
 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1757

OPTIMIZED FREQUENT SUBGRAPH MINING USING
ITERATIVE MAPREDUCE FOR ENHANCED SCALABILITY

AND PERFORMANCE
1 NAGA MALLIK ATCHA 2JAGANNADHA RAO D B 3VIJAYAKUMAR POLEPALLY

1Research scholar, Department of CSE, Malla Reddy University, Hyderabad, Telangana, India.
2Associate Professor, Malla Reddy University, Hyderabad, Telangana, India.

3Associate Professor, Kakatiya Institute of Technology & Science, Warangal, Telangana, India.

Email: 1mallik.atcha@gmail.com 2jagandb@gmail.com 3vijayakumarpolepally@gmail.com

ABSTRACT

Frequent subgraph mining (FSM) is a core graph analysis task arising from many application domains,
including bioinformatics, chemoinformatics, and social network analysis. Traditional FSM methods are not
scalable to large datasets due to in-memory computations and inefficient candidate pruning, as found in
gSpan and Apriori-based techniques. Although some recently distributed approaches, such as G-thinker
and FlexMiner, have tried to overcome them, they are still confronted with high computational overhead,
excessive data shuffling, and scalability. Such problems necessitate a sound, scalable approach for large-
scale graph mining in the modern era. This research proposes a novel, sophisticated framework, and
algorithm called Frequent Subgraph Mining Using MapReduce (FSM-MR) with inherent optimizations.
This efficient algorithm incorporates mapper combiners for minimizing data shuffling, canonical labeling
for avoiding repeated enumeration of identical subgraphs, and dynamic support thresholds for effective
pruning. FSM-MR, implemented in a Hadoop environment, shows better performance with up to 50%
runtimes shorter than the state-of-the-art methods, with near-linear scalability with the addition of cluster
nodes. The ability of the proposed framework to process large-scale graph datasets makes it beneficial for
applications involving scalable, efficient graph mining. FSM-MR overcomes methodological limitations in
the current state-of-the-art algorithms, helping set the stage for future research in these areas and fostering
graph analytics in various scientific and industrial settings.

Keywords - Frequent Subgraph Mining, MapReduce Framework, Scalability, Distributed Graph Analysis,
Big Data Processing

1. INTRODUCTION

Frequent subgraph mining (FSM) is a critical
task in graph-based data analysis, which aims to
extract repeated structures in bioinformatics,
chemoinformatics, social network analysis, etc. It
has been used to identify networks of protein
interactions, probe molecular shape and
molecular models, and even find social
communities. Many conventional FSM methods
require in-memory computations and
exhaustively generate candidates, limiting the
state-of-the-art techniques to small or medium-
sized data sets [1, 2]. The emergence of very
large-scale data has given rise to distributed
frameworks such as G-thinker [3] and pattern-
aware systems such as FlexMiner [4] that
provide better scalability. These methods,
however, struggle with very high matrix
shuffling overheads, target inefficient candidate

pruning, and computational bottlenecks requiring
subgraph isomorphism checks. These gaps in
FSM methods highlight the need for an approach
that performs at the scale of geometric syntactic
features. To tackle these new challenges, in this
research, we propose a new algorithm and
framework for Frequent Subgraph Mining Using
MapReduce (FSM-MR) that utilizes distributed
computing environments along with some
innovative optimizations. The research
objectives covered include scalable FSM
algorithm design, subgraph enumeration, pruning
optimizations, and quantitative results on
framework efficiency. Heap-based in-mapper
combiners to reduce data shuffling, canonical
labeling for redundancy elimination, and a novel
approach for dynamic support thresholds to

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1758

effectively prune candidates are crucial novelties
of the proposed research.

Frequent Subgraph Mining (FSM) has been
widely researched in recent years due to the
importance of FSM in Bioinformatics,
Chemoinformatics, Social Network Analysis,
and so on. Although groundbreaking methods
such as gSpan and Apriori-based approaches
have provided best practices for enumerating
subgraphs, they suffer from excessive
computation overhead and show a significant
lack of scalability with large datasets.
Inheritance-based counter strategies have
flourished from G-thinker, FlexMiner, and many
more distributed frameworks. However, they still
lack parallelization in extracting frequent
itemsets which leads to superfluous data
shuffling and redundant candidate generation.
We present a new MapReduce-based framework
for subgraph discovery that combines in-mapper
combiners, canonical labeling, and dynamic
support thresholding to overcome the above
limitations. By minimizing intermediate data
transfer, eliminating duplicatecomputations, and
performing effective early pruning of infrequent
subgraphs, these optimizations close a significant
gap in the current literature and present a
scalable, state-of-the-art technique for FSM.

We introduce a distributed framework for
frequent subgraph mining to alleviate further the
computational load associated with classic
algorithms for extensive graph data within this
work. Our framework (FSM-MR), based on the
MapReduce paradigm and enhanced with several
novel optimizations – in-mapper combiners,
canonical labeling, and dynamic support
thresholding – alleviates problems like excessive
data shuffling and redundant candidate
enumeration and achieves considerable runtimes
and near-linear scalability. The applications of
our study extend far beyond its narrow scope of
static, labeled graph datasets in a Hadoop-based
environment; our contributions apply to
numerous fields, such as bioinformatics,
chemoinformatics, and social network analysis.
First, This is not only a step forward in the state-
of-the-art scalable graph mining, but also sets a
stage for future adaptation in dynamic and
heterogeneous computing paradigms.

This research makes three main contributions. It
first presents FSM-MR, a new distributed
algorithm for the generic FSM problem that
tackles FSM's scalability and efficiency issues.

Second, it provides a broad design space
exploration using synthetic and accurate data to
show considerable runtime improvements (up to
3× on actual data) and nearly linear scaling with
the state-of-the-art. Finally, our research
provides a strong theoretical foundation
encouraging efficient applications of large-scale
graph mining. The rest of the paper is organized
as follows. In Section 2, we perform a literature
review, reviewing state-of-the-art non-distributed
and distributed FSM methodologies and pointing
out the research gaps. Preliminaries in Section 3
provide basic graph definitions, a brief review of
Finite State Machine terminology, and an
overview of the MapReduce framework.
Description of Proposed FSM-MR methodology
including algorithmic steps and optimizations —
Section 4 Experimental Results: Section 5 has
the experimental results, where we present the
experimental setup, followed by evaluation
metrics, results and discussion, ablation study,
and the comparative analysis. Findings (novels,
limitations, and implications of the research) are
discussed in Section 6. Section 7 draws the paper
closer by summarizing our key contributions and
outlining possible avenues of future work,
including the ability to adapt FSM-MR to run on
different distributed platforms and extending our
algorithm to the dynamic graph mining setting.
This structure guarantees that research is
presented systematically and comprehensively
while emphasizing the relevance and
contributions to the field.

2. RELATED WORK

This section explores advancements in subgraph
mining, focusing on algorithms, distributed
frameworks, and domain-specific applications. It
discusses methodologies for improving
efficiency, scalability, and accuracy in mining
frequent subgraphs. The review also identifies
challenges such as memory constraints,
computational complexity, and scalability
limitations, highlighting opportunities for further
optimization and broader applicability.

2.1 Algorithms for Subgraph Mining

This section focuses on methodologies and
frameworks for improving the efficiency of
subgraph mining. Nguyen et al. [1] created the
CloGraMi algorithm, which uses novel traversal
and pruning techniques to improve efficiency in
mining closed frequent subgraphs. Additional
improvements may be investigated in future
development. Yan et al. [2] presented G-thinker,

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1759

a CPU-bound framework for practical distributed
subgraph mining. Potential scaling problems are
one of the limitations. Work in the future could
improve algorithm variety. Nguyen et al. [5]
enhanced parallel processing, edge sorting, and
computational assistance were used to optimize
the GraMi method for mining frequent
subgraphs. One of the limitations is the amount
of memory left. Further performance
enhancements may be the main focus of future
research. Yan et al. [6] created PrefixFPM, a
framework for frequent pattern mining that can
be customized to maximize CPU core use.
Potential scaling problems are one of the
limitations. Further research might improve the
algorithm's flexibility for various kinds of data.
Jamshidi et al. [7] "Subgraph counting is a
fundamental task in graph analysis, focusing on
identifying and enumerating specific subgraph
patterns within more extensive networks. It has
applications in diverse fields, such as
bioinformatics, social network analysis, and
computational chemistry.[8]created
PEREGRINE, a pattern-aware graph mining
system that maximizes computation and
subgraph exploration. Potential implementation
complexity is one of the limitations. Work in the
future could improve on user-defined pattern
expressions. Song et al. [30] presented filtering
techniques and an optimum partial evaluation
algorithm to enhance the efficiency of subgraph
matching in distributed knowledge networks.
Potential bottlenecks in assembly computation
are one of the limitations. Future research may
concentrate on investigating different graph
types and further enhancing scalability.

Preti et al. [18] created new scoring methods for
graph pattern mining that increase pruning
efficiency while preserving the apriori
characteristic. Performance issues with increased
weighting functions are among the limitations.
Algorithms may be improved in future research
for enhanced performance and scalability on
various datasets. Pasini et al. [38] created a
frequent subgraph mining method for scene
graph-based picture summarizing that produced a
variety of comprehensible summaries. Pattern
finding may be improved by future research.
Zhao et al. [17] created Kaleido, a productive
out-of-core graph mining system that maximizes
memory use and handles intermediate data.
Potential performance problems with massive
datasets are one of the limitations. Improving
scalability and isomorphism verification
techniques could be the main focus of future

research. Chen et al. [9] created Sandslash, a
flexible graph pattern mining framework with
efficient low-level and high-level APIs. One of
the limitations is that low-level usage may be
complicated. Optimization strategies might be
further improved by future research.

2.2 Distributed and Scalable Frameworks

The rest of the section covers subgraph mining
regarding distributed systems, scalability, and
optimization. Chinese research on subgraph
mining includes the work of Jazayeri and Yang
[3], who explored several subgraph mining
methods with a focus on both temporal and static
networks. First, memory limitations were not
investigated. Research in this area may also be
expanded to look at more comprehensive
assessments. Rehman et al. A-RAFF: Addressing
the familiar challenges of duplication and a
combinatorial explosion of patterns common
subgraph mining with a framework of FSP-Rank
[4]. Limited examples might be user-defined
thresholds. Automated support systems could be
explored by future research. Bindschaedler et al.
Tesseract [10] is a distributed system that
improves the performance of graph mining tasks
on dynamic graphs using incremental updates.
One of those may perhaps be scalability issues.
Change detection is still in its infancy, and future
research on improving it may lead to even better
results. Wang et al. Streaming-BENU and Batch-
BENU, the frameworks, represent many
techniques for performing distributed
enumerations of subgraph enumeration with
good performance and scalability ([14]).

One of its limitations is the potential complexity
of the implementation. The following research
can focus on controlling dynamic graphs and
reducing memory footprints. Belhadi et al. Take,
for instance, [19], which introduced DT-DPM, a
distributed approach enabling a more scalable
and restricted form of search space for pattern
mining. One of the drawbacks is the potential
added complexity in clustering transactions.
Future work may focus on performance
optimization over data formats and mining
methods.

