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ABSTRACT 

For productive agriculture and healthy crops, plant disease detection is essential. Conventional disease 
detection techniques are human, arbitrary, and error-prone and require automated solutions. Specifically, 
convolutional neural networks (CNNs) are deep learning models that have demonstrated great promise for 
identifying plant diseases; however, they are primarily model-specific for a particular kind of plant and 
disease, restricting them from generalizability over diverse crops and conditions. Moreover, class imbalance, 
environmental noise, and  variability of disease symptoms make it even harder for these models to perform. 
In response to these problems, we present a sophisticated,  integrated deep-learning framework called 
LeafDiseaseNet. Our proposed architecture includes a squeeze-and-excitation (SE) block with residual 
connections and data augmentation, enabling the model to be generalized for different plant diseases and 
environmental conditions. LeafDiseaseNet is evaluated on the Plant Village dataset and yields 97.68%, which 
outperforms current best practices regarding precision and resilience. It also exhibits good quality regarding 
high imbalanced class recognition and absolute environmental noise robustness, which may become 
promising approaches for implementing plant disease recognition in real-world agriculture situations. The 
framework aims to provide an efficient and scalable strategy for automating plant disease detection that can 
play a massive part in precision farming by making information about the disease available promptly and 
with sufficient time for action. 
Keywords: Squeeze-And-Excitation, Deep Learning, Plant Disease Detection, Convolutional Neural 

Networks, and Residual Connections  
 

1. INTRODUCTION  

Plant disease detection is a vital component of 
modern agriculture. Early disease detection is 
crucial for the development of sustainable 
agriculture because it can negatively impact crop 
output and quality. The ability to detect pests early 
means there is time to intervene and prevent more 
harsh chemicals from being used, keeping the 
plant healthier. Plant disease diagnosis is a tedious 
process involving visual inspection in traditional 
methods, and it is highly subjective and prone to 
human error. Automated plant disease detection 
has received much attention due to the 
advancement of computer vision and deep 
learning, which offer a quicker and more precise 
substitute for conventional techniques. As a 
result, Convolutional neural networks, or CNNs, 
are one type of deep learning model that has been 
used to accurately predict objects in photos by 
removing pertinent information from the provided 
images. 

Recent literature demonstrates the application of 
several architectures, including VGG16, ResNet, 
and Inception, on plant disease detection tasks. 
For example, Richardson et al. introduced A 
VGG16. 

The model for rice leaf disease diagnosis was 
based on [1], which achieved 99.94% accuracy. 
Similarly, Rashid et al. MMF-Net: CNN for 
Classification of Maize Leaf Disease was 
proposed by [2] with the best accuracy of 99.23% 
for maize leaf disease classification. Although 
these models have been successfully developed, 
they are typically crop or disease-specific and not 
generalizable across plant species or 
environmental conditions. Moreover, the 
performance of these models is also affected by 
class imbalance, disease variability, and 
environmental noise. 

Although automated methods for identifying plant 
diseases can help ensure the productivity of 
agricultural systems, their operational use has 
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limitations in areas such as generalizability, 
robustness to environmental noise, and 
imbalanced data sets. Various accurate state-of-
the-art models, like VGG16, ResNet50, and 
Inception, are developed; however, their 
applicability is usually limited to specific crops or 
convenient environments. In addition, many 
models do not incorporate feature recalibration, 
hindering optimal feature representation when 
multiple diseases share similar visual 
presentations. A more efficient, generalized, and 
scalable deep learning model that provides higher 
accuracy, is resistant to environmental 
fluctuations, and is better robust to dataset 
imbalance is required. 

The current study fills these gaps by introducing 
an enhanced deep learning model, 
LeafDiseaseNet, capable of enhancing plant 
disease detection systems' resilience and 
generality. LeafDiseaseNet is a new architecture 
built with residual connections, an SE (Squeeze-
and-Excitation) block, and data augmentation 
methods to allow it to perform well on many kinds 
of plant species and plant diseases with high 
accuracy. We focus our study on designing a 
robust model capable of performing multiple 
plant disease detection tasks but still suitable in 
realistic agricultural scenes. The proposed 
research provides a new deep-learning model for 
plant disease recognition, which overcomes the 
current limitations in improving existing models 
regarding plant species generalization, 
environmental noise handling, and imbalanced 
dataset learning. It also contains an extensive 
experimental analysis based on the PlantVillage 
dataset, demonstrating the utility. 

The following is the paper's structure: Section 2 
provides an overview of current studies on deep-
learning models for plant disease detection. The 
third section describes the suggested approach, 
including the architecture of LeafDiseaseNet and 
methods to enhance its performance. The 
experimental findings are shown in Section 4, and 
comparisons between LeafDiseaseNet and the 
most advanced models. Section 5 discusses the 
study's limits and conclusions as well as the 
research's ramifications. Section 6 wraps up the 
work and discusses potential avenues for future 
research, such as using and improving the model. 

