy and dice loss is anticipated to 
improve localization accuracy by minimizing 
false positives and ensuring stable segmentation 
of tampered regions. This hypothesis is supported 
with comprehensive experiments on the 
DEFACTO data set, showing that our approach 
outperforms state-of-the-art methods 
significantly. 

This research makes three main contributions: 1) 
we design an end-to-end framework for learning 
from DEFACTO; 2) we perform a thorough 
evaluation of DEFACTO; 3) we compare our 
proposed approach with state-of-the-art 
techniques with detailed experiments. The paper 
is structured as follows: Section 2 reviews the 
literature and gaps that motivate this work. In the 
next section, Section 3 presents the proposed 
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methodology, including model architecture and 
novelties. Experimental results can be found in 
Section 4, where we show performance compared 
to baseline methods. Section 5 presents study 
findings, implications, and limitations. Section 6 
finally concludes the paper and discusses the 
future research directions. 

2. RELATED WORK 

Recent advancements in image forgery detection 
highlight limitations in generalization, 
localization accuracy, and scalability across 
diverse forgery types. Pukale et al. [1] created a 
sophisticated system for detecting picture 
forgeries using VGG16 and Error Level Analysis. 
It successfully separated genuine from phony 
photos with a high degree of accuracy. Despite 
obstacles like cost and complexity, further work 
will address dataset reliance and broaden 
applicability across other sectors. Khalil et al. [2] 
compared several methods for detecting picture 
forgeries, focusing on transfer and deep learning 
models. Despite computational complexity issues 
and the requirement for reliable detection 
techniques, future research will focus on creating 
a universal model that can effectively identify 
different kinds of forgeries. Zhu et al. [3] 
developed a two-step noise-guided approach that 
enhances noise discriminability between actual 
and forged regions, making detecting and 
pinpointing picture forgeries easier. While the 
suggested method shows improved accuracy, 
problems with noise consistency might occur. 
Future research ought to focus on altering 
technology development. Mareen et al. [4] 
enhanced photo fraud detection by combining 
existing methods with a novel fusion strategy 
based on Generative Adversarial Networks. 
Notwithstanding these current limitations, 
additional research aims to address generalization 
issues and boost efficiency using a range of 
datasets and complex structures. Zanardelli et al. 
[5] analyzed state-of-the-art deep learning 
approaches to detect photo forgeries, focusing on 
copy-move, splicing, and DeepFake attacks. 
Future work on generalization and dataset 
restrictions should focus on creating more 
realistic training datasets and improving detection 
accuracy. 

Niloy et al. [6] presented the innovative CFL-Net 
image forgery localization technique. It uses 
contrastive loss to distinguish between 
characteristics of tampered and untampered areas. 
It performs better than current techniques on three 

datasets, including IMD-2020. One benefit is that 
it may be used for various forgeries; however, 
flexibility may be limited when feature 
distributions are employed. More complex fusion 
methods may be the subject of future research to 
enhance performance. Nagm et al. [7] proposed a 
unique picture forgery detection technique that 
combines CNN and error level analysis (ELA) to 
detect copy-move and splice forgeries. It 
outperformed previous approaches on the CASIA 
2 dataset with high accuracy. High-performance 
indicators are among the benefits, although 
identifying precise locations where tampering 
occurs is still tricky. Further research might 
improve the identification of forgeries by 
distinguishing different kinds. Liu et al. [8] 
presented HPUNet, a hierarchical method for 
recognizing and finding photos manipulated by 
artificial intelligence (AI). It uses feature 
extraction at several resolutions and multi-level 
labeling to obtain improved performance on the 
AITfake dataset. One of the advantages is 
increased detection accuracy; nonetheless, there 
are still problems with generalizing to other types 
of forgeries. Future work may primarily improve 
robustness and feature interpretability across 
various datasets. Bi et al. [9] proposed MWC-Net, 
a multi-task wavelet-corrected network, to 
identify photo splicing frauds. Wavelet pooling is 
used to reduce information loss and increase 
feature representation. Compared to existing 
methods, MWC-Net shows improved resilience 
on four public datasets. Additional investigation 
might look at broader applications of this 
approach. Alipour and Behrad [10]  presented a 
novel method for non-aligned JPEG forgery 
detection and localization using deep CNN-based 
semantic pixel-wise segmentation. Achieving 
92.66% accuracy, the approach effectively detects 
irregularities in JPEG block boundaries but may 
produce false alarms or negatives. Future work 
includes refining segmentation and extending the 
method to video forensics. 

Sharma et al. [11]  reviewed image tampering 
detection methods, highlighting active and 
passive techniques and intense learning 
approaches. It identifies critical challenges like 
accuracy and robustness against post-processing. 
Future work should focus on standardized 
datasets and more advanced detection methods to 
tackle evolving forgeries. Dixit and Bag [12] 
proposed a dependable copy-move forgery 
detection approach for keypoint matching and 
detection using k-NN, utilizing the CenSurE 
detector and the LIPID descriptor. The method is 
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quick and effective, producing superior results 
against various changes. Future research efforts 
will primarily focus on splicing forgery detection. 
Qazi et al. [13] described a deep learning method 
that uses YOLO weights and the ResNet50v2 
architecture to identify picture splicing. With a 
99.3% accuracy rate on the CASIA_v2 dataset, 
the strategy demonstrates a noteworthy 
enhancement over current approaches. Future 
research attempts to improve the detection of 
various sorts of forgeries. Ali et al. [14] presented 
a deep learning system based on CNN architecture 
for detecting photo forgeries, particularly in 
double image compression. The method 
successfully identifies copy-move and splicing 
frauds with 92.23% accuracy. Future work will 
concentrate on improving localization and 
handling lower image resolutions. Elaskily et al. 
[15] presented a hybrid deep learning approach 
for Copy-Move Forgery Detection (CMFD) that 
uses CNN and CovLSTM networks. Prioritizing 
computational economy and speed, it evaluates up 
to 100% correctness on specific datasets. The 
methodology will be extended to more datasets 
and cloud-based applications in subsequent 
research. 

Shelar et al. [16] assessed ConvLSTM models for 
picture forgery detection. They showed that on the 
CASIA v2.0 dataset, the convolution of 
ConvLSTM (2D) and Conv (2D) performs better 
in terms of accuracy and precision than 
ConvLSTM (1D). Future research will focus on 
developing better models for real-world events 
and growing datasets. Panigrahi et al. [17] 
provided a deep ensemble learning method for 
detecting deepfake images using 13 CNN models 
trained earlier on the CASIA v2 dataset. It 
outperforms existing approaches substantially, 
with the highest accuracy. Future ramifications 
include increased public awareness of image 
authenticity. Sabeena and Abraham [18] provided 
a unique segmentation approach that integrates 
deep learning techniques for copy-move forgery 
detection, utilizing Adaptive Harris Hawk 
Optimization. It outperformed previous 
techniques in tests conducted on the CoMoFoD 
and GRIP datasets, achieving great precision and 
recall. The goal of future research is multi-scale 
forgery detection. Souradip and Naskar [19] 
presented a convolutional residual network-based 
deep-learning method for blind picture splicing 
detection. It beats current approaches, achieving 
over 96% accuracy on the CASIA v2.0 dataset. 
Future research attempts to investigate forgery 
restoration and locate spliced sections. 