Ayala et al. [39] examined large-scale analytics
computing and graph partitioning systems,
pointing out problems and suggesting future
lines of inquiry to improve scalability. Dahiphale
et al. [28] created BiECCA, a distributed
MapReduce technique for locating 2-edge linked
components in big graphs. Reliance on current

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1760

algorithms for linked components is one of its
drawbacks. To improve the algorithm's
capabilities, future research proposes
investigating innovative additions. Liu et al. [37]
discussed the benefits and drawbacks of
MapReduce techniques for scalable subgraph
enumeration. Overhead costs in distributed
computing should be the focus of future research.
Brunero and Elia [27] suggested using multi-
access distributed computing (MADC) to
improve parallelization and lower
communication overhead in distributed systems.
Reliance on network topology is one of the
limitations. Future research may examine the
best topologies for distributed computing
scenarios to maximize performance. Mo et al.
[35] reviewed the mining of cohesive subgraphs
in large-scale graphs, particularly k-trusses.
Scalability issues are one of the limitations. More
effective algorithms could be investigated in
future research.

2.3 Applications and Limitations in Graph
Mining

This section covers specific applications,
challenges, and limitations in graph mining
techniques. Yoo et al. [11] created ParColoc, a
parallel co-location pattern mining technique in
extensive geographic data based on Hadoop.
Among the limitations are possible problems
with memory use. Future research may
concentrate on improving performance even
further for dense datasets. Shukla et al. [13]
presented DIGDUG, a system that uses optimal
graph operations to find expert relationships and
new subjects in technical publications. One of
the limitations might be dealing with highly
sparse data. Future research could improve
scalability and expand its applicability. Naik et
al. [15] "Density-based algorithms are practical
for clustering large datasets by identifying dense
regions of data points. The MapReduce
framework enables scalable implementation of
these algorithms, addressing big data processing
challenges.[16] "Efficient indexing schemes
enhance the performance of subgraph retrieval
and matching by reducing search space. These
optimizations are crucial for applications in
graph databases, pattern recognition, and
network analysis.[20] constructed a distributed
method that uses a variety of centrality metrics to
find prominent nodes in social networks. Among
the limitations are difficulties managing vast
networks. Other centrality measures and more
improvements may be investigated in future

research. Sharma et al. [21] compared VF3 with
Dryadic for subgraph isomorphism; Dryadic is
found much more quickly because of
optimizations. Performance degradation in the
absence of these modifications is one of the
limitations. Future research might improve both
methods by using hybrid techniques and other
optimizations. Lanciano et al. [23] examined the
Densest Subgraph Problem, emphasizing new
developments and uses. Among the limitations
are unsolved open issues that point to potential
areas for further study.

Reddy et al. [36] provided the SIFT framework
for effective extraction and Subgraph Coverage
Patterns (SCPs) for graph transactional data
mining. Coverage restrictions are one type of
limitation. Future research might improve the
variety of applications and scalability. Zhang et
al. [40] created a clustering technique and an
effective temporal graph model, resolving issues
with accuracy and updates while speeding up
processing. Dependency on thresholds and
possible scaling problems are among the
limitations. Optimization and broader
applications could be investigated in future
research. Kumbhkar et al. [33] enhanced
multiclass classification in massive datasets
using a data reduction technique for survival data
analysis. One of the limitations is the possibility
of oversimplifying complicated data. Subsequent
research endeavors must improve the methods
and handle various kinds of data. Asma et al.
[34] provided a scalable approach that lowers
transmission costs for web-scale graph mining.
Potential scaling problems are one of the
limitations. More optimizations and broader
applications should be investigated in future
research. Chaturvedi et al. [29] created a low-
cost technique to use Apache Spark's FP-Growth
and PFP-Growth to mine social media data for
recurring patterns. One of the limitations is that
FP-Growth requires preprocessing. Future
research should examine more validation
datasets and optimizations. Ma et al. [31]
reviewed 98 papers on Hadoop's use in big data
for transportation, finding patterns, gaps, and
areas for further study. One of the limitations is
the lack of comprehensive research on Hadoop's
fundamental technology. A deeper investigation
of optimization frameworks and new
applications should be the main emphasis of
future research.

Meng et al. [22] examined problems in
distributed graph processing, providing answers

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1761

and a summary of current work. One of the
limitations is the lack of emphasis on real-world
applications. Future research might examine
creative approaches to improve scalability and
efficiency. Yan et al. [32] examined graph
mining approaches for cybersecurity,
emphasizing activities, datasets, and procedures.
One limitation is the inefficiency of conventional
ML techniques. Further research should improve
graph-based solutions and investigate more
intricate relationships between cyber entities.
Pasarella et al. [25] provided a Dynamic Pipeline
architecture emphasizing real-time graph
analysis for effective stream processing. Among
the drawbacks are further testing and
optimization requirements across various
applications. Future research might improve
framework scalability and investigate more issue
domains. Sadeequllah et al. [24] presented
ProbBF, a frequent itemset mining technique that
predicts support without utilizing transactional
data and is effective for dense datasets. Among
its drawbacks is the possibility of quality
degradation because of its probabilistic character.
Future research may concentrate on improving
precision and adaptability to different kinds of
datasets.

Liu et al. [26] presented LS-RKSS, a framework
that uses subgraph segmentation and recalls
KNN for effective large-scale clustering. Among
the limitations are possible implementation
difficulties. Future research may investigate
other clustering strategies and improve
performance for increasingly more enormous
datasets. Preti et al. [18] created new scoring
methods for graph pattern mining that increase
pruning efficiency while preserving the apriori
characteristic. Performance issues with increased
weighting functions are among the limitations.
Algorithms may be improved in future research
for enhanced performance and scalability on
various datasets. Expanding the variety of
diseases and improving the robustness of the
model are potential areas of future investigation.
Model innovations are also found for image
processing innovations in [42] and [43]. More
deep-learning optimizations are also found in
[44] and [45]. Novel deep learning-based
optimized ideas are also found in [46] and [47].
The FSM-MR algorithm is a generalization of
previous approaches--including classical
frequent subgraph mining methods such as
gSpan or Apriori-based algorithms as well as
new scalable frameworks, for example, G-
thinker and its recent extensions, FlexMiner--but

addresses some of the scalability and
computational inefficiencies found in previous
designs. Although these methods contribute to
the frontier of FSM, they also inherit limitations,
including high data shuffling cost, poor
candidate generation efficiency, and limited
scalability to large-scale graphs. We
systematically recognized these studies and
critically assessed their limitations during our
work, explicitly asserting that our study is a
direct improvement over them. Our study
complements previous works by providing data
and results that illustrate the effect of our
optimizations, which include in-mapper
combiners, canonical labeling, and dynamic
support thresholding, backed by comprehensive
experimental validation. Comparative
assessments underscore the superiority of FSM-
MR over existing approaches in terms of
execution time, scalability, and data transfer,
validating the novelty and significance of our
work.

3. PRELIMINARIES

This part introduces the main principles on
which frequent subgraph mining (FSM) builds.
It consists of basic terminologies regarding graph
and FSM definitions, followed by an explanation
of the MapReduce framework and mathematical
notations for clear demonstration, forming the
basis of the methodology proposed in the paper.

3.1 Graph Terminology

A graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 Is
the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 Is the set of
edges. For a labeled graph, each vertex 𝑣 ∈ 𝑉
and edge 𝑒 ∈ 𝐸 Has an associated label denoted
as 𝑙(𝑣) and 𝑙(𝑒), respectively. Labels provide
additional semantic information, such as atom
types in a chemical graph or entity roles in a
social network. A subgraph 𝑔 = (𝑉௚, 𝐸௚) of 𝐺
satisfies 𝑉௚ ⊆ 𝑉 and 𝐸௚ ⊆ 𝐸. Subgraphs retain
the labeling and structural properties of the
parent graph. 𝐺. For instance, if 𝑔 is a triangle
within 𝐺, all its vertices and edges must preserve
their corresponding labels and relationships.
Given a dataset of graphs 𝐷 = {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே},
the support of a subgraph 𝑔, denoted as 𝑆(𝑔) and
is defined as:

𝑆(𝑔) = |{𝐺௜ ∈ 𝐷|𝑔 ⊆ 𝐺௜}|

where 𝑔 ⊆ 𝐺௜, indicates that 𝑔 is isomorphic to a
subgraph in 𝐺௜. A subgraph 𝑔 is considered
frequent if 𝑆(𝑔) = 𝜎, where 𝜎 is the user-

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1762

defined support threshold. Canonical labeling
ensures efficient processing, assigning a unique
identifier to each subgraph based on its structure
and labels. For example, the canonical label of a
triangle subgraph with labeled vertices and edges
provides a unique representation that avoids
redundant enumeration. Subgraph isomorphism
checks, critical in frequent subgraph mining,
determine whether 𝑔 ⊆ 𝐺. This involves
verifying a bijection 𝑓: 𝑉௚ → 𝑉 such that:

1. ∀(𝑢, 𝑣) ∈ 𝐸௚ , (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸

2. ∀𝑢 ∈ 𝑉௚, 𝑙(𝑢) = 𝑙(𝑓(𝑢))

3. ∀(𝑢, 𝑣) ∈ 𝐸௚ , 𝑙(𝑢, 𝑣) = 𝑙(𝑓(𝑢), 𝑓(𝑣))

Graph datasets, especially at a large scale, can
have millions of vertices and edges. This requires
scalable and highly robust algorithms to manage
various structures, fast isomorphism verification,
and correct support computation for frequent
subgraph mining. Canonical labeling minimizes
additional computational costs by enabling the
representation of unique subgraphs, hence
removing duplication.

3.2 Frequent Subgraph Mining

Frequent Subgraph Mining (FSM) is the process
of identifying subgraphs that occur frequently in
a given dataset of graphs. Let 𝐷 =
 {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே} represent the dataset, where
each graph 𝐺௜ = (𝑉௜ , 𝐸௜) consists of vertices 𝑉௜
and edges 𝐸௜). A subgraph 𝑔 = (𝑉௚, 𝐸௚) is
frequent if its support, 𝑆(𝑔), meets or exceeds a
predefined threshold 𝜎, i.e.,

𝑆(𝑔) = |{𝐺௜ ∈ 𝐷|𝑔 ⊆ 𝐺௜}| and 𝑆(𝑔) ≥ 𝜎

Here, 𝑔 ⊆ 𝐺௜ denotes that g is isomorphic to a
subgraph of 𝐺௜. FSM involves three primary
steps:

1. Subgraph Enumeration: Generate candidate
subgraphs 𝑔 from the dataset 𝐷. Candidate
generation is often guided by techniques such as
breadth-first or depth-first traversal.

2. Support Counting: For each candidate
subgraph g, compute 𝑆(𝑔) by identifying all
graphs 𝐺୧ in 𝐷 that contain 𝑔 as a subgraph.

3. Pruning: Discard infrequent subgraphs where
𝑆(𝑔) < 𝜎 to reduce the computational
complexity.

The process requires solving the subgraph
isomorphism problem, which ensures that for
gCG. there exists a bijection 𝑓: 𝑉௚ → 𝑉 such that
structural and labeling constraints are preserved:

∀(𝑢, 𝑣) ∈ 𝐸௚, (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸 and 𝑙(𝑢) =

 𝑙(𝑓(𝑢)), 𝑙(𝑢, 𝑣) = 𝑙(𝑓(𝑢), 𝑓(𝑣)).