2. RELATED WORK 

With an emphasis on diverse models and 
methodology, this literature review examines 
current developments in deep learning techniques 

for plant disease diagnosis. Richardson et al. [1] 
created a unique VGG16 model with high 
accuracy for rice leaf disease diagnosis. Future 
research will focus on developing instruments for 
disease diagnostics and expanding this approach 
to other crops. Bouacida et al. [2] demonstrated a 
revolutionary deep learning system that detects 
plant illnesses with better accuracy using a tiny 
Inception model. Future studies will investigate 
sliding window techniques and enhance 
adaptation to real-world settings. Simhadri et al. 
[3] proposed further work on federated learning 
and remote sensing and assessed deep learning 
techniques for rice leaf disease detection. Rashid 
et al. [4] introduced MMF-Net, a CNN-based 
model that uses multi-contextual characteristics to 
achieve a higher level of accuracy in classifying 
maize leaf diseases. Future efforts may improve 
model robustness and apply it to more significant 
agricultural or Internet of Things scenarios. 
Shamasneh et al. [5] presented a conformable 
polynomials technique that yields increased 
accuracy in SVM classification when used to 
extract tomato leaf texture information. Future 
research may examine larger datasets and 
practical uses. 

Polly and Devi [6] provided a multi-stage system 
that combines CNN, UNet, YOLOv8, 
DeepLabV3+, and other models to detect leaf 
illness and accurately suggest treatments with 
better accuracy. Long-term projects could 
concentrate on growing datasets and practical 
uses. Umar et al. [7] presented a highly accurate 
upgraded YOLOv7 model incorporating SimAM, 
DAiAM, and better MPConv for detecting tomato 
leaf disease. Future research could examine more 
widespread illness categories and practical uses. 
Sujatha et al. [8] contrasted ML and DL 
approaches for identifying citrus disease and 
found that DL models—particularly VGG-16—
perform more accurately than ML methods. 
Future research may examine different crops and 
model enhancements. Zhang et al. [9] improved 
Faster RCNN for detecting tomato leaf disease, 
increasing speed and accuracy by 2.71% and 
feature extraction and clustering accuracy. Khan 
et al. [10] suggested a five-step process with 
enhanced segmentation and feature extraction that 
detects cucumber leaf disease accurately. 

Algani et al. [11] presented ACO-CNN, which 
uses ant colony optimization and deep learning to 
increase accuracy in identifying plant diseases. 
Ahmad et al. [12] identified gaps and guided 
future tool development and research by 
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reviewing 70 deep-learning papers to control 
plant diseases. Panchal et al. [13] created a deep 
learning model with 93.5% accuracy to classify 
plant illnesses using CNNs. Future research will 
incorporate therapy recommendations and 
improve data gathering. Moupojou et al. [14] 
presented FieldPlant, a recently created dataset of 
5,170 field photos annotated by experts. 
Upcoming tasks include enhancing dataset quality 
and model accuracy. Shovon et al. [15] presented 
PlantDet, a deep ensemble model that diagnoses 
betel leaf and rice illnesses more accurately than 
earlier techniques. The dataset's expansion and the 
model's improvement may be the main topics of 
future development. 

Kotwal et al. [16] examined the developments in 
deep learning for plant disease diagnosis, pointed 
out data shortages and disease localization, and 
made recommendations for further development. 
Shewale and Daruwala [17] enhanced real-time 
datasets and CNN for automated leaf disease 
diagnosis, resolving model constraints; future 
research will concentrate on broader applications. 
Nikith et al. [18] compared the performance of 
SVM, KNN, and CNN models for detecting leaf 
disease; CNN was shown to be superior with 
higher accuracy; future studies will focus on 
improving the performance of SVM and KNN. 
Ahmad et al. [19] evaluated various deep-learning 
models for diagnosing maize diseases, and 
DenseNet169 proved to be the most successful, 
with 81.60% accuracy. Subsequent research 
endeavors ought to go into merging datasets and 
refining field-deployable systems. Datta and 
Gupta [20] created a deep CNN with increased 
classification accuracy for tea leaf illnesses. In the 
future, additional crops will be included in the 
model, its identification of specific diseases will 
be improved, and it will be integrated with IoT 
devices. 

Dahiya et al. [21] examined eight deep-learning 
models and determined that ResNet50 and 
ResNet101 were the most successful at detecting 
plant diseases. Additional datasets and model 
refinement may be possible in future research. 
Umamageswari et al. [22] created software with a 
high-level accuracy rate for real-time plant 
disease diagnosis utilizing Fuzzy C-means, SIFT, 
and LSTM. Further research might improve 
detection algorithms and cover other illnesses. 
Jacklin and Murugavalli [23] examined deep 
learning and machine learning methods for 
identifying plant diseases, emphasizing the 
superiority of deep learning. Further research 

might investigate other categorization techniques 
for thorough illness detection. Rao et al. [24] 
accurately detected grape and mango leaf diseases 
using the deep learning model AlexNet. 
Challenges with real-time detection and the 
diversity of datasets are limitations. Some 
upcoming tasks include developing a 
recommendation system, extending the scope of 
illness classifications, and implementing 
autonomous drones. Zhong and Zhao [25] 
accurately determined apple leaf diseases using 
DenseNet-121 with regression, multi-label 
classification, and focus loss algorithms. 
Forthcoming projects will solve data imbalance 
problems and extend these techniques to more 
plant diseases. 