Chidambaram et al. [20] presented a unique hash 
approach for safe photo transmission focusing on 
integrity verification and tamper detection 
without Region of Interest limits. With its tamper-
proof properties, it offers opportunities for 
affected areas to recuperate. In the future, this will 
be utilized in cloud-based e-health applications. 

Costa et al. [21] addressed developments in 
anomaly detection and new tampering strategies 
by offering an extensive assessment of machine-
learning approaches for identifying manipulated 
photos. It highlights the need for increased 
accuracy and fewer false positives while pointing 
out research gaps. Developing clever algorithms 
to counteract emerging tampering technologies 
will be the main focus of future efforts. Bayar et 
al. [22] offered a unique restricted convolutional 
neural network (CNN) forensic method for 
identifying various picture modifications. It 
outperforms current techniques with an accuracy 
of up to 99.97%. Additional improvements and 
applicability in many circumstances could be 
explored in future studies. Barani et al. [23] 
provided a novel approach to grayscale photo 
authentication using integer wavelet transform 
(IWT) and 3D quantum chaos map for enhanced 
security. It reaches excellent speed and visual 
quality, but in certain situations, it has problems 
with detection. Future developments include 
video adaptation and error correction. Asghar et 
al. [24] provided a unique approach to identifying 
picture forgeries by employing support vector 
machines (SVM) and discriminative robust local 
binary patterns (DRLBP). Several datasets have 
been examined, and they demonstrate excellent 
accuracy and resilience. Improved dynamic 
learning and tampered area localization are the 
goals of future research. Bappy et al. [25] 
presented a hybrid CNN-LSTM architecture-
based deep-learning technique for localizing 
modified areas in photos. It achieves excellent 
precision in segmenting different sorts of 
manipulation by introducing a new dataset and 
utilizing resampling characteristics. Work on 
dataset diversity may be expanded in the future. 

Johnston et al. [26] proposed identifying video 
tampering by localizing altered regions using 
characteristics extracted from legitimate 
information. It uses CNNs to predict the 
compression settings for H.264/AVC and gets 
good results on publicly available datasets. 
Subsequent research will examine new features 
and optimization methods. Johnston and Elyan 
[27] discussed the state-of-the-art video 
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tampering techniques, highlighting the 
significance of deep learning in forgery creation 
and detection. It highlights the necessity for 
trustworthy measurements and realistic datasets, 
criticizes current assessment techniques, and 
recommends future tampering detection 
approaches. Ahmed et al. [28] provided a new 
approach for blind picture fraud detection that 
combines Mask-RCNN with a new backbone 
architecture called ResNet-conv. The method 
accomplishes quicker convergence and 
demonstrates effective spliced region 
identification. The concept will be generalized for 
various sorts of forgeries in future studies. Rao et 
al. [29] presented a novel picture splicing 
detection and localization method that utilizes a 
deep CNN with a first layer optimized for residual 
feature extraction. Numerous tests show superior 
performance compared to JPEG compression. 
Future studies might enhance it by including 
various types of forgeries. Zhang et al. [30] 
provided an approach that uses edge information 
and a gray-level co-occurrence matrix (GLCM) 
input into a depthwise separable convolutional 
neural network to detect both manipulated photos 
and those generated by GANs. With an F1 score 
of 0.9865, the model exhibits high generalization. 
Subsequent developments might increase 
detection precision for a broader range of picture 
kinds. 

Santhoshkumar et al. [31] presented a parallelized 
method based on reflections and shadows to 
identify picture forgeries. When compared to 
current approaches, it decreases computing time 
and increases accuracy. The limitations are 
lighting-related errors and noise fluctuation; 
future work will concentrate on improving these 
areas. Mayer and Stamm [32] used a Forensic 
Similarity Graph to provide a unique approach for 
localizing and detecting picture forgeries. It 
identifies altered regions as different communities 
by capturing the connections between picture 
patches. The strategy works better than current 
approaches, although more investigation into 
community structures could be necessary for 
improved accuracy. Diallo et al. [33] presented a 
camera identification model based on CNNs and 
proposed a robust framework for picture fraud 
detection. To get encouraging results, it highlights 
how crucial it is to train on mixed-quality pictures, 
significantly compressed ones. GANs will be used 
for data augmentation in future projects. Shyam 
Prakash et al. [34] presented a keypoint-based 
copy-move forgery detection technique that 
combines AKAZE and SIFT features. It can 

accurately identify duplicated elements in 
photographs even after scaling and rotation. The 
results show improved accuracy and robustness 
compared to existing methods, and an ANOVA 
validates their effectiveness. Fernando et al. [35] 
introduced a Hierarchical Attention Memory 
Network (HAMN) for fake face detection inspired 
by human cognition. The method works 
remarkably well in generalizing changes that are 
not detected while capturing hierarchical 
semantics. The experiment's results show that 
genuine faces can be easily identified from 
imitations. Future studies could investigate more 
comprehensive usage. 

Guo et al. [36] presented the Adaptive 
Manipulation Traces Extraction Network 
(AMTEN) for detecting fake face photographs. 
AMTEN uses recovered features in a CNN to 
achieve better accuracy in manipulation trace 
detection. Using accurate social media data, 
future research aims to improve resilience. 
Bartusiak et al. [37] presented a Conditional 
Generative Adversarial Network (GCN) for 
discovering and recognizing spliced frauds in 
satellite pictures. It achieves high accuracy and 
performs well when extrapolating over different 
forgery sizes. Future studies will look into 
performance with other datasets and kinds of 
forgeries. Alshoura et al. [38] analyzed 
contemporary hybrid SVD-based photo 
watermarking techniques, emphasizing research 
gaps and security issues. It offers 
recommendations for future approaches that will 
be more reliable, particularly for video and 
medical applications, which aids researchers in 
developing more effective watermarking 
strategies. Ross et al. [39] addressed security 
issues such as manipulation and privacy by 
reviewing digital forensic approaches for audio-
visual biometric data in smart cities. It points up 
problems with generalization, scalability, and 
integrity verification, emphasizing the necessity 
of solid defenses against new dangers such as 
DeepFakes. Shan et al. [40] offered a robust 
median filtering (MF) forensic method that 
combines filtered residual fusion with image 
deblocking to enhance the identification of JPEG-
compressed images. The trial results show 
significant improvements over the existing 
techniques, suggesting a more considerable 
applicability for more forensic tasks. The 
literature identifies gaps in generalization and 
localization accuracy in current methods, 
emphasizing the need for robust frameworks. 
Critical approaches leverage deep learning but 
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lack advanced feature refinement or adaptability. 
This motivates the proposed work, integrating 
attention mechanisms, multi-scale fusion, and 
hybrid loss to address these limitations 
effectively. 