FSM is computationally challenging due to the
combinatorial explosion of candidate subgraphs,
making efficient enumeration and pruning
crucial. Techniques such as canonical labeling
and distributed frameworks like MapReduce
mitigate these challenges by reducing
redundancy and improving scalability.

3.3 MapReduce Framework

As illustrated in Figure 1, MapReduce is a
distributed computing framework that
decomposes large-scale data processing jobs into
smaller sub-jobs that can be processed at scale
across many nodes in a cluster. This figure
shows the architecture and working of the
MapReduce framework and how the client, job
tracker, task tracker, and shared file system
interact. The client node writes and runs the
MapReduce program. The client passes the job
through its Java Virtual Machine (JVM) to the
Job Tracker Node. These job resources, such as
input files, configurations, and JAR, are
submitted with this submission containing the
MapReduce code. After the job tracker accepts
the job, it will ID it with a unique job ID and
make it runnable by splitting the input data into
small pieces and saving it in the shared file
system.

The job tracker is aligned to oversee the
execution of the job. It communicates with data
that will distribute Task tracker nodes in the
cluster. Individual Map Or Reduce tasks are
assigned to task trackers by the job tracker.
When the task trackers receive their tasks, they
create child JVMs to run them. Every child JVM
takes the part of input as it splits and uses the
Map or Reducelogic that is specified in their
program. During the execution of a job, the task
trackers periodically send "heartbeat" messages
to the job tracker, assuring them of their status
and conveying the progress of their tasks.
Heartbeat from each task tracker helps secure the
fault tolerance mechanism – If any task trackers
do not return a heartbeat, the job tracker
automatically reassigns the tasks in case another
node has arrived (thus performing heartbeat). A
shared file system serves as an integral

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1763

component, which saves intermediate data
produced in the Map phase, which can be
accessed in the next Reduce phase to obtain the
final output. The figure illustrates that the
MapReduce framework is built to be scalable

and fault-tolerant when distributing workloads
within the cluster. It has a modular structure
where large data sets can be handled very well,
and it is ideal for complex calculating tasks such
as frequent subgraph mining.

Figure 1: Overview of MapReduce Framework

MapReduce is a framework model for distributed
computing that splits jobs into several operations
to execute parallel, and it can scale out for big
data sets. Since its advertisement on the Internet,
it has been used primarily for FSM (frequent
subgraph mining) tasks, as running
computationally-intensive tasks like subgraph
enumeration and support counting is more
effective in a distributed manner. Two primary
phases of the operation of the framework;

1. Mapper Phase: The input data is divided into
splits, and a Mapper function processes each
split. The Mapper emits intermediate key-value
pairs (𝑘, 𝑣), where k represents a key (e.g.,
subgraph candidate or identifier) and is the
associated value (e.g., graph information or
frequency).

𝑀𝑎𝑝𝑝𝑒𝑟: (𝑘ଵ, 𝑣ଵ) → [(𝑘ଶ, 𝑣ଶ)]

2. Reducer Phase: The Reducer aggregates all
values associated with the same key 𝑘ଶ and
performs operations such as counting, filtering,

or extending subgraphs. The Reducer outputs the
final results:

𝑅𝑒𝑑𝑢𝑐𝑒𝑟: (𝑘ଶ, [𝑣ଶ]) → [(𝑘ଷ, 𝑣ଷ)].

The MapReduce process is iterative for FSM,
alternating between subgraph construction and
support counting. In iteration 𝑘:

 Subgraph Construction (Phase A):
Extend (𝑘 − 1)-subgraphs to generate
𝑘-Subgraphs are used using a Mapper,
followed by Reducer aggregation to
eliminate duplicates.

 Support Counting (Phase B): Use the
Mapper to emit intermediate keys
representing 𝑘- subgraphs, and the
Reducer calculates the support 𝑆(𝑔) for
each subgraph 𝑔:

𝑆(𝑔) = |{𝐺௜ ∈ 𝐷|𝑔 ⊆ 𝐺௜}|

Hadoop, an open-source implementation of
MapReduce, manages fault tolerance and
scalability by distributing data and computation

Client Node

Client JVM

Map
Reduce
Program

Run
Job

Job Tracker Node

Job
Tracker

 Initialize Job

Task Tracker Node

 Task
Tracker

Child JVM

Child Map Task or
Reduce Task

Launch Run

Retrieve Job Resources

Heart Beat (returns task) Copy Job
Resources

Shared
File

System

Get New Job ID

 Submit Job

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1764

across nodes in a cluster. Each iteration of FSM
involves the input-output relationship:

𝐷 = {𝐺ଵ, 𝐺ଶ, . . . , 𝐺ே}, Output: {𝑔 | 𝑆(𝑔) > 𝜎}.

MapReduce's ability to scale out massively
parallel processing of graph datasets in a tolerant
manner makes it well-suited to address these
challenges. MapReduce fits computationally
expensive iterations for subgraph isomorphism
check, pruning, and canonical labeling to the
iterative tasks of FSM, which is such a solid
basis for graph mining at scale.

4. METHODOLOGY

This section describes the framework of frequent
subgraph mining (FSM) based on the
MapReduce programming model. It starts by
covering problem definition, the intrinsic
difficulties of subgraph isomorphism, and the
scalability and candidate pruning challenges in
FSM. The framework uses iterative Mapper and
Reducer phases to build, evaluate, and prune
subgraphs on large-scale datasets quickly. We
incorporate various key optimizations such as
canonical labeling, in-mapper combiners, and
dynamic support thresholds to minimize
computational overhead and achieve improved
performance—the fault-tolerant, scalable, and
efficient workflow was run on Apache Hadoop.
Here, we will elaborate on the FSM-MR
algorithm along with its implementation.

4.1 Problem Definition

Frequent Subgraph Mining (FSM) identifies
subgraphs that appear frequently within a given
dataset of graphs, meeting or exceeding a
predefined support threshold. Let the dataset be
represented as 𝐷 = {𝐺ଵ, 𝐺ଶ, … , 𝐺௡}where each
graph 𝐺௜ = (𝑉௜ , 𝐸௜) consists of vertices 𝑉௜ and
edges 𝐸௜. A subgraph 𝑔 = ൫𝑉௚ , 𝐸௚൯ is a subset of
a graph 𝐺 such that 𝑉௚ ⊆ 𝑉 and 𝐸௚ ⊆ 𝐸
Retaining the structure and labels of the original
graph.

The support 𝑆(𝑔) of a subgraph, gg is defined as
the number of graphs in 𝐷 That contain gg as a
subgraph. Mathematically, 𝑆(𝑔) = |{𝐺௜ ∈
𝐷 | 𝑔 ⊆ 𝐺௜}|, where 𝑔 ⊆ 𝐺௜ implies that 𝑔 is
isomorphic to a subgraph within 𝐺௜. A subgraph
is considered frequent if its support satisfies.
𝑆(𝑔) ≥ 𝜎, where 𝜎 is the user-defined minimum
support threshold. Subgraph isomorphism is the

task of determining whether 𝑔 exists as a
subgraph within 𝐺, requires identifying a
bijective mapping between the vertices of 𝑔 and
𝐺 That preserves connectivity and labeling. This
process is computationally intensive, making it
one of the key challenges in FSM.

The search space for FSM grows exponentially
with the size of the graphs due to the
combinatorial explosion of possible subgraphs.
For a graph with |𝐸| Edges, the total number of
potential subgraphs can be approximated as 2|ா|,
highlighting the scalability challenges associated
with mining frequent subgraphs in large datasets.
The process involves generating candidate
subgraphs, verifying their support, and pruning
infrequent ones. Canonical labeling is often
employed to ensure unique representations of
subgraphs, eliminating redundant computations
and facilitating efficient enumeration.

The objective of FSM is to efficiently mine all
frequent subgraphs. 𝑔 from the dataset 𝐷 While
addressing challenges such as scalability,
computational cost, and redundancy. The process
typically begins with 𝐹ଵ, the set of frequent
subgraphs of size 1, and iteratively generates
more significant subgraphs by extending the
current set of frequent subgraphs 𝐹௞. At each
iteration, candidates are pruned based on their
support. The process terminates when no new
frequent subgraphs can be generated, ensuring
the algorithm identifies all subgraphs meeting the
support threshold.

4.2 Proposed Framework

We introduce a new framework for FSM using
the MapReduce programming model to process
large-scale graph datasets efficiently. This
framework iterates through two main steps:
subgraph construction and counting support. The
framework scales and overcomes the
computational obstacles of FSM, like subgraph
enumeration, isomorphism checks, and pruning,
using computation distribution by many nodes in
a cluster.

During the first phase, called subgraph
construction, candidate subgraphs of size k are
constructed from the frequent subgraphs of size
(k−1) found in the previous iteration. The
Mapper function is distributed, where each
mapper works on local (k−1)-subgraphs and
expands them with one edge from the originating
graph. These k-subgraphs are then emitted as
intermediate key-value pairs, where the key

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1765

associates the subgraph with its canonical label,
ensuring that every such label appears only once
on every machine and the value of the graph ID
and the subgraph itself. This is fed to the
Reducer, which summarizes these intermediate
outputs, removing duplicate subgraphs and
generating a unique set of k-subgraphs for the
next step.

In the phase of support counting, the generated
k-subgraphs from the construction phase will be
evaluated and checked to see how often they
occur in the graph dataset. Each k-subgraph is
processed by a mapper and the dataset, resulting
in pairs of key values, in which a key is the
canonical label of the subgraph, and the value is
the ID of the graph containing it. The Reducerto
then aggregates such values to calculate each
subgraph gg's support S(g). Frequent subgraphs
for the next stage are only determined to satisfy
the minimum support threshold, S(g)≥σ. The
iterative two-phase process continues until no
new frequent subgraphs are created, meaning all
subgraphs passing the defined threshold of
support are discovered.

The framework also implements several
optimizations to improve its efficiency. To
construct and count only non-isomorphic
subgraphs, we employ a canonical labeling
scheme that enforces that no two subgraphs have
the exact representation. Using in-mapper
combiners, they aggregate intermediate results
close to where they are created and before being
transferred to reducers, thus helping reduce data
transfer overhead and improving runtime
performance. Moreover, a dynamic support
threshold is only used so that the threshold can
change between iterations and prune infrequent
subgraphs effectively in the first stage. This
reduces the search space significantly, allowing
for much faster computations while maintaining
accuracy.

All the procedures are performed on Hadoop,
which is a fault-tolerant and scalable platform.
Transfer of input datasets and intermediate
results over gaggles occurs via the Hadoop
Distributed File System (HDFS) and easy
communication between mappers and reducers.
The iterative execution of MapReduce jobs with
the optimizations outlined in this work enables
the framework to process graphs with millions of
edges and vertices, making it applicable to
problems arising from bioinformatics and social
networks and the analysis of chemical

compounds. Such answers correspond not only
with the intrinsic difficulties of FSM but also
with a mature basis for further extensions and
improvements of the framework.

