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ABSTRACT 
 

Black gram, a critical pulse crop that accounts for over 70% of global production, is essential for economic 
stability and nutritional security. Leaf diseases, including Anthracnose, Powdery Mildew, Leaf Crinkle, and 
Yellow Mosaic, severely jeopardize its productivity, resulting in substantial crop losses. In order to resolve 
these obstacles, this investigation suggests an automated deep learning-based solution for the early detection 
and classification of diseases. The research introduces the Efficient AttentionNET model, which is 
incorporated with Channel Attention and Spatial Attention mechanisms to improve feature extraction, using 
the Black Gram Plant Leaf Disease Dataset (BPLD) that includes in-field images. The model was able to 
effectively acquire critical edge information by utilizing wavelet-transformed samples for data augmentation. 
The SVM classifier with an RBF kernel demonstrated exceptional performance, achieving a 99.50% F1-
score, 99.50% precision, 99.52% recall, and 99.50% accuracy. The proposed model is highly effective in the 
classification of black gram leaf disease due to the integration of wavelet-based augmentation and attention 
mechanisms. This innovative approach enhances agricultural disease management by assisting farmers in the 
reduction of yield losses and the promotion of sustainable farming practices. Consequently, it contributes to 
global food security and economic resilience. 

Keywords: Black gram leaf disease, SVM Classifier, Channel Attention, Spatial Attention, Wavelet 
Transform, and EfficientNet 

 
 
1. INTRODUCTION  
 

In contemporary times, agriculture 
continues to be a crucial area of study, with swift 
progress in computer vision applications 
revolutionizing the sector worldwide. The success of 
agriculture, a fundamental driver of economic 
growth in developing nations, depends on the quality 
and quantity of food crops. Plant diseases represent 
a considerable concern, negatively impacting the 
quality and productivity of agricultural outputs. 
Timely identification and precise diagnosis of plant 
diseases are crucial for reducing economic losses 
and improving crop yield. Conventional techniques 
for diagnosing plant diseases, dependent on manual 
examination, are frequently laborious, time-
consuming, and susceptible to human mistake. 
These issues are exacerbated for small-scale farmers, 
who may lack the resources for consistent manual 
inspections. Traditional computer vision methods 

for illness identification frequently rely on human 
feature extraction from images, a complicated and 
resource-demanding operation that ultimately 
impacts the accuracy of classification models. The 
emergence of deep learning, especially 
Convolutional Neural Networks (CNNs) [19], has 
transformed plant disease detection in agriculture. In 
contrast to traditional methods, CNNs autonomously 
extract pertinent features from training datasets, 
thereby optimizing the process and enhancing 
classification precision. Black gram, a major pulse 
crop primarily grown in India, accounts for 
approximately 70% of global production. This crop 
is particularly vulnerable to many diseases, such as 
Anthracnose, Powdery Mildew, Leaf Crinkle, and 
Yellow Mosaic, which can significantly diminish 
output. Timely and precise identification of these 
diseases is essential for reducing crop losses and 
sustaining farmers' livelihoods. 
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To tackle these issues, there is an urgent 
requirement for automated and efficient systems that 
can diagnose and classify black gram illnesses by 
analyzing visual signs on plant leaves. Creating 
resilient CNN models for disease categorization 
necessitates varied and comprehensive datasets. 
Nonetheless, the creation of such databases, 
especially ones that accurately represent real-world 
intricacies, requires substantial labor and money. 
Publicly accessible datasets, including the 
PlantVillage dataset, have been widely utilized for 
training deep learning models. The PlantVillage 
dataset contains more than 54,000 photos over 38 
categories; yet, research indicates that models 
trained on this dataset frequently underperform in 
practical applications due to its insufficient 
representativeness.  

All available datasets are predominantly 
laboratory-based, gathered under controlled 
conditions including uniform illumination, camera 
angles, and elevations. Conversely, in-field datasets 
frequently provide difficulties, as CNN algorithms 
may find it challenging to extract depth 
characteristics from photographs taken in natural 
settings. This constraint underscores the necessity of 
integrating attention mechanisms [12] with CNN 
models, facilitating their ability to discern profound 
underlying properties in input images proficiently. 
To rectify this deficiency, [2] created an augmented 
dataset consisting of 87,848 [11] photos over 58 
categories, integrating authentic field environment 
images with the PlantVillage dataset.  

Notwithstanding these gains, CNN-based 
models for plant disease detection continue to 
encounter difficulties in processing photos with 
intricate and extraneous backgrounds. This paper 
presents a novel strategy of leaf segmentation prior 
to training and testing the CNN model to enhance 
classification accuracy under these conditions. The 
segmented leaf regions, derived from a segmentation 
model utilizing DeepLabv3+ with MobileNetV2 
[12], are utilized as inputs for the proposed Deep 
Convolutional Neural Network (DCNN) model, 
therefore improving its performance. 