In this study, we propose an experimental 
research design based on deep learning-based 
computational modeling to improve image 
tampering detection and localization. And while 
different domains have utilized similar research 
designs, including digital forensics, medical 
imaging, and remote sensing89, deep learning 
models have been shown to improve significantly 
in the detection of patterns and anomalies. For 
example, certain previous studies focused on the 
use of CNNs and attention mechanisms for 
predicting forged documents and manipulated 
face images in forensic science. In medical 
imaging, UNet-based architectures have also 
become dominant segmentation approaches, 
proving that encoder-decoder based architectures 
are effective for pixel-level classification. 
Moreover, multi-scale feature fusion have been 
explored in industrial defect detection to enhance 
localization accuracy. Based on these 
multidisciplinary findings, and now with the 
powerful building blocks of deep learning–

attention mechanisms and hybrid loss functions–
we bring to the table a flexible and workable 
platform for image forgery detection that is 
scalable and accommodates satisfaction across a 
range of manipulation techniques in realistic 
settings. 

3. PROPOSED FRAMEWORK 

This study introduces a novel deep learning-based 
framework for accurate manipulation detection 
and localization of images to cope with the rising 
demand for effective digital image authentication 
methods. Our framework leverages state-of-the-
art preprocessing methods, a novel encoder-
decoder structure, and unique attention 
mechanisms to detect and locate forged areas 
accurately. The proposed framework utilizes a 
pre-trained CNN to extract features, combined 
with two attention mechanisms and multi-scale 
feature fusion, to achieve fine-grained 
localization accuracy. Post-processing via 
conditional random fields further fine-tunes 
predictions by promoting smooth transitions. This 
holistic data-driven framework results in a 
complete system to address the issues of forgery 
detection in practice, elaborated below. 
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Figure 1: Proposed Deep Learning Framework For Image Forgery Detection And Localization 

The framework for deep learning-based image 
forgery detection and localization (depicted in 
Figure 1) was carefully crafted and executed to 
accurately and precisely detect the tampered 
regions present in the images. The first step was 
to arrange the input images into three categories 
(i.e., the total information): the clean image, the 
created image, and the associated ground truth 
binary masks. The images were then preprocessed 
by resizing them to a joint resolution of 256x256 
pixels, normalizing them to an expected pixel 
value range, and applying various data 
augmentation techniques. The model was trained 
on data up to October 2023 using a new region-
guided augmentation strategy, which improves 
the model's generalization and selects the critical 

places to focus on. Applying them only to the 
tampered parts of an image could add new 
transformations to the training data while 
ensuring they capture properties specific to the 
forgery. 

Next, the preprocessed images were supplied to 
encode in a feature extraction module based on a 
pre-trained CNN backbone, EfficientNet, selected 
for its high-quality feature extraction capabilities 
and efficiency. The encoder extracted multi-level 
hierarchical features capturing low-level textures 
and high-level semantic content. For the 
following steps, it became essential to preserve 
the spatial consistency of these features through 
skip connections. The encoded features were fed 
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into a decoder, built upon a UNet-like architecture 
with added dual attention mechanisms. Channel-
wise attention assigns importance to the most 
relevant features for forgery, while the spatial 
attention mechanism strengthens the pixels of 
regions within the image that are needed. 
Moreover, multi-scale feature fusion was utilized 
in the decoder to fuse features from different 
encoder layers. This model allowed the network 
to merge detailed local insight and extensive 
profiles, which generated accurate positions and 
reliable forgery localization [18]. Post-processing 
was done to the output from the decoder. They 
implemented conditional random fields (CRFs) to 
smooth the predicted forgery masks and 
effectively refine their margins. Edge consistency 
checks were introduced to ensure that the 
predicted masks aligned with natural boundaries 
in the images, further enhancing localization 
accuracy. Ground truth masks assessed the binary 
masks that indicated tampered areas. 

The framework was trained using a hybrid loss 
function that combines the binary cross-entropy 
loss and the dice loss. This allows the model to be 
optimized for pixel-wise classification and 
overlapping accuracy, mainly in unbalanced data 
states. The framework's performance was 
assessed using standard metrics, including 
accuracy, precision, recall, intersection over 
union (IoU), and dice coefficient. Yet another 
metric of localization effectiveness was proposed, 
namely, weighted forgery localization score 
(WFLS), which gave more importance to edges 

and boundaries of the forged region. This unified 
framework was shown to achieve accurate 
localization of forged areas in both synthetic and 
authentic images. Its well-architected design and 
implementations lend itself to numerous real-life 
use cases ranging from image authenticity on 
social media to proof-of-evidence checks in 
forensic investigations. The framework describes 
the workflow where each preprocessing, feature 
extraction, decoding, and post-processing step 
collaborates toward the final goal of accurate 
forgery detection and localization. 

3.1 Proposed Deep Learning Model 

The developed model, shown in Figure 2, for 
image forgery detection and localization, is a 
sophisticated encoder-decoder architecture 
enhanced with attention mechanisms and multi-
scale feature fusion to ensure precise and reliable 
identification of tampered regions. The encoder is 
built upon a pre-trained convolutional neural 
network (CNN) backbone. Specifically, 
EfficientNet was selected for its superior feature 
extraction capabilities and computational 
efficiency. This encoder processes the input 
images to extract multi-level hierarchical features, 
capturing low-level details, such as textures and 
edges, and high-level semantic content. Skip 
connections are incorporated to preserve spatial 
information crucial for pixel-level localization, 
linking encoder features directly to the decoder 
stages. 
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Figure 2: Architectural Overview Of The Proposed Deep Learning Model Used For Forgery Detection And 
Localization 

The goal of the decoder, implemented with a 
UNet-style architecture, is to upsample the 

encoded features to the original image size while 
reconstructing the forgery masks. One leading 
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innovation in the decoder is the incorporation of 
dual attention mechanisms. After that, spatial 
attenuation focuses on specific areas in the image 
where forgery artifacts are likely to appear, and 
channel-wise attention emphasizes great feature 
maps for identification. We have also 
incorporated a dual-attention mechanism 
specializing in subtle inconsistencies, including 
unnatural texture transitions or color mismatches 
from tampering. The second is the multi-scale 
feature fusion in the decoder. The features 
representing the image are taken from varying 
stages of the encoder, allowing a comprehensive 
image flavor and merging key local components 
with more general information. This hybridization 
enables the model to obtain local artifacts and 
globally tampered regions. The encoded features 
are processed by the network bottleneck that 
selects the best forgery-specific characteristics for 
the encoding-decoding procedure. 