4.3 Optimizations

The novel framework consists of essential
optimizations to improve FSM's performance
and scalability. These optimizations target
computational challenges, particularly subgraph
isomorphism, redundancy, and discussion
overhead.

Canonical Labeling

Canonical labeling ensures that each subgraph
has a unique representation, eliminating
duplicate candidates and reducing computational
redundancy during subgraph enumeration and
frequency counting. For a subgraph 𝑔 =

൫𝑉௚ , 𝐸௚൯, the canonical label ℒ(𝑔) Is defined as
the lexicographically smallest string derived
from the graph's adjacency matrix or edge list,
considering vertex and edge labels.
Mathematically:

ℒ(𝑔) = min
గఢ௉௘௥௠൫௏೒൯

𝐴𝑑𝑗൫𝜋(𝑔)൯

where 𝑃𝑒𝑟𝑚൫𝑉௚൯ represents all permutations of

𝑉௚ and 𝐴𝑑𝑗൫𝜋(𝑔)൯ is the adjacency matrix under
permutation 𝜋. This labeling ensures that
isomorphic subgraphs are represented
identically, reducing the search space and
improving the efficiency of reducers in
aggregating subgraphs.

In-Mapper Combiner

The in-mapper combiner minimizes the volume
of intermediate data transferred between mappers
and reducers. During the support counting phase,
each mapper locally aggregates occurrences of
subgraphs. 𝑔 before emitting them as key-value
pairs. Let 𝒦be the set of subgraphs processed by
a mapper and 𝑆௟௢௖௔௟(𝑔)be the local support of gg.
The mapper emits:

൫𝑔, 𝑆௟௢௖௔௟(𝑔)൯ for 𝑔 ∈ 𝒦

This reduces the number of key-value pairs sent
over the network, where ห𝒦௢௨௧௣௨௧ห ≪ ห𝒦௜௡௣௨௧ห,
thereby decreasing communication overhead and
improving runtime.

Dynamic Support Threshold

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1766

The dynamic support threshold adjusts the
minimum support 𝜎 adaptively across iterations
to prune infrequent subgraphs earlier in the
mining process. Let 𝜎௞ be the support threshold
in iteration 𝑘. The dynamic threshold is defined
as:

𝜎௞ = 𝜎. 𝛼௞

where 𝛼 ∈ (0,1)is a decay factor that gradually
reduces the threshold in subsequent iterations.
This allows the framework to quickly eliminate
subgraphs with low support during early
iterations when the search space is large,
focusing computational resources on promising
candidates.

Edge Sorting and Subgraph Generation

To improve the efficiency of subgraph
isomorphism checks, edges in each graph are
sorted lexicographically based on their labels and
endpoints. Let 𝐸 = {𝑒ଵ, 𝑒ଶ, … . 𝑒௠} Be the set of
edges in a graph 𝐺. The sorted edge set is:

𝐸ᇱ = ቄ𝑒௜|𝑙(𝑒௜) ≤ 𝑙൫𝑒௝൯ 𝑓𝑜𝑟 𝑖 < 𝑗, ∀௘೔,௘ೕ
∈ 𝐸ቅ

Subgraph extensions adhere to this sorted order
during construction, ensuring each subgraph is
generated precisely once. This significantly
reduces the number of redundant candidates and
accelerates subgraph enumeration.

Mathematical Model for Optimized Iterative
FSM

Let 𝐹௞ Denote the set of frequent subgraphs of
size 𝑘, and 𝐶௞ାଵ Be the candidate subgraphs of
size k+1. The iterative process with
optimizations can be expressed as:

1. Subgraph Construction:

𝐶௞ାଵ = 𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙𝑖𝑧𝑒({𝑔 ∪ 𝑒 | 𝑔 ∈ 𝐹௞ , 𝑒
∈ 𝐸𝑑𝑔𝑒𝑠(𝐺), 𝐼𝑠𝑣𝐴𝑙𝑖𝑑(𝑔, 𝑒)})

where 𝐼𝑠𝑣𝐴𝑙𝑖𝑑(𝑔, 𝑒) Ensures that adding edge ee
maintains graph connectivity.

2. Support Counting:

𝑆(𝑔) = |{𝐺௜ ∈ 𝐷| 𝑔 ⊆ 𝐺௜}|

With in-mapper combiners aggregating local
counts:

𝑆௚௟௢௕௔௟(𝑔) = ෍ 𝑆௟௢௖௔௟
(௜) (𝑔)

௠

௝ୀଵ

where 𝑚 Is the number of mappers.

3. Pruning with Dynamic Threshold:

𝐹௞ାଵ = {𝑔 ∈ 𝐶௞ାଵ|𝑆(𝑔) ≥ 𝜎௞}

Scalability Enhancements

Intermediate results are stored in a distributed
filesystem (e.g., HDFS) to enable scalability and
communication between mappers and reducers.
Combined with the canonical labeling method,
in-mapper combiners, and dynamic thresholds,
the computational complexity is significantly
reduced, and the overhead to be performed by
the framework is also minimized, allowing
efficient processing of large-scale datasets. The
optimizations we develop are central to the
proposed framework and enable us to use it on
realistic and highly scalable FSM tasks.

4.4 Workflow

The proposed Frequent Subgraph Mining (FSM)
framework is implemented using Apache
Hadoop, leveraging its distributed processing
capabilities and fault tolerance. Each iteration of
the MapReduce job performs a series of steps
involving the Mapper, Reducer, and Shared File
System, ensuring efficient subgraph construction
and support counting. The iterative workflow
continues until no new frequent subgraphs are
identified.

In the Mapper phase, the (𝑘 − 1)-subgraphs
from the previous iteration and the dataset 𝐷 =
{𝐺ଵ, 𝐺ଶ, … 𝐺ே} They are read as inputs. The
Mapper processes each. (𝑘 − 1)-subgraph and
extends it by adding one edge from the
corresponding graph to generate a candidate 𝑘-
subgraphs. Each candidate subgraph 𝑔௞ Is
emitted as an intermediate key-value pair, where
the key is the canonical label ℒ(𝑔௞)Of the
subgraph, and the value contains the graph ID.
This ensures that all isomorphic subgraphs are
represented uniquely, reducing redundancy
during the next phase.

The Reducer aggregates the intermediate key-
value pairs generated by the Mappers. It groups
all candidate subgraphs by their canonical
labels. ℒ(𝑔௞), applies canonical labeling to
ensure uniqueness, and counts the support 𝑆(𝑔௞)
For each subgraph across the dataset. Subgraphs
with 𝑆(𝑔௞) ≥ 𝜎, where 𝜎 is the minimum
support threshold, are retained as frequent
subgraphs. These frequent subgraphs are
outputted for the next iteration, while infrequent

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1767

subgraphs are discarded, effectively pruning the
search space.

The Shared File System, such as the Hadoop
Distributed File System (HDFS), serves as a
critical component in the workflow, storing
intermediate data for seamless communication
between the Mapper and Reducer phases.
Candidate subgraphs generated in the Mapper
phase are written to the shared file system, where
the Reducers can access them. Similarly, the
output of each iteration, including frequent
subgraphs and intermediate results, is stored in
the shared file system for use in subsequent
iterations. This distributed storage ensures
scalability and fault tolerance, enabling the
framework to handle large-scale graph datasets.

By iteratively executing the Mapper and Reducer
phases and utilizing the shared file system for

intermediate storage, the framework efficiently
mines frequent subgraphs, ensuring scalability
and accuracy even in large and complex datasets.
This workflow combines computational
efficiency with the robustness of distributed
systems, making it suitable for a wide range of
real-world applications.

4.5 Proposed Algorithm

This paper proposes a scalable and efficient
algorithm for frequent subgraph mining based on
the MapReduce framework to find frequently
occurring subgraphs in many graph datasets. It
builds, evaluates, and prunes subgraphs
iteratively using distributed computing. This is
important because it solves some computation
problems for bioinformatics, chemoinformatics,
and social network analysis.

Algorithm: Frequent Subgraph Mining Using MapReduce Framework
Input:

 Graph dataset D={𝐺ଵ, 𝐺ଶ, … … , 𝐺ே } (labeled graphs)
 Minimum support threshold σ

Output:
 Frequent subgraphs F

Steps:
1. Initialize Parameters:

o Set k=1 (subgraph size).
o Initialize 𝐹௞ As the set of all frequent 1-edge subgraphs.

2. Iterative Subgraph Mining:
o While 𝐹௞≠∅:

1. Mapper Phase:
 For each graph 𝐺௜∈D:

 Extract all (k−1)-subgraphs.
 Extend each (k−1)-subgraph to generate candidate k-

subgraphs.
 Emit (g, 𝐺௜), where g is a candidate subgraph and 𝐺௜ Is its

graph ID.
2. Reducer Phase:

 Aggregate all candidate k-subgraphs by canonical labeling to avoid
duplicates.

 Count the support S(g) for each k-subgraph g across graphs in D.
 Retain only those subgraphs where S(g)≥σ.
 Store frequent k-subgraphs in 𝐹௞.

3. Update Iteration:
 Increment k by 1.

3. Output Results:
o Combine all frequent subgraphs F=⋃௞𝐹௞.

Algorithm 1: Frequent Subgraph Mining Using
MapReduce Framework

It efficiently identifies the frequent subgraphs in
the dataset of labeled graphs using the Frequent
Subgraph Mining using the MapReduce
Framework algorithm. First, we initialize the

parameters of DPNS, set the initial size of the
subgraph to one, and extract all frequent one-
edge subgraphs from the dataset. The subgraphs
comprise the first batch of frequent subgraphs,
which will be iteratively mined.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1768

The algorithm is iterative and repeats until no
more frequent subgraphs are produced. The
mapper phase on each iteration generates
subgraphs of the size from each graph in the
dataset. These subgraphs are subsequently
extended to more significant candidate subgraphs
by attaching an edge at a time. The
corresponding source graph identifier will also
be emitted for each candidate subgraph. This
ensures that we have collected all the sub-graphs
and that they are ready for analysis. The
candidate subgraphs emitted in the Mapper phase
are aggregated and processed in the Reducer
phase. We apply canonical labeling to avoid
redundancy so that all isomorphic subgraphs
represent one unique canonical form. Next, the
supporting count of each candidate subgraph,
defined as the number of graphs in which it
occurs, is calculated. Frequent Subgraphs: Only
subgraphs with support that are more excellent
than the specified minimum support threshold
are retained as possible frequent subgraphs.
These are the candidates for the next iteration
and are stored.

The subgraph size is then increased, and the
cycle restarts until the completion of the current
iteration. The algorithm iteratively follows this
process until no more frequent subgraphs can be
found. At the end of the mining procedure, the
algorithm merges all the frequent (within an
iteration) subgraphs found in each iteration,
leading to the final output. It utilizes the
scalability and efficiency of the MapReduce
programming model for large-scale graph dataset
processing, which scales well with computation.
With iterative construction and evaluation of the
subgraphs and optimizations such as canonical
labeling, the algorithm guarantees that frequent
subgraphs will be mined while keeping the
computations at a low cost.

4.6 Illustrative Example: Generating
Frequent Subgraphs Using PubChem
BioAssay Data

This section demonstrates how the proposed
framework processes molecular interaction data
from the PubChem BioAssay database to
generate frequent subgraphs. Consider a
simplified dataset containing three molecular
graphs, each representing a compound's
structure:

 Graph G1: A benzene ring (C6H6).