This research offers significant contributions: it 
mitigates the shortcomings of current datasets, 
enhances classification precision in difficult 
circumstances, and establishes a comprehensive 
framework for practical use in black gram illness 
identification. The subsequent points delineate the 
principal scientific contributions of this study: 

• The creation of the Efficient AttentionNET 
model, which incorporates advanced Channel 

Attention and Spatial Attention mechanisms, 
markedly improved the classification accuracy 
of Black Gram Leaf diseases, especially in 
challenging field conditions. 

• The integration of Wavelet Transformed 
samples into the augmented dataset 
substantially enhanced the model's capacity to 
capture and utilize edge information, resulting 
in improved classification performance. 

• This research presents an innovative, rapid, 
exact, and reliable method for classifying black 
gram plant diseases, enhancing agricultural 
disease management, minimizing output 
losses, and equipping farmers with educated 
decision-making tools. 

The subsequent sections of the article are 
structured as follows: Section 2 offers an exhaustive 
examination of the existing research. Section 3 
delineates the framework of the feature extraction 
and classification model. Section 4 analyzes the 
experimental results, whilst Section 5 articulates the 
conclusions. 

2. LITERATURE REVIEW 

 The detection and classification of foliar 
diseases in plants have been a primary focus in 
agricultural research because of their effects on crop 
yield and quality. Conventional techniques, 
dependent on manual examination, are laborious, 
time-consuming, and susceptible to human mistake. 
The emergence of deep learning methodologies, 
especially Convolutional Neural Networks (CNNs), 
has revolutionized this field by facilitating precise 
and automatic detection methods. 

Srinivas Talasila et al. presented [1] the 
Black Gram Plant Leaf Disease (BPLD) dataset to 
tackle the difficulties in identifying and categorizing 
black gram leaf diseases, which pose a considerable 
threat to agricultural output in India. The dataset 
consists of 1,000 photos divided into five categories: 
four disease categories (Anthracnose, Leaf Crinkle, 
Powdery Mildew, and Yellow Mosaic) and one 
healthy category. These photos, obtained from actual 
crop areas in Nagayalanka, Krishna, Andhra 
Pradesh, were processed under the supervision of 
agricultural specialists. The dataset is intended to 
advance studies in image processing and machine 
learning, aiding in the early diagnosis of black gram 
leaf diseases and providing strategies to reduce 
financial losses for farmers. This dataset is sourced 
directly from field situations instead of controlled 
laboratory settings, hence increasing its practical 
applicability. It is freely available at 
https://doi.org/10.17632/zfcv9fmrgv.3. 
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Astha Sharma et al. proposed [10] a hybrid 
model to overcome limitations in traditional CNN-
based methods for black gram leaf disease detection, 
which often struggle with reliability and economic 
feasibility. Their approach combines VGGNet and 
Inception-V3 for feature extraction with a 
transformer-based classification network. By 
augmenting the BPLD dataset to 15,000 images, 
they addressed overfitting and improved feature 
extraction. Their model demonstrated superior 
performance, offering a robust solution for the early 
detection of black gram leaf diseases. 

S. Harika et al. devised [4] the Detection of 
Black Gram Crop Disease (DBCD) methodology, 
concentrating on four principal diseases: 
Anthracnose, Leaf Crinkle, Powdery Mildew, and 
Yellow Mosaic. Utilizing the BPLD dataset, they 
conducted comparative evaluations of machine 
learning methods (decision tree, random forest, k-
nearest neighbor) and deep learning methodologies 
(artificial neural network and CNN). Among these, 
CNN attained the best accuracy of 89%, surpassing 
other models in disease identification. 

Asha Rani K.P. et al. investigated [5] a deep 
learning methodology for disease identification in 
cucumber and black gram crops utilizing models 
including Extreme Learning Machine (ELM), 
Feedforward Neural Network (FNN), Deep Residual 
Network, CNN, and MobileNet. MobileNet, tailored 
for resource-limited settings, attained superior 
classification accuracy—97% for cucumber 
infections and 95% for black gram disorders. The 
work illustrated MobileNet's efficacy using a dataset 
that includes multiple illness phases, establishing a 
standard for subsequent research in disease 
classification. 