The model outputs a binary mask of tampered 
regions, with 1 for forged pixels and 0 for pristine 
areas. Post-processing, including CRFs and fine 
tunes, aligns the boundaries with natural image 
edges through multiclass per-pixel segmentation. 
It is trained with a custom loss function that 
retains binary cross-entropy loss at the pixel level 
and the dice loss that minimizes the distance 
between the predicted mask and the mask with the 
ground truth of the image. We can achieve robust 
performance even with imbalanced forged regions 
in the dataset by training with these two 
objectives. In summary, the proposed model 
shows a very efficient design for both forgery 
detection and localization, combining several 
state-of-the-art techniques to reach this high 
performance. With attention mechanisms, multi-
scale feature fusion, and post-processing, it can 
achieve accurate detection performance for 
diverse and complex scenarios. This model can 
identify tampered regions and provide accurate 
localization, crucial for digital forensics, media 
forensics, and image authentication-related 
applications. 

3.2 Data Preprocessing 

During this stage, the input data is normalized and 
expanded so that we can train on the model. All 
the images are resized uniformly (Example: 
256×256 pixels) for consistency and 
computational efficiency. Normalizing the pixel 
values to a scale of 0 and 1 allows the model to be 
more stable during training. Data augmentation 
techniques such as rotation, flipping, scaling, and 

brightness adjustments are employed to enhance 
the dataset's diversity and mitigate overfitting. 
Also, region-guided augmentation is used, which 
involves applying certain transformations (like 
blurring or noise addition) to the regions to be 
tampered with. This focused tuning helps the 
model learn forgery-related features better. 

3.3 Feature Extraction (feature encoder) 

The backbone of the model (the encoder) extracts 
features from the input images hierarchically. It is 
based on a pre-trained convolutional neural 
network (CNN), like EfficientNet or ResNet50, 
that quickly learns low-level and high-level 
features. Encoder: The encoder consists of 
multiple layers of convolutions with non-linear 
activation functions such as ReLU, followed by 
Batch normalization for learning stability. Max-
pooling layers down-sample the spatial 
dimensions in the examples, in which relevant 
information is maintained, and computational 
complexity is reduced. Skip connections are 
introduced in the encoder to capture spatial 
information and to make it available at the 
decoder level, which can help with the 
localization of the mask. This enables strong 
feature representation for downstream tasks. 

3.4 Forgery Detection and Localization 
(Decoder) 

The decoder then takes the encoded features to 
reconstruct the image, paying particular attention 
to the tampered regions to create a forgery mask. 
It uses a UNet-style architecture with upsampling 
layers and skip connections, allowing it to localize 
accurately at the pixel level. By adopting spatial 
and channel-wise attention in the decoder, the 
proposed approach enables attention in both 
spatial and channel domains to seamlessly map 
forgery-prone areas in the image and emphasize 
necessary features. Multi-scale feature fusion 
fuses features from different encoder layers to 
balance local details with a global context. Novel 
designs allow the decoder to recognize fine 
tampering traces, such as unnatural edges or 
inconsistent textures, and output a high-quality 
binary mask over the tampered areas. 

3.5 Post-Processing 

The output forgery masks are further enhanced in 
the post-processing stage to reflect more critical 
regions from the ground truth. The noise and 
discontinuity of the predicted masks are smoothed 
using conditional random fields (CRFs) applied to 
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their boundaries. We perform edge consistency 
checks on the forgery mask to ensure that it 
closely follows the image's natural edges, 
correcting any nonaligned regions. These steps 
have the benefit of reducing false positives and 
improving localization accuracy. The post-
processed results allow for accurate identification 
and masking of the tampered portions in a manner 
that is distinguishable from the leakage in the 
images, making it a reliable solution for real-time 
detection and efficient for scope forensic 
application. 

3.6 Mathematical Model for Image Forgery 
Detection and Localization 

The proposed mathematical model for image 
forgery detection and localization focuses on 
mapping an input image. 𝑋 ∈ ℝு×ௐ×஼ , where 
𝐻, 𝑊, and 𝐶 represent the height, width, and 
number of channels, respectively, to a binary 
forgery mask 𝑌 ∈  {0, 1} ு×ௐ, where 𝑌 (𝑖, 𝑗)  =
 1 indicates tampered pixels. The encoder 
processes the input image through convolutional 
layers to extract hierarchical features. 𝐹௘, where 
each layer refines the feature maps 𝐹௘

௟ as in Eq. 1. 

𝐹௘
௟ = 𝜎(𝑊௘

௟ ∗ 𝐹௘
௟ିଵ + 𝑏௘

௟ ),                          (1) 

with 𝑊௘
௟ and 𝑏௘

௟  representing the weights and 
biases of the convolutional layers, ∗ denoting 
convolution, and a being the ReLU activation 
function. Max-pooling is used to downsample 
spatial dimensions, preserving the most relevant 
features for downstream tasks. An attention 
mechanism refines the encoder features to 
enhance sensitivity to tampered regions. This 
mechanism calculates attention weights. 𝛼 using 
Eq. 2.  

𝛼 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊௔௧௧ ∗  𝐹௘
௟),              (2) 

which are applied to the feature maps to focus on 
forgery-prone areas as in Eq. 3.  

𝐹௔௧௧  =  𝛼 ∙ 𝐹௘
௟                              (3) 

The decoder reconstructs the forgery mask by 
progressively upsampling the encoded features 
while incorporating multi-scale information from 
the encoder via skip connections. This 
reconstruction is modeled as in Eq. 4.  

𝐹ௗ
௟ = 𝜎൫𝑊ௗ

௟ ∗ ൣ𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒൫𝐹ௗ
௟ାଵ൯ ⊕ 𝐹௘

௟൧ + 𝑏ௗ
௟ ൯,               

(4) 

where 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 increases the spatial resolution, 
represents concatenation, and 𝑊ௗ

௟  and 𝑏ௗ
௟  are the 

weights and biases for the decoder layers. This 
ensures that high-level contextual information 
combines fine-grained spatial details, allowing 
precise pixel-level localization. A hybrid loss 
function combines binary cross-entropy and dice 
loss to train the model. The binary cross-entropy 
loss is defined as in Eq. 5.  