Noon et al. [26] analyzed 45 deep-learning 
methods for classifying plant leaf stress in 33 
crops, emphasizing their advantages and 
disadvantages. Future research should concentrate 
on integrating portable devices, background 
removal, and utilizing real-world data. Tiwari et 
al. [27] demonstrated a deep-learning model that 
can identify plant illnesses from leaf photos with 
better accuracy. Extending the dataset will be part 
of future efforts to improve performance under 
various circumstances. Yadav et al. [28] created a 
CNN model with increased accuracy in 
identifying peach bacteriosis. Future research will 
involve utilizing this model in real-time in the 
field by combining it with UAVs. Li et al. [29] 
emphasized the improvements made by deep 
learning in identifying plant diseases. Still, it 
raises concerns about the dataset's stability and 
hyperspectral imaging's limitations. Atila et al. 
[30] demonstrated the need for more model 
assessment while pointing out the greater 
accuracy of EfficientNet compared to other 
models for categorizing plant diseases. 

Thangaraj et al. [31] suggested using a CNN 
based on transfer learning to identify tomato leaf 
disease and found that the Adam optimizer works 
best. The model's application to other plants and 
severity identification are future projects. Ngugi 
et al. [32] discussed deep learning and image 
processing for diagnosing plant diseases, pointing 
to the difficulties with field performance and 
variable datasets. Subsequent research should 
concentrate on various datasets, miniature 
models, background elimination, and larger plant 
sections. Abed et al. [33] suggested a deep 
learning architecture for precise bean leaf disease 
detection that uses U-Net and other models. 
Potential misdiagnoses and expensive therapies 
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are among the limitations. Future research should 
concentrate on handling various environmental 
situations and increasing accuracy. Lakshmi and 
Savarimuthu [34] presented an improved 
EfficientDet framework that uses transfer learning 
to identify plant diseases effectively. Slower mAP 
and the requirement for more fantastic technology 
are limitations. Future research should focus on 
increasing computing efficiency and accuracy. Hu 
et al. [35] improved the identification of tea leaf 
blight by utilizing Retinex and deep learning 
techniques. Sensitivity to picture quality is one 
limitation. Future research should look for ways 
to increase the accuracy of severity and detection 
even further. 

Sachdeva et al. [36] suggested a deep CNN model 
that uses Bayesian learning to identify plant 
diseases with performance improvement. 
Subsequent investigations may investigate 
incorporating nanoscale materials to augment 
detection and elevate precision. Zhou et al. [37] 
suggested a reorganized residual dense network 
that requires less computing power and achieves 
95% accuracy in identifying tomato leaf diseases. 
Further optimization and broader applications can 
be the focus of future research. Divakar et al. [38] 
used an ensemble approach and SMOTE to 
balance an unbalanced apple leaf disease dataset, 
demonstrating that EfficientNetB7 is the optimal 
classifier. Prediction accuracy could be improved, 
and future studies should address dataset 
imbalances. Jiang et al. [39] improved VGG16 to 
achieve high accuracy in multi-task learning for 
detecting wheat and rice leaf diseases. Future 
research should increase the diversity of datasets 
and investigate more illness kinds. Goyal et al. 
[40] demonstrated a deep-learning model that 
outperforms VGG16 and ResNet50 in classifying 
wheat illnesses, achieving increased accuracy. 
Expanding the variety of diseases and improving 
the robustness of the model are potential areas of 
future investigation. Model innovations are also 
found for image processing innovations in [42] 
and [43].  More deep-learning optimizations are 
also found in [44] and [45]. Novel deep learning-
based optimized ideas are also found in [46] and 
[47]. Recent studies highlight the success of plant 
diseases in various crops, which can be identified 
using deep learning models such as CNNs, 
VGG16, ResNet, and EfficientNet. While deep 
learning models for plant disease detection are a 
state-of-the-art technique, there are still four main 
limitations in the current state of models in the 
domain: (i) the generalizability of the models is 

generally low across multiple species, (ii) they are 
sensitive to environmental changes (iii) in some 
instances, the datasets they are trained on are 
imbalanced (iv) the faster models underperform 
taking up a lot of computational resources. Most 
previous works (e.g., VGG16, ResNet50, 
Inception, EfficientNet) show high accuracy but 
are usually designed for specific crops or 
experimental laboratories with a small-scale data 
set, rendering their applicability limited. 
Additionally, most prevailing methods do not 
inculcate any high-level feature recalibration 
mechanism that can ensure better feature 
disambiguation on visually similar diseases. This 
paper fills in these gaps by presenting 
LeafDiseaseNet. This new deep learning 
architecture combines Residual Connections with 
Squeeze-and-Excitation (SE) architecture to 
enhance feature representation and improve 
generalization over a wide range of species and 
environmental conditions. Moreover, it reduces 
class imbalance and noise by applying data 
augmentation methods, with application to 
accurate agricultural field data. Our work is an 
essential step of bridging the gap between lab-
derived disease classification models and fast, 
field-deployable plant disease detection solutions 
for agricultural implementation. 