Kirti Rawal et al. devised [6] an advanced 
Deep Convolutional Neural Network (DCNN) for 
the categorization of black gram plant leaf diseases. 
To overcome the constraints of conventional CNN-
based systems in intricate field situations, they 
employed DeepLabv3+ with MobileNetV2 for leaf 
segmentation and implemented dataset 
augmentation techniques such as rotation and noise 
injection to enlarge the BPLD dataset to 15,000 
photos. Their DCNN model, with 5-fold cross-
validation, attained an accuracy of 99.54%, an F1-
score of 98.80%, precision of 98.78%, and recall of 
98.82%, surpassing current models and offering a 
reliable solution for practical agricultural disease 
diagnosis. 

Prasanth et al. (2023) suggested [7] a deep 
learning methodology integrating CNNs, Local 
Binary Patterns (LBP), and Support Vector 
Machines (SVMs) for the detection and 
classification of black gram leaf diseases, including 

leaf blight, leaf spot, and yellow mosaic virus. They 
implemented preprocessing to improve image 
quality and utilized a 50-layer CNN with LBP for 
feature extraction. The SVM functioned as the 
classifier, enhancing accuracy and reducing 
misclassification. Their model attained an accuracy 
of 98.69%, indicating enhanced performance 
relative to prior methodologies. This method 
underscores the capability of deep learning in 
assisting farmers with early disease identification 
and efficient crop management. 

The primary focus of prior studies on the 
classification of plant diseases was on CNN-based 
models, such as ResNet, VGG, and MobileNet. 
Despite their effectiveness, these models frequently 
experience overfitting, limited generalization, and 
subpar performance in real-world scenarios as a 
result of their tiny, unaugmented datasets. 
Furthermore, the majority of works implement 
conventional train-test divides, which restricts the 
assessment of robustness. In contrast, this study 
introduces an attention-based deep learning model 
that is optimized for feature extraction and 
incorporates EfficientNetB0, Channel, and Spatial 
Attention mechanisms to improve contextual 
learning. The dataset was expanded to 15,000 
images using augmentation techniques, which 
ensured greater generalization, in contrast to prior 
approaches. Additionally, a 5-fold cross-validation 
method was implemented to ensure a more 
dependable performance evaluation. The results 
show that this model is more scalable and effective 
for the classification of black gram leaf disease in 
real-world applications than traditional CNNs, as it 
demonstrates superior accuracy and reliability. Deep 
learning and machine learning have significantly 
improved the accuracy and reliability of plant 
disease detection technologies. This research 
underscores the importance of technology in 
agriculture, from the development of datasets to the 
development of innovative model designs, in order 
to reduce illness, increase crop output, and promote 
sustainable farming. 

3.  MATERIALS AND METHODS 

The proposed method commences with 
picture augmentation and Wavelet Transform multi-
scale edge detection to enhance and diversity the 
dataset. Figure 1 depicts the use of an attention-
embedded Efficient AttentionNET model for feature 
extraction to discern critical leaf characteristics. The 
collected features are further reduced by Principal 
Component Analysis (PCA) to decrease 
dimensionality and preserve the most significant 
components. An SVM Classifier [15] is utilized for 
accurate classification of potato leaf diseases in 
various conditions. 
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Figure 1: Methodology for Black Gram Leaf Disease Classification  

A. Data Collection and Preprocessing 

The Black Gram Plant Leaf Disease (BPLD) 
dataset was generated by photographing sick plant 
leaves [1] from agricultural areas in Nagayalanka, 
Krishna District, Andhra Pradesh. The collection 
comprises 1000 photos across four disease categories—
Anthracnose, Leaf Crinkle, Powdery Mildew, and 
Yellow Mosaic—alongside one healthy category. Table 
1 presents the allocation of photos among various 
groups. 

Table 1: Number of Images in Each Disease Category in the 
BPLD Dataset 

Sl No. Disease of Leaf 
Number of 

Images 

1 Anthracnose 230 

2 Healthy 220 

3 Leaf Crinkle 150 

4 Powdery Mildew 180 

5 Yellow Mosaic 220 

  Total 1000 

During preprocessing, all photos were 
downsized from 512 × 512 pixels to 224 × 224 pixels. 
The dataset was structured into five folders, each 
corresponding to a distinct category: Anthracnose, 
Healthy, Leaf Crinkle, Powdery Mildew, and Yellow 
Mosaic. Each folder comprises photos of leaves 
displaying visual symptoms pertinent to the associated 
category. The dataset has been made publicly available 
on Mendeley Data under the name "BPLD Dataset". 
Table 1 shows the distribution of BPLD dataset. 