𝐿஻஼ா = −
ଵ

ே
∑ ൣ𝑦௜ log൫𝑌෠௜൯ + (1 − 𝑌௜) log൫1 −ே

௜ୀଵ

𝑌෠௜൯൧,                      (5) 

The dice loss is computed as in Eq. 6.  

𝐿஽௜௖௘  =  1 −
ଶ ∑ ௒௒෠

∑ ௒ା∑ ௒෠ାఢ
                                                                            

(6) 

The total loss combines these components as in 
Eq. 7.  

ℒ =  𝜆ଵℒ஻஼ா + 𝜆ଶℒ஽௜௖௘                                     (7) 

where 𝜆ଵ and 𝜆ଶ are weights balancing the 
contributions of each loss term. To refine the 
predicted forgery masks, conditional random 
fields (CRFs) are applied during post-processing, 
modeled as in Eq. 8.  

𝑃(𝑌) =
ଵ

௓
𝑒𝑥𝑝൫− ∑ 𝜓൫𝑌௜ , 𝑌௝൯(௜,௝)∈𝒩 ൯                                              

(8) 

where 𝒩 represents the neighboring pixels and 𝜓 
is a potential function enforcing spatial and edge 
consistency.  

3.7 Proposed Algorithm  

The proposed framework is primarily centered 
around a new Deep Learning Based Image 
Forgery Detection and Localization (DL-IFDL) 
algorithm, which facilitates accurate 
identification and localization of tampered 
regions in digital images. This trains a model with 
DEFACTO over a generalized pipeline of 
preprocessing-, features-, attention-based 
refinement- and model-training. The images are 
also augmented, so they are normalized and create 
a standard transformation pipeline for the data 
preprocessing to be consistent and robust, the 
feature extraction phase uses a graphic pre-trained 
encoder to extract hierarchical features. The 
features are then enhanced using attention 
methods, such as spatial and channel attention, to 
accentuate patterns unique to forgery. The 
decoder uses the skip connection and multi-scale 
feature fusion to reconstruct forgery masks 
accurately. The algorithm performs crucial tasks, 
which boosts its value in digital forensics, media 
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verification, and cybersecurity. It tests 
performance with IoU and Dice Coefficient, 
which creates trustworthy outcomes. Using an 
efficient and adaptable methodology, DL-IFDL 
ensures that forgery detection is scalable and 
robust while promoting work in localized 
tampered images. 

Algorithm: Deep Learning-based Image 
Forgery Detection and Localization (DL-
IFDL) 
Input: DEFACTO dataset X, ground truth 
masks Y, encoder model weights θ 
Output:  Forgery detection and localization 
results R, performance statistics P 
 

1. Begin 
2. D'PreprocessData(D) 

//normalization and augmentation 
3. (T1, T2, T3)SplitData(D', Y)  

//train, test and validation data 
4. Initialize feature maps vector F 

Feature Extraction 
5. For each image x in D' 
6.    

featureMapsComputeEncoderFeat
ureMaps(x) 

7.    Add featuerMaps to F 
8. End For 

Attention Mechanism 
9. F'SpatialAndChannelAttention(F) 
10. F'RefineFeatureMaps(F') 
11. Use decoder with skip connections 

Model Training and Forgery 
Detection 

12. m'TrainModel(m) 
13. Persist m' 
14. Load m' 
15. RForgeryDetectionAndLocalizatio

n(m', T2) 
16. PEvaluatePerformance(T3, R) 
17. Print R 
18. Print P 
19. End 

Algorithm 1: Deep Learning-Based Image 
Forgery Detection and Localization 

Populating and executing a specified dataset 
federated algorithms, this is for Deep Learning-
Based Image Forgery Detection and Localization 
(DL-IFDL) preprocessing the DEFACTO dataset, 
feature extraction, kinematic attention mechanism 
(KAM) federated deep learning model training for 
the object and performance validation. Data 
preprocessing, where input dataset D is then 
normalized and augmented to enable the model to 

achieve better robustness and generalization. The 
preprocessing is done to maintain uniformity in 
the shape and scale of data points and expand the 
data set diversity by applying transformations 
such as rotation, scaling, brightness, etc. Post-
preprocessing, the dataset D′ is divided into 
training, testing, and validation subsets (T1, T2, 
T3) to ensure supervised learning and evaluation. 

We obtain a set of features, D′ + D − where D′ + 
D − is a list of each image x ∈ D′ processed with 
a pre-trained encoder. This encoder generates 
multi-scale feature maps, encoding information of 
varying resolutions and semantics from pixel to 
object level. These feature maps are stored in a 
vector F and act as an essential basis for further 
operations. This attention mechanism is applied to 
the extracted features to enhance the features for 
identifying falsified regions. The specific 
algorithm uses spatial and channel-wise attention 
to capture areas specific to forgery and the feature 
maps relevant to those areas. The attention-
refined feature set F′ is processed through skip 
connections, mixing different multi-scale features 
in the encoder and decoder paths for accurate 
localization of forgeries. The model is trained 
after the feature refinement phase. The deep 
learning model mm is trained on the augmented 
dataset T1 by minimizing a hybrid loss function 
consisting of a linear combination of binary cross-
entropy and dice loss. We save the trained model 
m′ for later usage. During testing, the trained 
model is loaded and applied to the testing data 
(T2) to detect and localize forgeries, and the 
generated predictions (R) contain both the 
detected forgery masks. Subsequently, we are 
evaluating their performance on T3 by precision, 
recall, F1-score, intersection over union (IoU), 
and dice coefficients. The model's efficiency in 
identifying and localizing modified areas is 
assessed using these metrics. In the end, the 
forgery detection results R are obtained, and the 
performance statistics P show the efficiency of the 
DL-IFDL method. 

3.8 Dataset Details 

The DEFACTO dataset [41] is a benchmark for 
image forgery detection and localization. This 
dataset has clear pictures, fake pictures, and 
related pixel-based ground reality masks for 
splicing and tampering. The dataset contains 
numerous distortions representing real-world 
manipulations, including copy-move, splicing, 
and obfuscation distractions. The images are 
annotated with binary masks that indicate the 
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tampered regions, allowing for an in-depth 
assessment of the localization algorithms. Due to 
its diverse set of high-quality annotations 
combined with realistic forgeries, this dataset is 
well-suited for the training and evaluating deep 
learning models in forgery detection and pixel-
level localization tasks. 

3.9 Evaluation Methodology 

The performance evaluation methodology 
assesses the accuracy and reliability of the 
proposed framework for image forgery detection 
and localization. Evaluation is conducted on a test 
dataset comprising pristine and forged images 
with corresponding ground truth masks. Metrics 
such as accuracy, precision, recall, and F1-score 
are used to evaluate the detection capability. For 
localization, intersection over union (IoU) (as in 
Eq. 9) and dice coefficient (Eq. 10) are calculated 
to measure the overlap between predicted forgery 
masks and ground truth masks.  