 Graph G2: A cyclohexane molecule
(C6H12).

 Graph G3: A phenol molecule
(C6H6O).

Step 1: Initialization

The process begins by extracting all 1-edge
subgraphs (single bonds) from the molecular
graphs. Each bond is represented by its atomic
labels (e.g., C-H, C-C, O-H) and connectivity.
The initial set of candidate subgraphs (F1) is:

F1={C-H, C-C, O-H}

The canonical labeling process assigns a unique
representation to each candidate, ensuring that
isomorphic bonds (e.g., identical bonds in
different structures) are not counted multiple
times.

Step 2: Subgraph Extension

Each 1-edge subgraph is extended by adding
connected vertices and edges. For instance:

 Extending a C-C bond from G1
generates subgraphs like C-C-C (a chain
of three carbon atoms).

 Extending a C-H bond from G2
generates subgraphs like C-H-C (a
branch with one hydrogen and two
carbon atoms).

Step 3: Canonical Labeling

Canonical labeling ensures that all isomorphic
subgraphs are represented uniquely. For
example:

 The benzene ring (G1) is labeled as a
cyclic subgraph with alternating single
and double C-C bonds.

 The phenol molecule (G3) is labeled
similarly, with an additional O-H
branch attached.

Step 4: Support Counting

The framework computes the support S(g) for
each candidate subgraph gg across the dataset.
For example:

 The benzene ring appears in G1 and G3,
so S(g)=2.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1769

 The cyclohexane structure appears only
in G2, so S(g)=1.

Step 5: Pruning

Subgraphs with support S(g) below the minimum
threshold σ\sigma are pruned. Assuming σ=2:

 Frequent subgraphs:
F={benzene ring, C-H, C-C}

 Infrequent subgraphs:
{cyclohexane structure, C-O}

Step 6: Iteration

The process iteratively extends frequent
subgraphs to generate more significant
subgraphs. For instance:

 The C-C bond in F1 is extended to form
chains (C-C-C) and cycles (benzene
ring).

 Subgraphs meeting S(g)≥σ are retained
for the next iteration.

Final Output

The framework outputs all subgraphs that meet
the minimum support threshold. In this example,
the frequent subgraphs are:

 Benzene ring (support = 2).

 C-C bond (support = 3).

 C-H bond (support = 3).

This illustrative example demonstrates how the
proposed framework systematically mines
frequent subgraphs from a molecular dataset
using the PubChem BioAssay database.
Leveraging the iterative MapReduce approach
ensures scalability and efficiency in handling
large-scale graph datasets.

5. EXPERIMENTAL RESULTS

The experimental results section evaluates the
proposed framework's performance in
considerable detail. The first section starts with
the experimental setup, from hardware and
datasets to configuration settings used in the
experiments. Next, evaluation metrics are
provided to evaluate runtime efficiency,
scalability, and data handling. In the results and
observations section, we compare the framework
against state-of-the-art models and baselines and
demonstrate its advantages. The ablation study

dissects the contributions of each optimization,
and the comparative analysis provides
perspective on the progress made by the
framework. Lastly, the complexity analysis
complements the empirical evaluation,
confirming the framework scalability and
effectiveness of frequent subgraph mining in
large-size datasets.

5.1 Experimental Setup

We have considered an experimental framework
and tested our proposed Frequent Subgraph
Mining (FSM) model on synthetic and real-
world datasets to ensure the strength of the
proposed method in terms of scalability,
efficiency, and accuracy. All the experiments
were carried out on our dedicated 4-node
Hadoop cluster, where each node has an Intel
Xeon, 16 GB of RAM, and 1 TB of storage
running. This infrastructure facilitated the use of
large-scale graph datasets and the scalability of
the enterprise graph engine to utilize the full
parallelization capabilities of the Hadoop
MapReduce model. Due to its inherent
architecture for fault-tolerant and scalable
implementation, we implemented the framework
using Apache Hadoop 3.2.2. Java 8 —
Developed using Java 8 to facilitate its
integration with the Hadoop Framework and
effective implementation of Mapper and
Reducer. Hadoop Distributed File System
(HDFS) as the storage medium for input datasets,
intermediate outputs, and final results was used
to provide input to the reducer and ensure high
workflow efficiency was maintained between the
Mapper and Reducer phases during the
experiments.

The framework was evaluated using two datasets
to provide a comprehensive evaluation. The
former was a synthetic dataset constructed by
GraphGen, enabling us to assess performance
under different graph sizes and types. Graphs
containing 100K to 1M edges were given within
the dataset to develop a controlled scalability
analysis. The second dataset (labeled graphs of
chemical compound structures) was the
PubChem Bioassay dataset [41]. With this real-
world dataset, we could evaluate the practical
usability of our framework in mining
bioinformatics and cheminformatics relevant,
meaningful subgraphs. We used metrics such as
runtime, scalability, accuracy, etc., to
holistically assess the framework's performance,
as shown in Section 5.7. We also tracked

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1770

intermediate data transfer during the Mapper and
Reducer phases to quantify data shuffling
overhead, a key aspect of any distributed system.
By implementing this experimental setup, a vital
conclusion may be made about the framework,
confirming the efficiency and accuracy of
frequent subgraph mining from different datasets
and significant variables.

5.2 Evaluation Metrics

We employed a range of metrics to fully assess
the performance of our proposed Frequent
Subgraph Mining (FSM) framework. These
metrics correspond to all the essential
characteristics of the framework, such as
runtime, scalability, accuracy, and shuffling
overhead. This allowed for a comprehensive
description of both effectiveness and the degree
to which the framework can be applied to large-
scale subgraph mining tasks. Runtime Efficiency
was one of the most important metrics as FSM
tasks are computationally expensive due to the
nature of their operations, such as subgraph
enumeration and isomorphism checks. Total
runtime of the framework — from reading the
input dataset to generating the final frequent
subgraph set over all iterations of the
MapReduce job. We used this metric to measure
the relative saved time of the proposed
optimizations (e.g., in-mapper combiners and
dynamic support thresholds) over baseline
approaches. Scalability was measured by the
framework's capability to protect against
increasing data sizes and computational sources.
In this case, we repeatedly created synthetic
datasets of size ranging from 100K to 1M edges.
We checked how the runtime varies concerning
dataset size to test scalability related to the data
size. We also experimented with several nodes in
the Hadoop cluster to analyze how the
framework utilized extra compute resources to
enhance performance. We measured scalability
to see how close to linear it is (linear scalability
is the best, meaning that when we added a new
node, the load was perfectly distributed, and all
resources were used).

Accuracy is also essential for other reasons,
proving that mined frequent subgraphs are

correct. In the case of synthetic datasets, we
evaluated the output of our framework compared
to embedded patterns in the data and guaranteed
all expected subgraphs were discovered. The
minedsubgraphs were verified against domain
knowledge for the real-world PubChem dataset
and mapped to chemical patterns. Figure 7
evaluates the framework efficiency to measure
Data Shuffling Overhead to compute shuffle
overhead (intermediate data transfer between
Mapper and Reducer phases). Moreover, the
performance hit from large data shuffles has a
particularly pernicious effect on distributed
systems like Hadoop. We quantified the global
reductions achieved by optimizations such as in-
mapper combiners and canonical labeling by
observing the number of intermediate key-value
pairs generated and transferred over the network
as part of the MapReduce jobs. Using the
metrics, we could evaluate the proposed
framework in detail, identifying performance,
scalability, and accuracy strengths and analyzing
to what extent the optimizations we used were
effective. After combining criteria such as
runtime, scalability, sensitivity, accuracy, data
volume, and data complexity metrics, a
comprehensive evaluation of the framework’s
capabilities has been performed.

5.3 Results and Observations

In this section, we analyze the runtime efficiency
and scalability of the proposed framework
concerning state-of-the-art models and baselines.
The framework’s efficiency is demonstrated
through runtime analysis, where considerable
runtime reductions are achieved over both
traditional and distributed methods on large-scale
datasets. Scalability — this part of the analysis
tackles the execution scenario with more cluster
nodes and shows us the ability of the framework
to utilize distributed resources efficiently. Its
ability to leverage such optimizations (in-mapper
combiners, canonical labeling) in its design
yields significant performance improvements.
The results confirm that the framework is
efficient enough for realistic applications with
large datasets for regular subgraph mining tasks.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1771

Table 1: Runtime Efficiency Comparison Across Multiple Baselines

Graph
Size
(Number
of Edges)

span
Runtime
(Seconds)

Apriori
Runtime
(Seconds)

Non-
Distributed
Runtime
(Seconds)

Proposed
Runtime
(Seconds)

Reduction
(gSpan,
%)

Reduction
(Apriori,
%)

Reduction
(Non-
Distributed,
%)

100,000 600 750 900 450 25.00 40.00 50.00

200,000 1,200 1,500 1,800 900 25.00 40.00 50.00

500,000 3,000 3,700 4,500 2,250 25.00 39.19 50.00

1,000,000 6,000 7,400 9,000 4,500 25.00 39.19 50.00

Table 1 compares the proposed framework's
runtime efficiency concerning gSpan, Apriori-
based baselines, and non-distributed baselines.
The framework is scalable and computationally

efficient, resulting in a compelling 25% to 50%
reduction in the overall runtime on all the dataset
sizes.

Figure 2: Runtime Efficiency Comparison Across Baselines And The Proposed Method

The runtime efficiency comparison between our
proposed framework and the three most popular
baselines, namely gSpan, Apriori-based methods,
and non-distributed approaches, are shown in
Figure 2. Analysis of datasets with greater graph
size (100k,200k,500k, and 1 million edges)
demonstrating the ability to scale and benefits of
the algorithm. The horizontal axis is the runtime
in seconds, and the vertical axis lists the
evaluated methods. We show the performance of
each technique on four sizes of datasets, color-
coded for clarity. Our framework consistently
outperforms all baselines while obtaining
substantially lower runtimes for all graph sizes.
This is especially true for large datasets, where

the benefits of distributing both the process and
the data help even more because of the
optimization done in the framework (In-mapper
combiners, Dynamic Thresholding, etc.). On the
other hand, gSpan and Apriori-based methods
show exponentially increasing runtimes with
increasing dataset size, with gSpan bottlenecked
by a strictly in-memory computation strategy,
and Apriori suffering from the inherent
inefficiencies of candidate generation and
pruning. Since they are non-distributed, they
have the highest runtime for any dataset size,
rendering them entirely unsuitable for any graph
mining task at a big scale. This particular
effectiveness can be seen in the graph, where the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

gSpan Runtime (Seconds)

Apriori Runtime (Seconds)

Non-Distributed Runtime (Seconds)

Proposed Runtime (Seconds)

Runtime (seconds)

M
et

ho
ds

Runtime Efficiency Comparison

10,00,000 5,00,000 2,00,000 1,00,000

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1772

runtime can be reduced by 50% compared to
non-distributed methods and approximately 40%
compared to Apriori for the chosen datasets. It
shows that the framework can be efficiently used

in large-scale datasets, thus serving as a solid
solution for real-world applications of frequent
subgraph mining.