B. Data Augmentation 

A robust data augmentation method [6] was 
employed to enlarge the training dataset of Black Gram 
leaf disease photos, hence improving the performance 
and robustness of the machine learning model. The 
original dataset comprised 1000 photos, with 798 
allocated for training and 202 for testing. To 
synthetically augment the training dataset, several 
fundamental methods were utilized: rotation within a 
25-degree range to simulate various viewing angles, 
adjustments in width and height up to 20%, shear 
transformations with a magnitude of 0.2, zoom 
variations up to 30%, and horizontal flips to enhance 
orientation diversity. The Wavelet Transform was 
employed for multi-scale edge detection, providing 
intricate representations of leaf edges and textures. The 
PyWavelets (pywt) module was utilized to perform 
discrete wavelet transform (DWT), producing 
approximation and detail coefficients that enhance the 
dataset with intricate edge and texture features. The 
modified photos improved the model's capacity to 
accurately identify illness traits. The augmentation was 
executed in stages, with each image processed in 
float32 format and enhanced utilizing Keras's 
ImageDataGenerator class for transformations. The 
Wavelet Transform enhanced the dataset by 
incorporating multi-scale edge and texture changes. 
This strategy increased the training dataset from 798 to 
4788 samples, while preserving 202 testing samples. 
The enhanced dataset markedly augmented the model's 
ability to generalize and excel in many settings. Motor 
vehicles are described in this database. For instance, 
proprietor name, proprietor ID, vehicle name, vehicle 
ID. The vehicle database is seen in Figure 3.
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Figure 2: Wavelet transformed and basic augmented samples 

C. Efficient AttentionNET: An Optimized Variant 
for Efficient Feature Extraction 

Efficient AttentionNET is an optimized 
version of the original EfficientNetB0 architecture, 
specifically engineered to improve feature extraction by 
strategically integrating attention methods. The 
alterations encompass the incorporation of Channel 
Attention (CA), Spatial Attention (SA) [12,20], and 
Efficient Channel Fusion (ECF) procedures prior to the 
Batch Normalization and Swish Activation layers. The 
modifications seek to augment the model's capacity to 
concentrate on pertinent aspects in photos, thus 
improving performance while preserving computing 
efficiency. Efficient AttentionNET upholds the 
fundamental tenets of EfficientNetB0, which 
harmonizes network depth, width, and resolution to get 
elevated accuracy with a reduced number of parameters 
and FLOPs. Efficient AttentionNET, however, 
incorporates attention methods that enhance the 
precision of feature extraction. In contrast to 
EfficientNetB0, which exclusively utilizes 
convolutional operations and depthwise separable 
convolutions, Efficient AttentionNET employs 
attention techniques that enable the network to 
dynamically prioritize significant information. This 
produces a model that is more efficient and more adept 
at discerning nuanced patterns and details in images, 
essential for tasks demanding high precision with 
constrained computational resources. 

D. Purpose and Need for Attention Mechanisms 
(CA, SA, ECF) 

The inclusion of Channel Attention, Spatial 
Attention, and Efficient Channel Fusion mechanisms in 
Efficient AttentionNet addresses specific challenges in 
feature extraction: 
Channel Attention (CA): Channel Attention 
mechanisms enhance the model's ability to focus on the 
most informative channels. By applying global average 
pooling and a small fully connected network, CA 
assigns higher weights to channels that contribute more 
to the task at hand, thus filtering out irrelevant or 
redundant features. Mathematically, this can be 
expressed as: 

𝐶𝐴(𝑋) = 𝜎 ቀ𝑊ଶ ⋅ 𝑅𝑒𝐿𝑈൫𝑊ଵ ⋅ 𝐺𝐴𝑃(𝑋)൯ቁ (1) 

where 𝐺𝐴𝑃(𝑋) is the global average pooling of input 𝑋, 
and 𝑊ଵand 𝑊ଶ are learned weight matrices. 

Spatial Attention (SA): Spatial Attention focuses on the 
most critical spatial regions within feature maps, 
helping the network to localize important areas in an 
image. This is achieved by applying a convolutional 
operation across the spatial dimensions, followed by a 
sigmoid activation to generate attention maps. The 
formula is: 

𝑆𝐴(𝑋) = 𝜎൫𝐶𝑜𝑛𝑣2𝐷(𝑋)൯                 (2) 
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Figure 3: Efficient AttentionNET Architecture 

Where 𝐶𝑜𝑛𝑣2𝐷(𝑋) applies a convolutional filter across 
the spatial dimensions of the input. 

 
Figure 4 Channel and Spatial Attention Mechanism 

Efficient Channel Fusion (ECF): ECF combines 
features across channels to refine and enhance the 
representation further. This process is particularly 
useful when the number of channels is limited, as it 
helps in mixing the information across different 
channels more effectively. ECF typically involves a 
combination of pointwise and depthwise convolutions 
to achieve this fusion, ensuring that the resultant feature 
map is both informative and efficient. These 
mechanisms compute attention weights that identify 
and emphasize important features within the feature 
map. Rather than passing the attention weights directly 

to the next layer, the model uses them to produce a 
weighted sum, creating a refined feature map. This 
refined feature map, enriched by the attention 
information, is what gets forwarded to the subsequent 
layers, enhancing the model's focus on critical features. 