3. PROPOSED FRAMEWORK 

In this research, we offer LeafDiseaseNet, a 
network that uses deep learning to detect and 
classify plant diseases automatically. The 
framework aims to make it easier to diagnose 
plant diseases accurately and effectively using 
pictures of leaves. The flow of this methodology 
shows the deep learning model, training technique 
design, and the dataset collection and preparation 
phase (Figure 1). Using images of healthy and 
damaged leaves from various plant diseases, we 
used this dataset in our investigation. Several 
data-processing procedures were included to 
ensure the model performs and generalizes well. 
Standard preprocessing steps were performed, 
such as adjusting the images to an equal 
dimension and adjusting the values of pixels 
between 0 and 1. It also featured data 
augmentation techniques [rotate, flip, zoom, and 
shift] to improve generalization and lessen 
overfitting. This helped the model to learn broader 
features from the data by mimicking changes in 
the conditions in the image captured. 



 Journal of Theoretical and Applied Information Technology 
15th March 2025. Vol.103. No.5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1855 

 

 

Figure 1: Methodology For Detecting Plant Diseases Using The Leafdiseasenet Framework 

The key element of the methodology is the 
development of LeafDiseaseNet, an improved 
CNN. The model architecture includes several 
consecutive photos. The two images are detected 
using convolutional layers with max-pooling 
layers in between. The residual link, one of this 
architecture's noteworthy innovations, resolves 
the vanishing gradient problem, enabling the 
network to be deeper without losing performance. 
A batch norm was incorporated after each conv 
block to increase training speed and stability. A 

second squeeze-and-excitation (SE) block was 
incorporated into the design, enabling the network 
to alter feature responses automatically. This 
would allow the network to concentrate more on 
relevant sensitivity areas of the image, improving 
its discriminative power. The Adam optimizer 
with categorical cross-entropy loss, which may be 
used for multi-class classification applications, 
was used to train our model. We evaluated the 
model's performance on the validation set during 
each training session. To avoid overfitting and 
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ensure that the model produced a dependable 
output, we also incorporated an early-stopping 
approach that stops training when the validation 
loss does not improve for a predefined amount of 
epochs. During training, we also dynamically 
changed the learning rate using a learning rate 
scheduler to ensure the model converges 
efficiently. 

Images not in the training set were used to train 
and assess the model. Using the same pipeline as 
during training with the test photos, the model's 
output predictions were obtained, and the class 
with the highest probability was the predicted 
sickness. Several necessary measures were 
calculated to assess the model's performance, 
including accuracy, precision, recall, F1 score, 
etc. Confusion matrices were produced to visually 
show how accurately the model could define the 
type of disease. 

Successfully implemented, the LeafDiseaseNet 
framework can improve plant disease detection by 
providing faster and more reliable tools in the 
agricultural domain. This classification-based 
automation of leaf disease detection could benefit 
farmers, researchers, and agriculturalists by 
allowing them to quickly identify crop health and 
predict crop yield. This study used a detailed 
methodology, illustrated in Figure 1, highlighting 
the systematic pathway to achieve the results. 

3.2 The Deep Learning Model We Proposed 

LeafDiseaseNet architecture, as depicted in 
Figure 2, is designed to extract and classify image 
features. A deep CNN then does the feature 
extraction using multiple layers of convolutions. 
These layers progressively learn to identify more 
complex visual features, starting with simple 
characteristics like edges and textures to more 

intricate visual elements like forms and object 
components as the network depth increases. Batch 
normalization layers follow all convolutional 
layers to normalize outputs of previous layers for 
better stability and faster training, which means 
more rapid convergence of the model. 

The architecture also includes max−pooling 
layers, which downsample the features but retain 
the most essential information. Such 
dimensionality reduction allows the model to 
concentrate on the most critical features, resulting 
in better efficiency and generalization. Deeper 
layers of the model use more filters, detecting 
more abstract patterns in the data, which is 
essential to distinguish between different plant 
diseases that might have very subtle visual 
differences. 