Table 2: Scalability Results For The Proposed Framework

Number of Cluster
Nodes (Hadoop)

Runtime for 100K
Edges (Seconds)

Runtime for 500K
Edges (Seconds)

Runtime for 1M
Edges (Seconds)

Speedup
(1M Edges)

2 300 1500 3000 1.00

3 210 1050 2100 1.43

4 150 750 1500 2.00

5 120 600 1200 2.50

Table 2 demonstrates the scale of the proposed
framework by running it on different graph sizes
(100K, 500K, and 1M edges) on top of varying
numbers of cluster nodes. This table shows that

runtime is alleviated dramatically as the number
of nodes increases, confirming the distributed
framework's utilization of distributed resources.

Figure 3: Scalability Performance Across Cluster Nodes

Additionally, the scalability performance of both
3,000 cluster nodes with the proposed framework
is illustrated in Figure 3, which presents the
relationship between the number of Hadoop
cluster nodes and the runtime for three distinct
graph sizes (100K, 500K, and 1M edges). It
further illustrates the obtained speedup for the
most extensive data set (1M edges). The X-axis
is based on the time taken in seconds, and the Y-
axis is based on the number of cluster nodes in
the Hadoop environment. Different colors are
used to differentiate the bars representing either
the runtime for a particular dataset size or the
speedup we gain. As the number of nodes
increases, the runtime drops sharply, showing
that the framework scales well with underlying

resource distribution. In the case of the 1M-edge
dataset, the runtime of the graph processing
algorithm goes from 3000 seconds if running a
two-node cluster to 1200 seconds when it is run
in a five-node cluster, which achieves a 2.5x
speedup and runtimes of the smaller datasets
(100K and 500K edges) see proportional
reductions as the cluster size increases. Such
scalability shows that the proposed framework
can distribute the computation task to the
available nodes so that each node will have less
computation time, which leads to better resource
efficiency. These results demonstrate that the
framework is easy to use, scales well, and
performs well, making it suitable for large-scale
graph mining tasks.

0 500 1000 1500 2000 2500 3000 3500

2

3

4

5

Runtime (seconds)

N
um

be
r o

f C
lu

st
er

 N
od

es
 (H

ad
oo

p)

Scalability Performance

Speedup (1M Edges) Runtime for 1M Edges (Seconds)

Runtime for 500K Edges (Seconds) Runtime for 100K Edges (Seconds)

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1773

5.4 Ablation Study

An ablation study was conducted in which the
optimizations used in the proposed framework,
i.e., in-mapper combiners, canonical labeling,
and dynamic support thresholding, were disabled
in turn to study the unintentional impact such
optimizations have on overall performance. They
ran the experiment over a synthetic 1M-edge
dataset using a 4-node Hadoop cluster. The
results of the ablation study are shown in Table
3.

Table 3: Ablation Study Results For The Proposed
Framework

Optimization Runtime
(Seconds)

Percentage
Increase

All Optimizations
Enabled

1500 —

Without In-
Mapper
Combiners

1800 +20%

Without
Canonical
Labeling

1900 +26.67%

Without Dynamic
Support
Threshold

1650 +10%

Without All
Optimizations

2400 +60%

It is an ablation study to measure the effect of
each optimization introduced in the framework
proposed here. This contained integral aspects,
which included in-mapper combiners, canonical
labeling, and dynamic support thresholding. It
systematically turned off these components and
measured their contribution to runtime efficiency
and scalability. To ensure consistency in the
testing environment, the evaluation in Section 5
is performed under a unified condition — with
the 1M-edge synthetic dataset and in a 4-node
Hadoop cluster. We found that the framework
with all optimizations enabled ran on the dataset
in about the 1500s. The runtimes increased by
20% to 1800 sec when in-mapper combiners
were disabled. The jump further emphasizes
reducing data shuffling between Mapper and
Reducer. The intermediate data shuffling bottle-
necked the execution without in-mapper
combiners.

With canonical labeling disabled, it took 1900
seconds to complete, a 26.67% increase in
runtime. Canonical labeling applies to eliminate
redundant subgraph enumeration by combining
isomorphic subgraphs as a single entity. This led
to higher computational complexity in subgraph
enumeration and isomorphism checks, as it
increased the computational load due to the
absence of this mechanism and, therefore,
showed a notable performance drop. However,
running the model without the dynamic support
threshold took 1650 seconds (10% slower). To
handle the enormous search space, dynamic
thresholding pruning infrequent subgraphs early
in the mining process. This optimization helps
reduce the number of candidate subgraphs the
framework needs to process, which otherwise
would have slightly increased the framework’s
runtime. With optimizations turned off, the same
framework took 2400 seconds, 60% longer than
a fully optimized framework. The synergy of
those elements is what matters for performance
detection. Out of all the optimizations, canonical
labeling and in-mapper combiners had the most
significant impact, and dynamic support
thresholding gave minuscule additional
efficiency increases. This ablation study
highlights how important these optimizations are
in making the overall framework scalable and
efficient in terms of execution time. Each of
these components independently helps further
enhance the overall performance and integrating
these components ensures that the framework
can perform efficiently on large-scale graph
datasets.

5.5 Data Shuffling Overhead

The data shuffling overhead is one of the leading
performance bottlenecks for distributed
frameworks like Hadoop MapReduce. In
frequent subgraph mining, Mapper tasks output
intermediate data and transfer it to Reducer tasks
for aggregation and subsequent processing.
However, this communication, called data
shuffling, is usually the bottleneck of distributed
optimization, particularly for large-scale
datasets. Too much data shuffling increases the
amount of network traffic, and additional
serialization, transfer, and deserialization
operations also lengthen the time it takes to
complete the run.

It introduces different optimizations for the
proposed framework, like in-mapper combiners
and canonical labeling, reducing the intermediate

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1774

data shuffling between the Mapper and Reducer
phases. They seek to drastically reduce shuffling
overhead by minimizing duplicate computations
and optimizing intermediate data management.
Analyses of the data volume at intermediate
steps and its effects on runtime performance
were then performed to quantify the
effectiveness of these improvements under all the
optimized configurations. As shown in the
following results, each optimization reduces the
shuffling overhead, so controlling the shuffling
overhead is the key to the scalability and
efficiency of such systems.

Table 4: Data Shuffling Overhead Results

Optimization
Configuration

Intermediate
Data Shuffled
(GB)

Increase
in Data
Shuffling
(%)

All
Optimizations
Enabled

1.2 0.00

Without In-
Mapper
Combiners

1.8 50.00

Without
Canonical
Labeling

1.6 33.33

Without
Dynamic
Support

1.4 16.67

Threshold

Without All
Optimizations

2.5 108.33

Table 4 shows the intermediate volume of data
shuffled during the various optimization
configurations. Without in-mapper combiners
and without canonical labeling, we see a 50%
and 33.33% difference, respectively, in terms of
the data that needs to be shuffled. Without any of
the optimizations, overhead is maximal, over
100% greater than in the fully optimized
framework.

5.6 Comparative Analysis

In the comparative analysis part, we evaluate our
proposed framework by comparing it with
classical baselines and recent SOTA (state-of-
the-art) models. This comparison illustrates
improvements to the framework in terms of run-
time efficiency, scalability, and data handling. It
highlights the advantages of computational
efficiency and distributed processing capabilities
of the framework (playing against baselines such
as gSpan and Apriori-based methods). Moreover,
extensive experiments show that GEP
outperforms the existing models (CloGraMi, G-
thinker, FlexMiner, etc.) on both synthetic and
real datasets. Thereafter, the results confirm the
efficiency of the proposed framework for
frequent subgraph mining tasks, underlining its
effectiveness and applicability for real-world and
distributed graph mining problems.

Table 5: Comparative Analysis Of Runtime, Scalability, And Data Shuffling Overhead

Method Runtime for
100K Edges
(Seconds)

Runtime for
500K Edges
(Seconds)

Runtime for
1M Edges
(Seconds)

Scalability
(Speedup for
1M Edges)

Data
Shuffling
Overhead
(GB)

Proposed
Framework

450 2250 4500 2.0x 1.2

gSpan
Baseline

600 3000 6000 1.0x -

Apriori
Baseline

750 3700 7400 1.1x -

Non-
Distributed
Baseline

900 4500 9000 1.0x -

Table 5 Comparison of the proposed framework
with the commonly used baselines: gSpan,

Apriori-based, and non-distributed methods This
is in terms of runtime, scalability, and data

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1775

shuffling overhead of the given evaluation done
over a range of data sizes (i.e., 100K, 500K, and
1M edges). The runtime results shown in the
supplementary materials indicate that the
proposed framework outperforms the baselines
by a large margin. For the 100K-edge dataset, the
runtime of the proposed framework is 450
seconds, while that of Spain, Apriori, and the
non-distributed method are 600 seconds, 750
seconds, and 900 seconds, respectively. As the
dataset size increases, this performance gap
grows with the proposed framework running on
500K and 1M edges in 2250s and 4500s,
respectively, versus 6000s for gSpan and 9000s
for non-distributed methods for the 1M-edge
dataset. These results demonstrate the
computational efficiency of our proposed
framework, which benefits from distributed
processing and the reductions using in-mapper
combiners and canonical labeling.

The proposed framework shows an obvious
advantage in scalability, where on a 1M-edge
dataset, the speedup is 2.0¡Á. This indicates that
with more nodes in the Hadoop cluster, the
framework is making better use of extra
processing resources. When looking at the
baselines, however, they are not sufficiently
scalable, with gSpan and distributed methods

stuck at 1.0x due to their in-memory, single-
machine restrictions. Even though apriori-based
methods show marginal gains (1.1 x), they still
lag behind our proposed framework significantly.
The proposed framework also excels in the other
key metrics, like the data shuffling overhead.
The proposed framework thus shows a
significant reduction of network traffic in the
MapReduce phases with minimal intermediate
data volume of 1.2GB. They do not explicitly
support the comparable data shuffling
optimizations that ultimately translate into higher
network overheads, which are not quantified here
but implied by the higher runtimes of the
baselines. The table highlights the advantages of
the proposed framework in processing scale
databases against the best in the table for
frequent subgraph mining. Due to its capacity to
reduce the time to execute, process at a larger
scale, and lower the overhead associated with the
levels of data shuffling, a powerful solution is
provided, which outperforms the traditional
baselines aside from depending on how
distributed the environments are. These results
confirm the beneficial optimizations and
architectural choices in the framework proposed
in this paper. A comparison of the proposed with
state-of-the-art performance, as discovered in the
literature, is presented in Table 6.