E. Model Structure 

The table below summarizes the modified 
structure of Efficient AttentionNET, detailing the input 
and output shapes at each stage [12], along with the 
expansion factors, repeat times, and strides:  

The model begins with a 224 × 224 × 1 
grayscale image input. The initial convolutional layer 
(Conv2d) reduces the spatial dimensions by half (112 × 
112) while expanding the channels to 32, setting the 
stage for the attention mechanisms to focus on the most 
relevant features. At this stage, the Channel Attention 
(CA) and Spatial Attention (SA) layers refine the 
feature map by emphasizing important channels and 
spatial regions. The Efficient Channel Fusion (ECF) 
then fuses these features to produce a more informative 
representation, still with a size of 112 × 112 × 32. 

Following the attention mechanisms, Batch 
Normalization and Swish Activation are applied to 
stabilize and non-linearly activate the refined feature 
maps, preparing them for the subsequent MBConv 
blocks.  
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TABLE 2. THE STRUCTURE OF EFFICIENT ATTENTIONNET MODEL 

  

Operators Input shapes 
Expans

ion 
factor 

Output shapes 
Repeat 
times 

Strides 

Input Layer 224 × 224 × 1 - 224 × 224 × 1 1 - 

Conv1_padding 224 × 224 × 1 - 225 × 225 × 1 1 1 

Conv2d 225 × 225 × 1 - 112 × 112 × 32 1 2 

Channel Attention 112 × 112 × 32 - 112 × 112 × 32 1 - 

Spatial Attention 112 × 112 × 32 - 112 × 112 × 32 1 - 

Efficient Channel 
Fusion 

112 × 112 × 32 - 112 × 112 × 32 1 - 

BatchNorm 112 × 112 × 32 - 112 × 112 × 32 1 - 

Swish Activation 112 × 112 × 32 - 112 × 112 × 32 1 - 

MBConv1 112 × 112 × 32 1 112 × 112 × 16 1 1 

MBConv6 112 × 112 × 16 6 56 × 56 × 24 2 2 

MBConv6 56 × 56 × 24 6 28 × 28 × 40 2 2 

MBConv6 28 × 28 × 40 6 14 × 14 × 80 3 2 

MBConv6 14 × 14 × 80 6 14 × 14 × 112 3 1 

MBConv6 14 × 14 × 112 6 7 × 7 × 192 4 2 

MBConv6 7 × 7 × 192 6 7 × 7 × 320 1 1 

Conv2d 1 × 1 7 × 7 × 320 - 7 × 7 × 1280 1 1 

Globalpool 7 × 7 × 1280 - 1280 1 - 

Dropout 1280 - 1280 1 - 

Output Layer 1280 - num_classes 1 - 

The Swish activation function is defined as: 
𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ⋅ 𝜎(𝑥)                                (3) 

where 𝜎(𝑥) is the Sigmoid function, given by: 

𝜎(𝑥) =
1

1 + 𝑒ି௫
                                        (4) 

The MBConv layers continue the process of 
efficient feature extraction, progressively reducing the 
spatial dimensions while expanding the number of 
channels, ultimately leading to a rich and compact 
feature representation. The model ends with a 1x1 
convolution to further refine the features, followed by 

global pooling and dropout before producing the final 
output layer typically consists of a fully connected 
(dense) layer that maps these 1280 features to the 
desired number of output classes (e.g., for a 
classification task, this could be the number of 
categories). 

F. Model Comparison: Efficient AttentionNet vs. 
EfficientNet-B0 

In deep learning, key metrics like Floating Point 
Operations (FLOPs) and parameter count are essential 
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for evaluating model performance and efficiency. 
FLOPs [12] measure the computational complexity, 
while the number of parameters indicates the model's 
capacity. Efficient AttentionNet demonstrated a total of 
227.78 MMac (Million Multiply-accumulate 
operations), substantially lower than EfficientNet-B0's 
384.88 MMac. This reduction in FLOPs reveals 
Efficient AttentionNet lower computational demands, 
making it ideal for deployment in resource-constrained 
environments.  