𝐼𝑜𝑈 =
்௥௨௘ ௉௢௦௜௧௜௩௘

்௥௨௘ ௉௢௦௜௧௜௩௘ ା ி௔௟௦௘ ௉௢௦௜௧௜௩௘ ା ி௔௟௦௘ ே௘௚௔௧௜௩௘
                     

(9) 

𝐷𝑖𝑐𝑒 =
ଶ∙்௥௨௘ ௉௢௦௜௧௜௩௘

ଶ∙்௥௨௘ ௉௢௦௜௧௜௩௘ ା ி௔௟௦௘ ௉௢௦௜௧௜௩௘ ା ி௔௟௦௘ ே௘௚௔௧௜௩௘
                

(10) 

This cohesive mathematical model integrates 
feature extraction, attention mechanisms, 
decoding, and post-processing, ensuring robust 

detection and localization of forged regions. A 
novel metric, the Weighted Forgery Localization 
Score (WFLS), is employed to assign higher 
importance to boundary accuracy. Ablation 
studies are performed to analyze the contribution 
of attention mechanisms and multi-scale feature 
fusion. Comparative analysis with baseline 
models highlights the framework’s superior 
performance in forgery detection and localization 
accuracy. The evaluation methodology ensures a 
comprehensive understanding of the model’s 
effectiveness and robustness across diverse 
forgery scenarios. 

4. EXPERIMENTAL RESULTS 

The experimental findings assess the suggested 
framework on the DEFACTO dataset, which 
consists of various image forgery types such as 
splicing, copy-move, and AI-based alterations. 
Both five state-of-the-art methods notably include 
FOCAL [22], Discrepancy-Guided 
Reconstruction Learning [23], Comprint [24], 
FakeShield [25], and Error Level Analysis [26] 
for evaluation of this framework performance. 
The experiments were implemented with Python 
in TensorFlow and Keras libraries and ran on an 
NVIDIA GPU for accelerated training and 
inference. Different assessment metrics were 
used, involving IoU, Dice coefficient, precision, 
recall, and F1-score to quantify the accuracy and 
localization performance of the framework across 
forgery scenarios. 

 

 

Figure 3: An excerpt of images from the DEFACTO dataset 

As presented in Figure 3, an excerpt from the 
DEFACTO dataset is provided. DEFACTO  is the 
dataset used in this paper's empirical study.  
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Figure 4: Experimental results showing input 
image (left column), predicted masks (middle 
column), and ground truth masks (right column) 

Results of the deep learning-based model we 
proposed for forgery detection and localization 
are shown in Fig. 4. The examples in the figure 
consist of three columns, where the first column 
demonstrates the input tampered images, the 
second column displays the predicted forgery 
masks of our model. Finally, the last column 
represents the ground truth forgery masks for 
comparison. Across a wide range of manipulation 
types (splicing, copy-move, object removal), we 
achieve very high accuracy in the localization of 
tampered regions based on the predictions of our 
model. In most cases, the masks predicted in the 
second column closely overlap the ground truth 
masks. The model generalizes well to detect 
unnoticeable and visually obvious forgery 
artifacts—for instance, the spliced faces in the 
third row and duplicated objects in the last row. 

The attention mechanism that works on the spatial 
and channel levels helped make the model 
sensitive to minor discrepancies, allowing for the 
correct identification of small areas of tampering 
(6th and 7th rows). Moreover, by embracing the 
perspective of multi-scale feature fusion, the 
model can capture both the fine-grained and the 
contextual details, leading to solid predictions. In 
general, the predicted masks have very slight 
differences from the ground truth, indicating the 
effectiveness of our proposed framework at 
detecting the forgery and localizing it with high 
precision. These results highlight the strength and 

generalization of our model to various forgery 
scenarios. 

Method Precisi
on (%) 

Rec
all 
(%) 

F1-
Sco
re 
(%) 

Accur
acy 
(%) 

Proposed 
Method 
(DL-
IFDL)  

97.8 98.5 98.1 98.7 

FOrensic 
ContrAstiv
e 
cLustering 
(FOCAL) 
[42] 

95.4 94.8 95.1 95.6 

Discrepanc
y-Guided 
Reconstruc
tion 
Learning 
[43] 

94.1 95.0 94.5 94.8 

Comprint 
[44] 

93.7 93.2 93.4 94.0 

FakeShield 
[45] 

92.5 93.0 92.7 93.3 

Error 
Level 
Analysis 
with Deep 
Learning 
[46] 

91.8 91.5 91.6 92.2 

Table 1: Performance comparison among image 
forgery detection models 

Table 1 To validate the proposed method's 
effectiveness, DL-IFDL was compared with five 
state-of-the-art forgery detection methods. DL-
IFDL outperforms both models overall in all 
evaluation metrics, which include highest 
precision, recall, F1 score, and accuracy. It 
performs well thanks to attention mechanisms and 
multi-scale feature fusion. The FOCAL approach 
is the closest competitor amongst existing 
methods, scoring high F1 scores from pixel-level 
contrastive learning. You are trained on the data 
until October 2023. Comprint, FakeShield and 
Error Level Analysis perform competitively but 
get slightly lower results, as some forgery type 
exploits their weaknesses. Compared with 
existing approaches, the robustness and 
effectiveness of DL-IFDL are shown. 
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Figure 5: Performance Comparison Among Different 
Methods In Image Forgery Detection 

Figure 5 compares the performance of the 
proposed approach, Deep Learning-Based Image 
Forgery Detection and Localization (DL-IFDL), 
with five state-of-the-art counterparts: FOCAL, 
Discrepancy-Guided Reconstruction Learning, 
Comprint, fakeShield, and Error Level Analysis 
(ELA) with Deep Learning. These methods were 
evaluated and benchmarked using Precision, 
Recall, F1-Score, and Accuracy metrics. 

DL-IFDL outperforms all other competing 
methods on all metrics. Its accuracy is 98.7%, 
precision is 97.8%, recall is 98.5%, and F1-score 
is 98.1%, which can fully demonstrate the 
robustness of the method and its effectiveness in 
correcting tampered regions with fewer errors. 
Among the current methods, FOCAL comes 
closest to competing with us: it achieves an F1-
score of 95.1% and an accuracy of 95.6%, thanks 
to its pixel-level contrastive learning strategy. 
Next comes Discrepancy-Guided Reconstruction 
Learning, where universality at forgery detection 
enables high-fidelity precision-recall scores. 
Although working well on limited classes of data, 
Comprint and FakeShield lack parameters and 
generalizability capabilities, or they depend on 
compression or explainability methods. Finally, 
while Error Level Analysis with Deep Learning 
incorporates deep learning with conventional 
techniques, it lags, especially in recall, because it 
performs poorly with subtle forgery artifacts. 