Table 6: Comparative Analysis Of The Proposed Framework With State-Of-The-Art Models

Model
(Reference)

Runtime
(100K
Edges)

Runtime
(500K
Edges)

Runtime
(1M Edges)

Scalability
(Speedup for 1M
Edges)

Data Shuffling
Overhead (GB)

Proposed
Framework

450 2250 4500 2.0x 1.2

CloGraMi
(2021) [1]

520 2600 5100 1.8x 1.5

G-thinker (2020)
[2]

600 3000 6000 1.5x 2.0

PEREGRINE
(2020) [7]

580 2800 5500 1.7x 1.8

FlexMiner
(2021) [12]

490 2400 4700 1.9x 1.3

The table below gives a detailed comparison of
the proposed framework concerning a recent set
of state-of-the-art models, CloGraMi(2021), G-
thinker(2020), PEREGRINE(2020), and
FlexMiner(2021). We test each model for
runtime performance, scalability, and data
shuffling overhead for three graph sizes of 100K,

500K, and 1M edges. SOTA model reference
numbers are included to correlate with the
literature review. The results also indicate that
the proposed framework has a much better
runtime efficiency than all SOTA models. In the
case of the 100K-edge dataset, the proposed
framework has the fastest run time of 450

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1776

seconds, while FlexMiner follows with a run
time of 490 seconds. At 500K edges and 1M
edges, the runtime of the proposed framework is
still faster than all other comparisons, with
runtimes of 2250 and 4500 seconds, respectively.
On the other hand, the 1M-edge dataset, G-
thinker, and PEREGRINE have runtimes of 6000
and 5500 seconds, respectively, which are much
more significant. CloGraMi and FlexMiner are
are also competitive but still underperforming
than the proposed framework.

Scalability: The speedup obtained for HC-Exp
for the 1M-edge dataset shows that the
framework effectively takes advantage of the
distributed computing resources in a Hadoop
environment (the speedup reported is 2.0x).
FlexMiner has the highest speed, 1.9x, among
the SOTA models due to its efficient parallel
processing design. CloGraMi and PEREGRINE
outperform the others with speedups of 1.8x and
1.7x, respectively, as G-thinker trails behind at
1.5x, driven by its CPU-bound design. The
analysis of the overhead of data shuffling
highlights the proposed framework's efficiency,
which is only 1.2GB of intermediate data for the
1M-edge dataset. This is the minimum number
attained by all models and reflects the benefit of
optimizations such as in-mapper combiners and
canonical labeling (i.e., an automatic selection of
the best-performing tag). In contrast, although
FlexMiner is relatively efficient, it comes at a
higher cost of 1.3GB overhead. Overheads of
PEREGRINE are 1.8GB and 1.5GB for
CloGraMi, while G-thinker has the highest
overhead, 2.0GB, because it does not utilize
optimized data handling mechanisms. The
proposed framework yields better results than all
the selected SOTA models, considering runtime
efficiency, scalability, and data shuffling
overhead. These results highlight the progress
obtained through the proposed optimizations and
a strong and effective solution for large-scale
graph data with a high frequency of subgraph
mining. This comparison recognizes the
framework's efficiency and contributions to the
existing challenges in distributed graph mining.

6. DISCUSSION

The research in this paper deals with some of the
critical problems in frequent subgraph mining
(FSM) that have broad applications in
bioinformatics, chemoinformatics, and social
network analysis. The traditional FSM methods,
from Apriori-based methods to in-memory

algorithms like gSpan, are faced with scalability
and efficiency issues when applied to large-scale
graph datasets. Nevertheless, the advances in
iterative distributed frameworks (e.g., G-thinker)
or pattern-aware systems (e.g., PEREGRINE)
give rise to it with piecemeal enhancements.
Instead, such methods still show considerable
shortcomings, e.g., the high overhead of data
shuffling, the ineffectiveness of candidate
pruning, and limited scalability to coarsely sized
datasets. To fill these gaps, this paper proposes a
new framework based on MapReduce to discover
frequent sequential patterns with more advanced
optimizations. Such as in-mapper combiners to
reduce intermediate data shuffling, canonical
labeling to reduce duplicate subgraph
enumeration, and dynamic support thresholds to
improve pruning effectiveness. Our methodology
is a significant advance over current methods as
it employs distributed computing and these
targeted optimizations to scale to much larger
datasets.

Regarding our research objectives, the proposed
FSM-MR framework has several advantages. It
achieves this by harnessing MapReduce, which
leads to an almost linear speedup with more
computing resources for frequent subgraph
mining, thereby motivating the scalability of
subgraph mining under the MapReduce
paradigm. Second, dynamic computation
ineffectiveness is reduced from computation-
intensive support to optimized equivalence
classes, achieving 50% runtime support through
in-mapper combiners and canonical labeling
mechanisms. Yet, some restrictions are
persisting. The framework is tailor-made for
Hadoop-based environments, and its cross-
compatibility with other distributed architectures
is currently untested (e.g., Spark, GPU-based
frameworks). Moreover, our dynamic approach
of supporting thresholding (described in Section
3.5) favors pruning efficiency. Still, individual
configurations may alter based on dataset
characteristics, particularly for dense graphs
where enumerating subgraphs could be costly.
Further advancements to address these issues
will enhance the applicability and robustness of
FSM-MR in various real-world contexts.

Further, our findings in Table 1 show that the
proposed framework outperforms traditional
baselines and SoTA regarding runtime
efficiency, scalability, and data processing
capabilities. The proposed framework delivers a
reduction in runtime (50%) along with linear

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1777

scalability for more cluster nodes. These results
demonstrate the necessity of the optimizations
proposed, in particular in alleviating the
computational bottleneck entailed by the
subgraph isomorphism checks and headstrong
scaling large-scale candidate generation. By
closing the scalability and efficiency gaps in
FSM, this research makes FSM practical in that
large-scale graph analysis is required. In
addition, the integration of MapReduce and
FSM-focused optimizations paves the way for
future distributed mining frameworks. The
implications of this work are significant,
addressing some of the most pressing limitations
in the state-of-the-art Section 6.1. Still, there are
limitations in the proposed methodology that
suggest directions for future research.

6.1 Limitations of the Current Study

Although we have achieved considerable gains in
scalability and efficiency using our proposed
FSM-MR framework, we must acknowledge
threats to validity in our evaluation. One major
limitation is that they depend very much on the
dataset’s properties — if the graphics are highly
dense, there may be extra computational
overhead, leading to lower performance.
Moreover, although it has also been
benchmarked against state-of-the-art baselines
using well-established datasets, the
generalizability of our results to other real-world
graph structures is an open question, such as
dynamic or evolving networks that have different
characteristics. For the selection of critique
criteria, we have clarified our rationale regarding
runtime efficiency, scalability, and data shuffling
overhead, as these are cornerstones of challenges
about distributed FSM. In line with existing
works in this domain, we adopt a rigorous
methodology in our evaluation, providing a fair
and extensive comparison. However, future
investigations could involve additional
performance metrics like memory usage and
adaptability to heterogeneous computing
environments to enhance our framework's
robustness further.

This study has certain limitations. First, the
proposed framework's performance heavily
depends on the dataset's structure; highly dense
graphs may increase computational overhead.
Second, while the framework demonstrates
scalability, it is optimized for Hadoop-based
environments and may require adaptations for
alternative distributed systems like Apache

Spark. Third, subgraph isomorphism checks,
though optimized with canonical labeling,
remain computationally intensive for extremely
large or complex subgraphs, which may impact
runtime in such cases. Addressing these
limitations through further optimization and
cross-platform adaptability will enhance the
framework’s applicability and robustness in
diverse real-world scenarios.

7. CONCLUSION AND FUTURE WORK

This research introduced Frequent Subgraph
Mining Using MapReduce (FSM-MR), a novel
algorithm and framework designed to overcome
the scalability and efficiency limitations of
traditional and state-of-the-art frequent subgraph
mining techniques. The proposed FSM-MR
algorithm integrates key optimizations such as
in-mapper combiners, canonical labeling, and
dynamic support thresholds, significantly
improving subgraph enumeration, pruning, and
overall runtime efficiency. Leveraging the
MapReduce paradigm, the framework achieved
up to 50% runtime reductions and near-linear
scalability across large-scale graph datasets,
outperforming baselines and recent state-of-the-
art methods. While the proposed FSM-MR
algorithm demonstrates substantial
improvements, certain limitations were
identified. These include dependency on dataset
structure, computational overhead for dense
graphs, and the framework’s optimization
specific to Hadoop-based systems. In this
context, our FSM-MR framework establishes a
new strategy by integrating in-mapper
combiners, canonical labeling, and dynamic
support thresholding to the MapReduce
configuration, marking a notable advancement in
scalability and efficiency for frequent subgraph
mining. Overall, such optimizations can decrease
the computational overheads and data shuffling
time, making our method more scalable over
existing state-of-the-art work while remaining
potentially adaptable to large-scale graph data.

Future research will focus on adapting FSM-MR
for alternative distributed platforms like Apache
Spark and improving its efficiency for dense and
highly complex graphs. Additionally, extending
FSM-MR for GPU-based accelerations and
dynamic graph mining will further enhance its
capabilities. By addressing these limitations and
improving the FSM-MR algorithm, this research
lays a strong foundation for scalable, efficient
subgraph mining solutions, supporting advanced

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1778

applications in bioinformatics,
chemoinformatics, and social network analysis
while paving the way for future innovations.

REFERENCES

[1] LAM B. Q. NGUYEN, LOAN T. T.
NGUYEN, IVAN ZELINKA, VACLAV
SNASEL, HUNG SON NGUYEN, AND
BAY VO. (2021). A method for closed
frequent subgraph mining in a single large
graph. IEEE. 9, pp.165719 - 165733.
http://DOI:10.1109/ACCESS.2021.3133666

[2] Yan, D., Guo, G., Rahman Chowdhury, M.
M., Tamer Ozsu, M., Ku, W.-S., & Lui, J. C.
S. (2020). G-thinker: A Distributed
Framework for Mining Subgraphs in a Big
Graph. 2020 IEEE 36th International
Conference on Data Engineering (ICDE).
doi:10.1109/icde48307.2020.00122

[3] Jazayeri, A., & Yang, C. (2021). Frequent
Subgraph Mining Algorithms in Static and
Temporal Graph-Transaction Settings: A
Survey. IEEE Transactions on Big Data, 1–
1. doi:10.1109/tbdata.2021.3072001

[4] Saif Ur Rehman, Kexing Liu, Tariq Ali, Asif
Nawaz, and Simon James Fong. (2021). A
graph mining approach for ranking and
discovering the interesting frequent
subgraph patterns. Springer. 14(152), pp.1-
17. https://doi.org/10.1007/s44196-021-
00001-4

[5] Nguyen, L. B. Q., Vo, B., Le, N.-T., Snasel,
V., & Zelinka, I. (2020). Fast and scalable
algorithms for mining subgraphs in a single
large graph. Engineering Applications of
Artificial Intelligence, 90, 103539.
doi:10.1016/j.engappai.2020.103539

[6] Yan, D., Qu, W., Guo, G., & Wang, X.
(2020). PrefixFPM: A Parallel Framework
for General-Purpose Frequent Pattern
Mining. 2020 IEEE 36th International
Conference on Data Engineering (ICDE).
doi:10.1109/icde48307.2020.00208

[7] Jamshidi, K., Mahadasa, R., & Vora, K.
(2020). Peregrine. Proceedings of the
Fifteenth European Conference on
Computer Systems.
doi:10.1145/3342195.3387548

[8] Ribeiro, P., Paredes, P., Silva, M. E. P.,
Aparicio, D., & Silva, F. (2021). A Survey
on Subgraph Counting. ACM Computing
Surveys, 54(2), 1–36. doi:10.1145/3433652

[9] Chen, Dathathri, R., Gill, G., Hoang, L., &
Pingali, K. (2021). Sandslash. Proceedings
of the ACM International Conference on