Efficient AttentionNET also features 3.4 
million parameters, compared to EfficientNet-B0's 5.29 
million. While EfficientNet-B0 offers higher capacity 
due to its greater parameter count, Efficient 
AttentionNet compact architecture provides significant 
advantages in memory-limited applications. The 
considerable decrease in both FLOPs and parameter 
count in Efficient AttentionNet emphasizes its 
efficiency and suitability for real-time and low-power 
applications. In contrast, EfficientNet-B0, though more 
computationally demanding and larger, may deliver 
enhanced accuracy due to its higher capacity. The 
comparison underscores the importance of selecting a 
model based on specific application needs. Efficient 
AttentionNet lower FLOPs and parameter count 
highlight its suitability for environments where 
computational resources are constrained, balancing 
efficiency and performance effectively. 

G. Principle Component Analysis 

By applying Principal Component Analysis 
(PCA) to the 1280-dimensional feature vector 
generated by Efficient AttentionNet, I successfully 
reduced the dimensionality to 713 components, 
ensuring that 98% of the original variance was retained. 
This reduction process identified the most significant 
patterns in the data, allowing the preservation of crucial 
information while significantly lowering the feature 
count. 

1) Impact of PCA on Feature Dimensionality: 

PCA identifies the directions (principal 
components) in the feature space along which the data 
varies the most. By projecting the original 1280-
dimensional features onto these principal components, 
PCA effectively reduces the number of features to 713 
while preserving 98% of the original data's variance. 
This means that the reduced 713-dimensional feature 
set still captures nearly all of the important information 
from the original 1280 features. 

The choice of n=0.98 indicates that 98% of the 
original variance is retained in the reduced feature set. 
This ensures that the most critical aspects of the data are 

preserved, minimizing information loss while 
significantly reducing the number of features. 

Reducing the feature count from 1280 to 713 has 
multiple benefits: With fewer features, subsequent 
processing stages (such as classification) require less 
computational power, which speeds up model inference 
and reduces resource consumption. By reducing the 
dimensionality, PCA helps mitigate the risk of 
overfitting, especially in scenarios where the training 
data might be limited. The model focuses on the most 
informative features, discarding less relevant or noisy 
dimensions. The reduced feature set (713 features) 
simplifies the model, making it easier to interpret the 
contributions of different features to the final 
classification. Each of these 713 components represents 
a linear combination of the original 1280 features, 
optimized to capture the most significant patterns in the 
data. 

H. Classification 

During the classification phase, Efficient AttentionNET 
employed Support Vector Machine (SVM) classifiers 
with four distinct kernels: RBF, Linear, Polynomial, 
and Sigmoid. The main aim was to assess the efficacy 
of these kernels in utilizing the diminished feature set 
derived from PCA for precise and efficient 
classification. The kernels were evaluated according to 
essential criteria, including accuracy, precision, recall, 
F1-score, and insights obtained from the confusion 
matrices. 

1) Performance Comparison across Kernels 
The classification results for the SVM 

classifiers with different kernels are summarized in the 
table below: 

TABLE 3. RESULTS COMPARISON OF ALL SVM CLASSIFIER KERNELS 

Kernel Accuracy Precision  Recall 
F1-
Score  

RBF 99.50 99.52 99.50 99.50 

Linear 96.04 97 96 96 

Poly 93.07 94 92 93 

Sigmoid 95.05 96 95 95 

The RBF kernel emerged as the most effective, 
achieving the highest accuracy (99.50%) and F1-score 
(99.50%). This highlights its superior ability to handle 
complex, non-linear decision boundaries, making it 
ideal for datasets with intricate patterns. The Linear 
kernel, while slightly less accurate, produced consistent 
and interpretable results, making it suitable for linearly 
separable data and simpler classification tasks. 
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The Polynomial kernel exhibited the lowest 
accuracy, indicating challenges in handling overlapping 
or complex features, leading to overfitting and 
increased misclassification. Meanwhile, the sigmoid 
kernel showed balanced performance but fell short 
compared to the RBF kernel in both accuracy and F1-
score. 
 

 

(a) Rbf Kernel 
 

 

(b) Linear Kernel 
 

 

(c) Polynomial Kernel   
 

 

(d) Sigmoid Kernel  

Figure 5. Confusion Matrix of SVM all Kernels 

The confusion matrices provided deeper 
insights into class-specific classification patterns across 
the four kernels. The RBF kernel consistently achieved 
the highest accuracy with minimal errors, excelling in 
managing non-linear class boundaries and reducing 
misclassification rates, particularly for Class 3 and 
Class 4. The Linear kernel performed well for linearly 
separable classes but struggled with non-linear patterns, 
especially in Class 2, while demonstrating strong 
classification for Class 4, with minor errors observed in 
other classes. The Sigmoid kernel balanced 
generalization and complexity; however, it encountered 
challenges with Classes 2 and 3, leading to notable 
misclassifications. On the other hand, the Polynomial 
kernel exhibited the highest misclassification rates, 
particularly between adjacent classes, such as Classes 2 
and 3, due to its tendency to overfit the data. 