Residual connections are incorporated into the 
architecture to avoid the issue of vanishing 
gradients during training. These links enable the 
output of a shallower layer to skip a few 
intermediate layers and be added directly to the 
production of a deeper layer. This aids the model 
in remembering the essential features from the 
previous layers and mitigates the training problem 
in deeper networks where gradient flow is 
compromised. In addition, the architecture 
incorporates a SE block that reweights the feature. 
It helps the network emphasize the most valuable 
features by varying the significance of different 
channels in feature maps. SE blocks operate by 
squeezing (i.e., reducing) the feature maps' spatial 
dimensions to produce a channel-wise 
description. This is followed by a learned scaling 
on a per-channel basis to help the model become 
focused on the most critical features, enhancing 
the capacity of the model to rank the most 
informative features. 
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Figure 2: Architecture Of Leafdiseasenet For Plant Disease Detection 

Once the features have been extracted and refined 
using convolutional, pooling, and attention layers, 
the network uses Downsampling, and the final 
feature map's dimensions are accomplished using 
global average pooling. Here, a completely 
connected thick layer receives the 1-dimensional 
feature vector created by this pooling layer from 
the 2-dimensional feature map. Here, this dense 
layer acts as a bridge where all features will be 

connected to a higher-level representation, thus 
enabling the network to make judgments using the 
provided features. Softmax: To allow the model 
to predict the most likely classes (illness), the 
output layer shows a probability distribution of 
the data using the softmax activation function. In 
summary, the overall structure of LeafDiseaseNet 
is built to input leaf images and output predicted 
labels efficiently with state-of-the-art tricks, 
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including data augmentation, residual 
connections, and attention mechanisms to achieve 
better performance and generalization 
capabilities. Such architectural features support 

LeafDiseaseNet's efficacy. Detecting plant 
diseases is a difficult task. Table 1 presents the 
notations used in the proposed methodology. 

Table 1: Notations Used 

Symbol Description 

I input picture with H x W x C dimensions 

H, W, C The supplied image's height, breadth, and number of RGB channels 

𝐶𝑎𝑝𝑋௜  with input image from the dataset 

𝑦௜  Disease class label for the i-th picture 

C Total number of classes (diseases) in the dataset 

X Feature map after applying convolution operation 

K Convolution kernel/filter 

Y Output feature map from the convolution operation 

μ, 𝜎ଶ Mean and variance for batch normalization 

γ, β Learnable parameters for batch normalization 

f(x) Activation function (e.g., ReLU) 

𝑌௜,௝,௞ An element located at (i, j) in the channel k feature map 

F(x) The residual block's output 

F(x)+x Residual connection output (skip connection) 

z Channel-wise feature vector after global average pooling 

r Channel attention vector from the Squeeze-and-Excitation block 

𝑠௖(𝑥) Class score for class c 

L Cross-entropy loss function in categories 

α The optimizer's learning rate 

ϵ Small constant for numerical stability in batch normalization 

β Batch size used in training 

epochs Number of training epochs 

 

3.3 Mathematical Perspective 

The proposed methodology for LeafDiseaseNet 
leverages a CNN to use photos of leaves to 
identify and categorize plant diseases. The 
network starts by taking in a picture of size 
I∈ℝு×ௐ×஼ , where C is the number of color 

channels (three for RGB photos) and H and W 
stand for the image's height and width. The first 
layer in the model applies a convolution 
operation, which is mathematically represented as 
in Eq. 1. 
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𝑌௜,௝,௞ = ∑ ∑ 𝑋௜ା௠,௝ା௡,௞ . 𝐾௠,௡,௞
ே
௡ିଵ

ெ
௠ିଵ         (1) 

where Y is the final feature map, M and N are the 
kernel's dimensions, K is the input image, and X 
is the convolution kernel. Following their 
extraction through the convolution operation, the 
local features of the image are subjected to an 
activation function, often the Rectified Linear 
Unit (ReLU) as in Eq. 2.   

f(x)= max(0,x)                                          (2) 

The network gains non-linearity from this 
activation function, which helps it recognize 
intricate patterns. Following convolution and 
activation, the output of the convolutional layers 
is normalized by a batch normalization layer, 
which stabilizes the learning process as in Eq. 3.  

𝑌෠ =
௒ିఓ

ඥఙమାఢ
. 𝛾 + 𝛽                                     (3) 

Where μ and 𝜎ଶ are the input's mean and variance, 
γ and Learnable parameters are β, and ϵ is a small 
constant to avoid division by zero. This operation 
helps maintain the gradient flow and improves the 
network's convergence speed. After each 
convolution block, max-pooling methods 
minimize spatial dimensions and retain essential 
features. This operation is defined as in Eq. 4.  

𝑌௜,௝ = max (𝑋௜,௝ , 𝑋௜ାଵ,௝, … . , 𝑋௜ା௞,௝ା௞ )                        
(4) 

where k is the pooling window size, and the 
operation takes the maximum value within the 
window. The model also incorporates residual 
connections to facilitate the flow of gradients, 
preventing issues such as vanishing gradients. A 
residual link permits a previous layer's output to 
be directly added to the production of a deeper 
layer, improving the training of very deep 
networks. Mathematically, for a layer output F(x), 
the residual output is given by Eq. 5.  