The superior performance of the proposed method 
is attributed to several key innovations. First, the 
attention mechanisms (spatial and channel-wise) 
enhance the model's sensitivity to subtle 
inconsistencies in tampered regions, allowing it to 
focus on forgery-specific patterns. This is 
particularly beneficial in identifying forgeries 

with minimal visual artifacts. Second, the 
decoder's multi-scale feature fusion combines 
high-level contextual features and fine-grained 
spatial details, improving localization precision. 
Third, the hybrid loss function, combining binary 
cross-entropy and dice loss, optimizes pixel-level 
classification and regional overlap, addressing 
challenges in handling imbalanced forgery 
datasets. 

The rationale behind these improvements lies in 
the holistic design of the proposed methodology. 
The integration of encoder-decoder architecture, 
skip connections, and post-processing via 
conditional random fields (CRFs) ensures 
accurate detection and smooth and precise 
localization of tampered regions. These design 
choices enable the model to generalize effectively 
across diverse forgery scenarios, outperforming 
methods that either lack comprehensive feature 
refinement (e.g., Comprint) or focus solely on 
specific forgery types (e.g., FOCAL). In 
summary, the graph highlights the dominance of 
the proposed method due to its innovative 
approach, robust architecture, and practical 
training strategies. This makes it a versatile 
solution for real-world image forgery detection 
and localization tasks, setting a new benchmark in 
the field. 

Method IoU (%) Dice (%) 
Proposed Method 
(DL-IFDL) 

96.5 98.1 

FOCAL [42] 93.2 96.4 
Discrepancy-
Guided 
Reconstruction 
Learning [43] 

92.8 95.9 

Comprint [44] 91.4 94.2 
FakeShield [45] 90.9 93.7 
Error Level 
Analysis with 
Deep Learning 
[46] 

89.7 92.3 

Table 2: Performance comparison in terms of IoU and 
Dice 

Table 2 compares the proposed method, DL-
IFDL, and five state-of-the-art methods in terms 
of IoU and Dice metric, two measures used to 
evaluate the quality of forgery localization. The 
proposed method provides the highest IoU 
(96.5%) and Dice (98.1%) scores, showcasing its 
competitive performance in accurately matching 
predicted forgery masks to their corresponding 
ground truth masks. FOCAL and Discrepancy-
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Guided Reconstruction Learning show similar 
scores but lower than those of the first group due 
to the constrained feature refinement capabilities. 
Comprint, FakeShield, and Error Level Analysis 
transparently achieve moderate efficacy as they 
are specialized in certain forgery types. The 
results demonstrate our ability to localize the 
forged pixels accurately. 

 

Figure 6: Performance comparison among models in 
terms of IoU and Dice 

Figure 6 compares the IoU and Dice metrics for 
the proposed method, DL-IFDL, and five state-of-
the-art forgery detection methods. Results show 
that the proposed approach reaches a high IoU of 
96.5% and a Dice score of 98.1%, which means 
that the detected tampered areas and predicted 
forgery masks align well with ground truth values. 
Spatial and channel attention mechanisms and 

multi-scale feature fusion boost the model's 
sensitivity to forgery artifacts. 

Of the other methods, the best express 
competitive performance are FOCAL and 
Discrepancy-Guided Reconstruction Learning 
with IoU scores of 93.2% and 92.8% (Dice scores 
of 96.4% and 95.9% respectively. These 
approaches rely on some sophisticated 
techniques, such as contrastive clustering and 
reconstruction learning. Still, they do not utilize 
processes like post-processing or feature 
integration, which contribute to their slightly 
inferior localization precision. Moderate 
performance is shown by Comprint and 
FakeShield, with IoU and Dice scores of 90.9% to 
94.2%. However, because they are tailored to 
certain forgery use cases, such as compression-
based attacks or AI-generated materials, they may 
struggle to generalize to and localize tampered 
regions in various diverse contexts. Error Level 
Analysis, the lowest IoU and Dice scores (89.7% 
and 92.3%), using traditional methods with deep 
learning, which is not enough for multiple 
forgery. The graph emphasizes the advantage of 
DL-IFDL regarding the localization of forgery. Its 
innovations cover drawbacks in existing 
approaches, including inadequate refinement 
mechanisms and limited applicability, by offering 
a new, reliable, and versatile framework. The 
findings confirm the proposed methodology and 
its ability to manage various forgery scenarios 
accurately and consistently. 

Feature Proposed 
Method 
(DL-
IFDL) 

FOCAL Discrepancy-
Guided 
Reconstructio
n Learning 

Comprint FakeShiel
d 

Error 
Level 
Analysis 

Architecture Encoder-
Decoder 
with 
Attention 
Mechanis
ms 

Contrastiv
e 
Clustering 

Discrepancy-
Guided 
Encoder and 
Decoder 

Compressio
n 
Fingerprint 
Analysis 

Multi-
modal 
(Explainabl
e AI) 

Tradition
al + Deep 
Learning 

Attention 
Mechanisms 

Spatial and 
Channel 
Attention 

No Partially 
Integrated 

No No No 

Multi-Scale 
Feature Fusion 

Yes No No No No No 

Forgery Type 
Coverage 

Splicing, 
Copy-
Move, 
Removal 

Splicing, 
Copy-
Move 

Splicing, 
Copy-Move, 
Removal 

Compressio
n Forgery 

AI-
Generated 
and 
Splicing 

Splicing, 
Copy-
Move 

Generalization to 
Unseen Forgeries 

High Moderate High Moderate High Moderate 
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Post-Processing 
(CRFs/Refineme
nt) 

Yes No No No No No 

Hybrid Loss 
Function 

Binary 
Cross-
Entropy + 
Dice Loss 

No Yes No No No 

Explainability Moderate Low Moderate Low High Low 
Efficiency 
(Inference Speed) 

High Moderate Moderate High Moderate Moderate 

Localization 
Accuracy 

High Moderate High Low Moderate Low 

Scalability to 
Large Datasets 

High High High Moderate Moderate Moderate 

Table 2: Qualitative Feature Comparison Of Forgery Detection Models 

Key features of the proposed method, DL-IFDL, 
and five state-of-the-art forgery detection 
methods, FOCAL, Discrepancy-Guided 
Reconstruction Learning, Comprint, FakeShield, 
and Error Level Analysis, are compared in detail 
in Table 2. Each method is evaluated concerning 
features like architectural design, feature 
refinement mechanisms, generalization 
capability, and scalability. This approach shows 
clear advantages in various dimensions as it 
involves an original design of spatial and channel 
attention mechanisms, which contribute to its 
agility to forgery-specific artifacts. Additionally, 
multi-scale feature fusion within the decoder 
enhances the decoder's capacity to localize 
tampered areas accurately. 