Class-specific trends further highlighted key 
observations. Class 0 was well-classified across all 
kernels, while Class 1 showed occasional 
misclassifications in the Polynomial and Sigmoid 
kernels. Class 2 posed significant challenges for both 
the Polynomial and Sigmoid kernels, primarily due to 
overlapping features. Class 3 was best managed by the 
RBF kernel, while other kernels showed notable 
misclassifications. Finally, Class 4 demonstrated strong 
performance with the RBF and Linear kernels but 
showed some confusion in the Polynomial and Sigmoid 
kernels. 

Overall, the RBF kernel demonstrated the best 
performance, effectively balancing accuracy and 
misclassification reduction. Its ability to handle 
complex, non-linear relationships makes it the most 
suitable choice for this dataset. The Linear kernel, 
though simpler, offers efficiency and consistency for 
linearly separable classes. The Sigmoid kernel provided 
balanced results but struggled with certain classes, 
while the Polynomial kernel proved less effective due 
to overfitting. Kernel selection should be driven by the 
complexity of the dataset and task requirements. For 
datasets with non-linear patterns, the RBF kernel 
remains optimal, delivering high accuracy and reliable 
generalization, making it highly suitable for real-world 
agricultural applications like black gram leaf disease 
detection. 
4. RESULTS AND DISCUSSION 

This study evaluated the performance of SVM 
classifiers using the Black Gram Leaf Disease Field 
dataset, particularly focusing on the enhancements 
achieved by different kernels. The model's performance 
was assessed using accuracy, precision, recall, and F1-
score to confirm its efficacy in diagnosing black gram 
leaf diseases. The evaluation metrics were calculated 
using the following equations:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
              (5) 

Actual\Pr
edicted

Class 0 Class 1 Class 2 Class 3 Class 4

Class 0 40 0 0 0 0

Class 1 0 51 0 0 0

Class 2 0 0 35 1 0

Class 3 0 0 0 32 0

Class 4 0 0 0 0 42



 Journal of Theoretical and Applied Information Technology 
28th February 2025. Vol.103. No.4 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1265 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                     (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                           (7) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
             (8) 

Accuracy evaluated overall correctness, 
whereas precision and recall quantified the model's 
management of false positives and false negatives. The 
F1-score offered a comprehensive assessment of the 
model's categorization efficacy. The RBF kernel 
exhibited superior performance, attaining an accuracy 
of 99.50%, precision of 99.52%, recall of 99.50%, and 
an F1-score of 99.50%. These measures highlight the 
RBF kernel's capacity to manage intricate, non-linear 
decision boundaries, rendering it the most efficient 
kernel for this dataset. 

The influence of training data size on model 
generalization was examined by 5-fold cross-validation. 
The training score consistently registered at 1.0000 
across all folds, signifying that the model flawlessly 
accommodated the training data. The gradual rise in 
cross-validation scores indicates the model's enhanced 
generalization with additional training data. 

TABLE 4. 5-FOLD CROSS VALIDATION SCORES 

Folds 
Training 
Examples 

Training 
Score 

Cross-
Validation 
Score 

Fold-1 456 1.00 0.9447 

Fold-2 1482 1.00 0.9751 

Fold-3 2508 1.00 0.9902 

Fold-4 3534 1.00 0.9961 

Fold-5 4560 1.00 0.9989 

The cross-validation score improved from 
0.9447 with 456 examples to 0.9989 with 4560 
examples, showing that larger datasets allowed the 
model to better capture patterns and minimize 
overfitting. This highlights the importance of sufficient 
training data in enhancing generalization and achieving 
robust model performance for real-world agricultural 
applications. The ROC curve for the RBF kernel 
demonstrated near-perfect classification performance 
across all classes (0-4). Each class achieved an AUC 
(Area under the Curve) of 1.00, signifying that the 
model perfectly distinguished between classes. The 
ROC curves were positioned close to the top-left corner, 
reflecting a high true positive rate (TPR) and a low false 
positive rate (FPR). This optimal performance indicates 

the model’s ability to maximize true positives while 
minimizing false positives. 

 
(a)Learning Curve of RBF kernel 

 
(b) AUC-ROC curve of RBF kernel 

Figure 6. SVM RBF kernels learning curve and AUC-ROC curve 
 

The combination of high cross-validation 
scores and perfect ROC curve performance highlights 
the model's effectiveness, particularly when using the 
RBF kernel. The model demonstrated a strong ability to 
extract meaningful features and generalize to unseen 
data, refining its feature extraction process as more 
training examples were provided. The results 
underscore the significance of using sufficient data and 
appropriate kernels to ensure accurate, reliable, and 
scalable performance for black gram leaf disease 
detection. 