Output= F(x)+x                                      (5) 

This helps the network learn identity mappings, 
leading to more effective training. A Squeeze-
and-Excitation (SE) block is added to recalibrate 
the feature maps and enhance the model's focus on 
essential features. Using the feature map F, the SE 
block first applies global average pooling to get 
channel-wise statistics as in Eq. 6.  

𝑧௖ =
ଵ

ு×ௐ
∑ ∑ 𝐹௜,௝,௖

ௐ
௝ିଵ

ு
௜ିଵ                               (6) 

where 𝑧௖ is the channel's pooling feature. A 
channel attention vector r is then created by 
applying a fully linked layer to the pooled feature, 
which is used to scale the original feature maps as 
in Eq. 7.  

r= σ(𝑊ଶ𝛿(𝑊ଵ𝑧))                                    (7) 

where σ is the sigmoid activation function, 𝑊ଵ and 
𝑊ଶare the weights of the fully connected layers, 
the sigmoid activation function, δ is the ReLU 
activation, and z is the channel-wise feature 
vector. Using this attention mechanism, the 
network can suppress less informative elements 
and concentrate on more pertinent ones. After the 
convolutional layers, the network performs. By 
using global average pooling, each channel's 
spatial dimensions are reduced to a single value: 

𝑧௖ =
ଵ

ு×ௐ
∑ ∑ 𝐹௜,௝,௖

ௐ
௝ିଵ

ு
௜ିଵ                       (8) 

This yields a one-dimensional vector of size C, 
where C is the number of channels in the final 
convolutional layer. The vector is then sent 
through a fully linked layer to produce the class 
scores. The output is sent through a softmax 
activation to determine the probability 
distribution across the classes as in Eq. 9.  

P(c∣x)=
௘ೞ೎(ೣ)

∑ ௘ೞೖ(ೣ)೎
ೖషభ

                                 (9) 

where 𝑠௖(𝑥) is the class C score, and C is the 
number of classes overall (representing different 
diseases). The categorical cross-entropy loss 
function, which is calculated as follows, is used to 
train the model as in Eq. 10.  

L=−∑ 𝑦௖log (𝑝௖)஼
௖ିଵ                            (10) 

where 𝑦௖ is the ground truth label for class c, and 
𝑝௖  is the predicted probability for class c. The 
optimizer used in training is Adam, which updates 
the network's weights based on gradients 
computed through backpropagation. New leaf 
photos are classified using the learned model in 
the testing phase. The images are preprocessed 
similarly to the training images, and the model 
generates a probability distribution across the 
classes. The class with the highest probability is 
used to select the expected sickness. The 
measures used to evaluate the model's 
performance are F1-score, recall, accuracy, and 
precision. The model's performance in correctly 
classifying each disease category and 
differentiating between classes is evaluated by 
computing the confusion matrix. By combining 
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these techniques, LeafDiseaseNet provides an 
accurate and efficient framework for plant disease 
detection. Automating the classification of leaf 
diseases contributes significantly to agricultural 
practices. 

3.4 Algorithm Development 

A CNN-based approach for automatically 
detecting leaf illnessCNNs' Use in Plant Attack 

Detection(LPDD) LeafDiseaseNet: CNN-based 
disease detection model for leaf plants Utilizing 
methods such as residual connections and data 
augmentation, and Squeeze-and-Excitation 
blocks, the algorithm allows for effective feature 
extraction and classification. This deep learning 
computer vision project is essential to help 
identify plant diseases, contributing to better 
agriculture and less trouble managing the crops. 

Algorithm: LeafDiseaseNet for Plant Disease Detection 
Inputs: 
Dataset D = {(𝑋௜ , 𝑦௜)}௜ିଵ

ே where 𝑋௜are the leaf images and 𝑦௜  Are the disease labels. 
Hyperparameters: Learning rate α, batch size β, number of epochs. 
Output: 
Trained model M for predicting the disease class. 
 
1. Data Preprocessing 

i. Load and resize images to H×W×C. 
ii. Normalize pixel values to [0, 1]. 

iii. Apply data augmentation (rotation, flipping, zooming) to increase diversity. 
2. Build Model Architecture (LeafDiseaseNet) 

 Initialize a CNN model with:  
i. Convolutional layers activated by ReLU. 

ii. Batch normalization and max-pooling after each convolution. 
iii. Residual connections and Squeeze-and-Excitation (SE) block for feature recalibration. 
iv. A dense layer that is entirely connected after global average pooling. 
v. Output layer with softmax activation for classification. 

3. Compile Model 
i. Apply categorical cross-entropy loss and the Adam optimizer. 

4. Train Model 
i. Train using the preprocessed training data with early stopping and learning rate scheduling. 

ii. Monitor validation loss during training. 
5. Evaluate Model 

i. Test on a held-out dataset. 
ii. Compute accuracy, precision, recall, and F1-score, and generate a confusion matrix. 

6. Inference (Prediction) 
i. Preprocess test images. 

ii.  Examine the image using the trained model, then choose the class that most likely represents the 
disease. 