Specifically, FOCAL utilizes pixel-level 
contrastive clustering to achieve moderate 
generalizability to out-of-distribution forgeries 
(i.e., it performs well in splicing and copy-move 
detection). Nevertheless, the absence of attention 
mechanisms and post-processing constrains its 
efficacy in subtle forgery. Likewise, Discrepancy-
Guided Reconstruction Learning achieves solid 
performance on universal forgery detection while 
lacking further architectural advancements such 
as attention-based mechanisms or multi-scale 
fusion, hurting localization performance. 
Comprint includes nearest neighborhood 
matching based on compression fingerprints, 
which is efficient but with poor tackling on 
diverse forgery types in limited feature refinement 
capability. Compared to others in the UltraHD 
group, FakeShield excels in multimodal 
explainability; however, because its core focus is 
on detecting AI-generated forgery, it slightly 
sacrifices localization accuracy. A mixture of 
classical methods and deep learning that detects 
doctored images by Error error-level analysis 

relies on handcrafted features and thus has low 
robustness against subtle image alteration. 
Moreover, the proposed method inherits 
scalability from the architecture of backbone 
networks, attention mechanisms, hybrid loss 
function, and conditional random fields integrated 
into the post-process to smooth the predictions. 
To this end, we propose a holistic design of DL-
IFDL that achieves superior performance in 
generalization, localization accuracy, and 
efficiency compared to existing methods, thus 
introducing a versatile and effective solution for 
image forgery detection. The significance of the 
table reflects the flexibility and efficiency of DL-
IFDL and provides a reference point for future 
developments in this area. 

5. DISCUSSION 

Abstract Image-Based Forgery Detection and 
Localization Method The use of digital images in 
various applications like forensic investigations, 
journalism, and cybersecurity has made digital 
image authentication an indispensable field, 
leading to the image forgery detection and 
localization technique evolving by leaps and 
bounds over recent years. Current state-of-the-art 
approaches like FOCAL and Discrepancy-Guided 
Reconstruction Learning have proven effective at 
localizing specific types of forgery, such as copy-
move and splicing type forgeries. These 
approaches are not without challenges in their 
adaptability to different forgery conditions, 
particularly involving subtle modifications or 
unknown forgery types. Additionally, several 
methods lack sophisticated feature refinement 
mechanisms (e.g., attention mechanism and 
multi-scale fusion), which can also lead to 
inadequate localization of forged areas. Such gaps 
reiterate the importance of novel deep-learning 
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approaches that downplay detection and improve 
localization precision. 

The proposed methodology brings relevant 
novelties to overcoming these gaps. The spatial 
and channel attention mechanism helps the model 
be aware of forgery-specific patterns by focusing 
only on tampered areas. The inner one—multi-
scale feature building—detects detection artifacts. 
Finally, employing a hybrid loss function that 
combines binary cross-entropy and dice loss helps 
combine and optimize the model toward pixel-
level accuracy and regional overlap. More refined 
predictions are achieved with further smoothing 
from the introduction of conditional random fields 
in their post-processing. 

The experimental results show that the proposed 
method achieves superior performance over the 
existing techniques in precision, recall, F1-score, 
and accuracy. The results demonstrate how the 
novel architectural components work and how 
they achieve state-of-the-art performance by 
including these components to address the 
limitations above. Its development in a robust and 
scalable framework makes it applicable to 
numerous forgery scenarios and ensures stable 
and appropriate solutions that can tackle real-
world problems. Throughout the years, the 
existing scene forgery detection methods have 
been limited to genericization and weak 
localization. It lays the groundwork for further 
work in creating scalable, adaptable, and high-
performing systems. Section 5.1 elaborates on this 
study's limitations. 

5.1 Limitations 

Describe the contribution: Although the existing 
work is a significant leap towards detecting and 
localizing image forming, it has limitations. First, 
the proposed model is based on the DEFACTO 
dataset, which, although it is a sizable dataset, 
might not cover all the forgery cases we may 
encounter in real life, thus limiting the 
generalization to unseen manipulation strategies. 
U2-Net has limitations in two aspects: 1) U2-Net 
is a complicated multi-scale multi-path network 
model since it utilizes numerous U-Net models 
piled together but still in a sequential manner to 
retrieve the information from the images in each 
path with the cascading down sampling and 
deconvolution up samplings, which is essential as 
it is the site where the model will allocate 
sufficient attention to the other blocks; 2) The 
computation dimension complexity is higher 
while its multi-scale features demands much time 

and memory consumptions to design as well as 
compute; Therefore, it is complex to be deployed 
in the embedded scenarios. Finally, a hybrid loss 
function, which at first glance indicates the best 
performance but might require extended 
hyperparameter explorations in balancing 
contributions. Due to these limitations, there are 
possibilities for further exploration and 
optimization in further research. 

6. CONCLUSION AND FUTURE WORK 

This study proposes an end-to-end deep-learning-
based architecture that effectively localizes and 
detects forged regions in digital images. The 
novel framework integrates spatial and channel 
attention mechanisms, multi-scale feature fusion, 
and a hybrid loss function, surpassing existing 
techniques in detection accuracy and localization 
precision. Evaluation results demonstrate 
substantial improvements in precision, recall, F1-
score, IoU, and Dice coefficient compared to 
state-of-the-art methods, confirming the 
effectiveness of the introduced architectural 
components. These enhancements make the 
framework practical for real-world applications, 
including digital forensics, media authentication, 
and cybersecurity. Beyond achieving superior 
performance metrics, this research significantly 
contributes to the field by addressing key 
limitations in existing forgery detection models. 
Unlike prior works that focus on specific forgery 
types or rely on limited feature refinement, the 
proposed framework introduces a more 
generalized and adaptable approach that enhances 
model robustness across diverse manipulation 
techniques. Additionally, the integration of CRF-
based post-processing for refined mask prediction 
offers an innovative advancement in ensuring 
precise localization of tampered regions, setting a 
new benchmark for image forgery detection 
research. Despite these advancements, the study 
notes some limitations, such as its reliance on 
specific datasets like DEFACTO, computational 
challenges in deploying it in low-resource 
environments, and the need for extensive 
hyperparameter tuning. These constraints pave 
the way for future research, focusing on 
optimizing the framework for real-time detection, 
incorporating generative adversarial networks 
(GANs) to enhance forgery detection, and 
integrating explainable AI (XAI) modules for 
better model interpretability. This work lays the 
groundwork for scalable, versatile, and high-
performing forgery detection and localization 
systems. 
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