A. Comparison with Existing State-of-the-Art 
Models 

To demonstrate the effectiveness of the 
proposed system, a detailed comparison with existing 
state-of-the-art models for black gram leaf disease 
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detection is presented. Such a comparison is essential to 
evaluate the advancements brought by our model and 
its capability to address the challenges of in-field 
disease detection. The table below summarizes the 
accuracy of various models trained on the BlackGram 
Plant Leaf Disease Dataset (BPLD): 
 

TABLE 5. RESULT COMPARISON WITH PREVIOUS STATE-OF-ART-
METHODS. 

 

Author & 
Year 

Model Name 
Dataset 
Name 

Accuracy 

Sagar et al. 
2023 

ANN + CNN BPLD 89% 

Neha 
Hajaro et 
al. 2024 

DBSCAN + 
LGTP Features 
+ Colour 
Features 

BPLD 90 % 

Mathiazha
gan et al. 
2023 

Inception+Resn
et V2 

BPLD 93% 

Asharani 
et al. 2023 

ELM+RNN+ 
Deep Residual 
Network 

BPLD 95% 

Marufatal 
et al. 2023 

CNN based 
Model 

BPLD 98.66% 

Prasanth et 
al. 2024 

CNN50+LBP BPLD 98.69% 

Proposed 
Model 

Efficient 
AttentionNET 

BPLD 99.50 

 
The suggested Efficient AttentionNET model 

greatly enhances black gram leaf disease classification 
by overcoming critical constraints identified in current 
state-of-the-art techniques. Our technique, unlike 
conventional CNN-based models that depend 
exclusively on convolutional processes, incorporates 
EfficientNetB0 along with Channel and Spatial 
Attention mechanisms, thereby augmenting feature 
extraction and enhancing classification performance. 
Previous models, including ANN + CNN (89%) and 
DBSCAN + LGTP Features + Colour Features (90%), 
encountered difficulties in feature discrimination in 
intricate field conditions. Our approach addresses this 
by integrating wavelet-transformed data 
augmentations, which maintain essential edge 
characteristics and enhance generalization across 
diverse datasets. Furthermore, in contrast to Inception + 
ResNet V2 (93%) and ELM + RNN + Deep Residual 
Network (95%), the suggested method employs 
attention-based mechanisms that dynamically 
concentrate on significant areas of the leaf picture, 
hence ensuring resilience in real-world agricultural 
contexts. Our model's accuracy of 99.50% exceeds that 
of recent CNN-based models (98.66%) and CNN50 + 

LBP (98.69%), while demonstrating robust 
generalization during 5-fold cross-validation. In 
contrast to earlier studies that focus mainly on accuracy, 
our research offers a practical, scalable approach by 
enhancing computational efficiency and facilitating 
real-time disease diagnosis, hence ensuring its 
applicability in agricultural environments. This study 
not only attains enhanced classification efficacy but 
also fosters sustainable agricultural practices by 
reducing crop losses and advancing early disease 
detection methods, thus reconciling traditional CNN 
techniques with attention-based deep learning 
frameworks. The Efficient AttentionNET model attains 
elevated accuracy, although it possesses certain 
restrictions. The computational complexity may 
impede real-time implementation on low-resource 
systems. Notwithstanding data augmentation, domain 
alterations in real-world scenarios, like lighting 
differences and occlusions, might affect performance. 
The model is crop-specific and necessitates additional 
validation for wider applicability. Furthermore, its 
extensive parameter size necessitates significant 
processing resources, restricting accessibility for 
farmers with limited technology. Subsequent efforts 
will concentrate on lightweight optimizations and 
domain adaptation to improve real-time efficiency and 
cross-crop applicability. 

5. CONCLUSION 

This article provides an effective deep learning 
methodology for the identification and classification of 
black gram leaf diseases, tackling a significant 
agricultural issue. The suggested Efficient 
AttentionNET model, incorporating Channel and 
Spatial Attention methods, boosts feature extraction, 
while wavelet-transformed samples augment edge 
detection, leading to improved classification 
performance. The model attained an impressive 
accuracy of 99.50%, precision of 99.52%, recall of 
99.50%, and an F1-score of 99.50%, validated using 
cross-validation metrics to ensure robustness and 
mitigate overfitting. The comparative analysis with 
prior state-of-the-art methodologies demonstrates the 
suggested model's enhanced efficacy. This technology 
provides a dependable solution for practical agricultural 
applications, assisting farmers in minimizing crop 
losses and fostering sustainable farming methods, so 
enhancing global food security. 
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