7. Save and Deploy Model 
i. Save the trained model and deploy it for real-time predictions. 

Algorithm 1: Leafdiseasenet For LPDD 

It starts with data preprocessing, where the raw 
images of leaves are preprocessed to be model-
ready. First, it loads the dataset and resizes the 
images to the same fixed shape where all images 
are equal in size. It is an important step that allows 
all input data to be consistent. After resizing, the 
pixel intensities are normalized to a range of 0-1 
between any pixel value, resulting in a better 
neural network performance. Data augmentation 
techniques are also applied, including rotation, 
flipping, and zooming. These methods 

synthetically grow the data set, allowing the 
model to see multiple transformations of an image 
and learn to generalize to these actual variations 
of the pictures. 

After the data pre-processing, the algorithm builds 
the LeafDiseaseNet model, a CNN-based model. 
Input Images and Convolution Layers The model 
starts with several convolutional layers applied to 
the input images. Each network layer learns to 
extract different features from the pictures, like 
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edges and textures, used in a plant disease 
identification task. To stabilize the model's 
training and bring the activations to more 
homogeneous ranges, batch normalization 
Following each convolutional layer was added. 
Max-pooling strata: to reduce the spatial 
dimensions of the feature map, as well as the 
amount of processing resources required and 
overfitting. With every deeper layer, the number 
of filters increases so the network can learn a more 
complex representation. Also, residual 
connections were proposed to enable gradients to 
flow with no problems through deep networks and 
help avoid issues like vanishing gradients. To 
recalibrate, include the squeeze-and-excitation 
(SE) block in the model to integrate the feature 
maps and allow the network to concentrate more 
on the relevant features. This feature map is then 
processed by a global average pooling layer, 
"flattening" its spatial dimensions into a single 
vector. 

The feature vector produced is then fed into a 
dense layer that is fully linked, helping the model 
map the extracted features onto a more 
abstract/higher-level attribute. The last layer is the 
probability distribution over the possible disease 
classes produced by the softmax layer. The 
likelihood of that particular image in each disease 
class is this output. Since this is a multi-class 
classification problem, categorical cross-entropy 
loss will be used as the loss function for each 
parameter utilized in the model. During the 
training procedure, the Adam optimizer generates 
an adaptive learning rate. Training will be the next 
step after a model has been defined. A model is 
trained using preprocessed training data, and 
overfitting is prevented by tracking performance 
with validation data. Training is stopped early if 
the validation loss does not improve after a set 
number of epochs. As a result, the model is unable 
to fit the training set. For dynamically effective 

convergence of model parameters, the training 
uses a learning rate scheduler to modify the 
learning rate. The model is then evaluated using a 
new dataset known as the test dataset, and several 
metrics, such as accuracy, precision, recall, and 
F1-score, are calculated to assess the model's 
performance.  

Ultimately, the model trained in the previous step 
performs inference, which predicts the disease 
class of new, unseen leaves images. The input 
image is preprocessed similarly to what was done 
for the training data, and a probability distribution 
of the classes is outputted. The predicted disease 
is the class with the maximum probability. 
Finally, the trained model can be saved for real-
time predictions in agricultural settings. The 
proposed methodology offers an integrated 
framework for plant disease recognition. It 
exploits several advanced techniques, such as 
convolutional layers, data augmentation, residual 
connections, and attention mechanisms, to design 
a highly effective and efficient deep learning 
architecture. 

3.5 Dataset Details 

Plant Village dataset: A large labeled image 
dataset for machine learning-based plant disease 
detection training. The dataset contains more than 
54,000 images of healthy and diseased plants 
from 14 crop species, such as apples, tomatoes, 
grapes, and peppers. There are 38 disease 
categories in the dataset,  which include blight, 
rust, and powdery mildew. It contains leaf images 
captured in different environments, as well as 
both healthy and diseased leaf images. This 
dataset is publicly available and helpful in 
precision agriculture and developing automated 
systems for plant health monitoring based on deep 
learning methods. 

Table 2: An Overview Of Plantvillage's Plant Disease Detection Dataset 

Category Details 

Number of Images Over 54,000 images 

Number of Plant Species 14 species (e.g., tomatoes, apples, grapes, peppers, etc.) 

Number of Diseases 38 disease categories (e.g., blight, mildew, rust, etc.) 

Image Types Leaf images, both healthy and diseased 

Image Resolution Varies (typically around 256x256 pixels) 
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Data Distribution Images are distributed across training, validation, and test sets. 

Data Augmentation Includes techniques like rotation, flipping, and scaling 

File Format PNG format 

Source Publicly available (e.g., on Kaggle) 

Usage Deep learning training, plant disease detection, and categorization 

Table 2 The PlantVillage dataset is an excellent 
data source for automatically creating machine-
learning models to detect plant diseases. It 
features more than 54,000 annotated images of 38 
disease types covering 14 crop species, making it 
a valuable resource for precision agricultural 
researchers and developers. A big collection of 
leaf photos, including healthy and sickly, under 
different Florida environmental conditions will 
make the trained models more general. Hence, it 
is suitable for training CNNs and other learning 
architectures for plant disease identification that 
must be real-time and scalable. Using this dataset, 
the researchers can build more robust disease 
detection systems incorporated with automated 
applications for better crop management and 
reduced manual inspections, leading to improved 
agricultural yield. By making the data accessible 
to all, it will further encourage innovation in the 
agrarian technology landscape to combat food 
security challenges all around the world. 