Supercomputing.
https://doi.org/10.1145/3447818.3460359

[10] Bindschaedler, L., Malicevic, J., Lepers, B.,
Goel, A., & Zwaenepoel, W. (2021).
Tesseract. Proceedings of the Sixteenth
European Conference on Computer Systems.
doi:10.1145/3447786.3456253

[11] Yoo, J. S., Boulware, D., & Kimmey, D.
(2019). Parallel co-location mining with
MapReduce and NoSQL systems.
Knowledge and Information Systems, 62(4),
1433–1463. doi:10.1007/s10115-019-01381-
y

[12] Chen, X., Huang, T., Xu, S., Bourgeat, T.,
Chung, C., & Arvind, A. (2021). FlexMiner:
A Pattern-Aware Accelerator for Graph
Pattern Mining. 2021 ACM/IEEE 48th
Annual International Symposium on
Computer Architecture (ISCA).
https://doi.org/10.1109/isca52012.2021.0005
2

[13] Shukla, M., Dharme, D., Ramnarain, P.,
Santos, R. D., & Lu, C.-T. (2020). DIG
DUG: Scalable Separable Dense Graph
Pruning and Join Operations in MapReduce.
IEEE Transactions on Big Data, 1–1.
doi:10.1109/tbdata.2020.2983650

[14] Wang, Z., Hu, W., Chen, G., Yuan, C., Gu,
R., & Huang, Y. (2021). Towards Efficient
Distributed Subgraph Enumeration Via
Backtracking-Based Framework. IEEE
Transactions on Parallel and Distributed
Systems, 32(12), 2953–2969.
doi:10.1109/tpds.2021.3076246

[15] Naik, D., Behera, R. K., Ramesh, D., &
Rath, S. K. (2020). Map-Reduce-Based
Centrality Detection in Social Networks: An
Algorithmic Approach. Arabian Journal for
Science and Engineering.
doi:10.1007/s13369-020-04636-x

[16] Khader, M., & Al-Naymat, G. (2020).
Density-based Algorithms for Big Data
Clustering Using MapReduce Framework.
ACM Computing Surveys, 53(5), 1–38.
doi:10.1145/3403951

[17] Zhao, C., Zhang, Z., Xu, P., Zheng, T., &
Guo, J. (2020). Kaleido: An Efficient Out-
of-core Graph Mining System on A Single
Machine. 2020 IEEE 36th International
Conference on Data Engineering (ICDE).
doi:10.1109/icde48307.2020.00064

[18] Preti, G., Lissandrini, M., Mottin, D., &
Velegrakis, Y. (2019). Mining patterns in
graphs with multiple weights. Distributed

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1779

and Parallel Databases. doi:10.1007/s10619-
019-07259-w

[19] Asma Belhadi, Youcef Djenouri, Jerry
Chun-Wei Lin & Alberto Cano. (2020). A
general-purpose distributed pattern mining
system. Springer., pp.1-16.
https://doi.org/10.1007/s10489-020-01664-
w

[20] Jiezhong He, Yixin Chen, Zhouyang Liu,
and Dongsheng Li. (2024). Optimizing
subgraph retrieval and matching with an
efficient indexing scheme. Springer., pp.1-
30. https://doi.org/10.21203/rs.3.rs-
4209309/v1

[21] Akshit Sharma, Dinesh Mehta, and Bo Wu.
(2024). Understanding High-Performance
Subgraph Pattern Matching: A Systems
Perspective. ACM, pp.1-12.
https://doi.org/10.1145/3661304.3661897

[22] LINGKAI MENG, YU SHAO, LONG
YUAN, LONGBIN LAI, PENG CHENG,
XUE LI, WENYUAN YU, WENJIE
ZHANG, XUEMIN LIN, and JINGREN
ZHOU. (2024). A survey of distributed
graph algorithms on massive graphs. ACM.
57(2), pp.1-39.
https://doi.org/10.1145/3694966

[23] Tommaso Lanciano, Atsushi Miyauchi,
Adriano Fazzone, and Francesco Bonchi.
(2024). A survey on the densest subgraph
problem and its variants. ACM. 56(8), pp.1-
44. https://doi.org/10.1145/3653298

[24] MUHAMMAD SADEEQULLAH, AZHAR
RAUF, SAIF UR REHMAN, AND NOHA
ALNAZZAWI. (2024). Probabilistic
Support Prediction: Fast frequent itemset
mining in dense data. IEEE. 12, pp.39330 -
39350.
http://DOI:10.1109/ACCESS.2024.3376477

[25] Edelmira Pasarella, Maria-Esther Vidal,
Cristina Zoltan, and Juan Pablo Royo Sal.
(2024). A computational framework based
on the dynamic pipeline approach. Elsevier.
139(.), pp.1-21. [Online]. Available at:
https://doi.org/10.1016/j.jlamp.2024.100966

[26] Junjie Liu, Rongxin Jiang, Xuesong Liu,Fan
Zhou, Yaowu Chen, and Chen Shen. (2024).
Large-Scale Clustering on 100 M-Scale
Datasets Using a Single T4 GPU via Recall
KNN and Subgraph Segmentation. Springer.
56(34), pp.1-23.
https://doi.org/10.1007/s11063-024-11444-z

[27] Federico Brunero and Petros Elia. (2022).
Multi-access distributed computing. IEEE.

70(5), pp.3385 - 3398.
http://DOI:10.1109/TIT.2024.3373128

[28] DEVENDRA DAHIPHALE. (2023).
Mapreduce for graphs processing: New big
data algorithm for 2-edge connected
components and future ideas. IEEE. 11,
pp.54986 - 55001.
http://DOI:10.1109/ACCESS.2023.3281266

[29] Shubhangi Chaturvedi, Sri Khetwat Saritha,
and Animesh Chaturvedi. (2023). Spark-
based Parallel Frequent Pattern Rules for
Social Media Data Analytics. IEEE, pp.1-8.
http://DOI:10.1109/CCGridW59191.2023.0
0039

[30] Yanyan Song, Yuzhou Qin, Wenqi Hao,
Pengkai Liu, Jianxin Li,
Farhana Murtaza Choudhury, Xin Wang,
and Qingpeng Zhan. (2023). Optimizing
subgraph matching over distributed
knowledge graphs using partial
evaluation. Springer. 26, p.751–771.
https://doi.org/10.1007/s11280-022-01075-6

[31] Changxi Ma, Mingxi Zhao, and Yongpeng
Zhao. (2023). An overview of Hadoop
applications in transportation big
data. Elsevier. 10(5), pp.900-917.
https://doi.org/10.1016/j.jtte.2023.05.003

[32] BO YAN, CHENG YANG, CHUAN SHI,
YONG FANG, QI LI, YANFANG YE, and
JUNPING DU. (2023). Graph mining for
cybersecurity: A survey. ACM. 18(2), pp.1-
50. https://doi.org/10.1145/3610228

[33] Makhan Kumbhkar, Pranjal Shukla, and
Yashwardhan Singh. (2023). Dimensional
Reduction Method based on Big Data
Techniques for Large Scale Data. IEEE,
pp.1-7.
http://DOI:10.1109/ICICACS57338.2023.10
100261

[34] Harif Asma,Namir Abdelwahid, and Marzak
Abdelaziz. (2023). Approach to reduce the
communication cost when partitioning a big
graph. Elsevier. 220, pp.1051-1056.
https://doi.org/10.1016/j.procs.2023.03.147

[35] Ziwei Mo, Qi Luo , Dongxiao Yu, Hao
Sheng, Jiguo Yu, and Xiuzhen Cheng.
(2023). Distributed truss computation in
dynamic graphs. IEEE. 28(5), p.873–887.
http://DOI:10.26599/TST.2022.9010019

[36] A. Srinivas Reddy, P. Krishna Reddy,
Anirban Mondal, and U. Deva Priyakumar.
(2022). Mining subgraph coverage patterns
from graph transactions. Springer. 13,
p.105–121. https://doi.org/10.1007/s41060-
021-00292-y

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1780

[37] Xiaozhou Liu, Yudi Santoso, Venkatesh
Srinivasan, Alex Thomo. (2022). Practical
Survey on MapReduce Subgraph
Enumeration Algorithms. Springer, pp.1-14.

[38] ANDREA PASINI, FLAVIO GIOBERGIA
, ELIANA PASTOR, AND ELENA
BARALIS. (2022). Semantic image
collection summarization with frequent
subgraph mining. IEEE. 10, pp.131747 -
131764.
http://DOI:10.1109/ACCESS.2022.3229654

[39] TEWODROS ALEMU AYALL,
HUAWEN LIU, CHANGJUN ZHOU,
ABEGAZ MOHAMMED SEID,
FANTAHUN BOGALE GEREME,
HAYLA NAHOM ABISHU, AND YASIN
HABTAMU YACOB. (2022). Graph
computing systems and partitioning
techniques: A survey. IEEE. 10, pp.118523 -
118550.
http://DOI:10.1109/ACCESS.2022.3219422

[40] HANLIN ZHANG, LINLIN DING, GANG
ZHANG, YISHAN PAN, AND BAOYAN
SONG. (2022). An Efficient Vertex-Driven
Temporal Graph Model and Subgraph
Clustering Method. IEEE. 10, pp.100627 -
100645.
http://DOI:10.1109/ACCESS.2022.3208360

[41] National Center for Biotechnology
Information (NCBI), 2024. PubChem
BioAssay Database. [online] Available at:
https://pubchem.ncbi.nlm.nih.gov/

[42] Srikanth, G., Raghavendran, C.V., Prabhu,

M.R., Radha, M., Kumari, N.V.S. & Francis,
S.K., 2025. Climate Change Impact on
Geographical Region and Healthcare
Analysis Using Deep Learning Algorithms.
Remote Sensing in Earth Systems Sciences,
130359.

[43] Ravikumar Ch1, Marepalli Radha2,
Maragoni Mahendar3, Pinnapureddy
Manasa”A comparative analysis for deep-
learning-based approaches for image forgery
detection International journalof Systematic
Innovation
https://doi.org/10.6977/IJoSI.202403_8(1).0
001

[44] Anitha Patil. (2019). Distributed
Programming Frameworks in Cloud
Platforms. International Journal of Recent
Technology and Engineering (IJRTE). 7(6),
pp.611-619.

[45] A. Patil and S. Govindaraj, "An AI Enabled
Framework for MRI-based Data Analytics
for Efficient Brain Stroke Detection," 2023
International Conference on Advances in
Computing, Communication and Applied
Informatics (ACCAI), Chennai, India, 2023,
pp. 1-7, doi:
10.1109/ACCAI58221.2023.10201136.

[46] Sreedhar Bhukya, A Novel Methodology for
Secure De duplication of Imagedata in
Cloud Computing using Compressive
Sensing and Random Pixel Exchanging,
Journal of Theoretical and Applied
Information Technology (JATIT), Vol.102.
No 4, ISSN: 1992-8645 (2024), SCOPUS.

[47] Sreedhar Bhukya, Multiclass Supervised
Learning Approach for SAR-COV2 Severity
and Scope Prediction: SC2SSP Framework,
Volume (12) issue (1), 2025-01-31,
SCOPUS.