3.6 Evaluation Methodology 

A systematic process for performance and 
robustness evaluation of LeafDiseaseNet. The 
PlantVillage dataset was also separated into 
training, validation, and testing, which are done 
separately, with 80% of the data used for training 
and 20% for testing. The evaluation criteria 
employed to obtain a comprehensive 
understanding were accuracy, precision, recall, 
F1-score, and confusion matrix into the 
classification abilities of the model. We also 
conducted cross-validation to reduce overfitting 
and enhance generalizability. We evaluated 
LeafDiseaseNet against several baseline models 
to show its effectiveness in both accuracy and 
efficiency for leaf disease detection on unseen 
data in Figure 3. 

 

Figure 3: Confusion Matrix 

Precision (p) = 
்௉

்௉
                                                                          

(11) 

Recall (r) = 
்௉

்௉ାிே
                                                                               

(12) 

F1-score = 2 ∗
(௣∗ ௥)

(௣ା௥)
                                                                            

(13) 

Accuracy = 
்௉ା்

்௉ା்ேାி௉ାிே
                                                                   

(14) 

Accuracy describes the percentage of accurate 
classifications, providing information about the 
model's overall performance. Recall measures the 
model's ability to detect all diseased leaves, 
whereas precision measures its ability to correctly 
identify infected leaves without generating false 
positives. The F1 score quantifies the relationship 
between precision and recall. Meanwhile, the 
confusion matrix provides insight into how 
predictions were misclassified, which helps 
interpret and optimize the model. 
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4. EXPERIMENTAL RESULTS 

In the Experimental Results section, the 
LeafDiseaseNet performance is assessed using 
PlantVillage Data (this data contains images from 
different species and many disease conditions). 
We compare the performance of the model with 
several state-of-the-art models for plant disease 
detection, including VGG16 [1], ResNet50 [2], 
and Faster RCNN [3]. Experiments were 
performed in a controlled environment using 
Python and TensorFlow, mounted with a GPU to 
ensure that training and evaluation were 
performed quickly. The performance metrics are 
then utilized to evaluate the models' accuracy, 
precision, and recall in the plant disease detection 
job. 

 

4.1 Exploratory Data Analysis 

This exploratory data analysis (EDA) section will 
explore the PlantVillage dataset, finding the shape 
and distribution of images for plant disease 
categories and class balances. Insights into how 
this dataset is constructed to help you determine 
the key aspects of your data that will impact how 
your model will perform, and potentially even 
what type of preprocessing you may choose to 
apply before training are provided by visuals such 
as bar charts and sample images. 

Figure 4: An Excerpt From Plantvillage Dataset 
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Various photos of plant leaves showing various 
illnesses and healthy states from 
PlantVillagedataset are shown in Figure 4. 
Adding a diverse set of Various labels signifying 
multiple diseases, including Target Spot, Septoria 
Leaf Spot, Bacterial Spot, Late Blight, Early 
Blight, and Leaf Mold, are found on plants 
including pepper, potato, and tomato. The 
following excerpt shows that no plant disease is 
similar and exemplifies the complexity of 
automation in deep learning algorithms for 
identifying plant diseases. The diseases and 
healthy plant images in this dataset are essential 
for training robust models that can be used to 
classify plant health accurately and detect 
diseases in agricultural field conditions. 

 

Figure 5: Image Distribution in the Plant Village 
Dataset by Category 

As shown in Figure 5, the number of images per 
category varies significantly, with over 2.574.000 
images spread across thousands of diseases, some 
of which will consequently have much larger 
datasets than others. This shows the imbalance of 
some categories in the above form; for example, 
the Tomato YellowLeaf_Curl_Virus category has 
a significantly higher count than other categories. 
The model must be trained such that it can learn 
from all classes. Hence, this imbalance needs to 
be taken care of. First, what do we know about 
how the images are distributed across categories? 
And second, how many images are there to train, 
validate, and test the model 
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Figure 6: Results Of Data Augmentation 

Data augmentations help generate frequent image 
representations for a specific plant disease by 
artificially augmenting the dataset and making it 
compatible with variations bound to occur in 
actual conditions, as shown in Figure 6. Hence, 
our model becomes generalized and performs 
better in detection tasks. 

4.2 Disease Detection Results 

Here, we provide the findings from the evaluation 
of plant disease detection on individual test photos 
from the PlantVillage dataset and the results of 
plant disease detection using LeafDiseaseNet. 
The ground truth label against the predicted label 

can now be checked for each test image — to 
determine how accurate the model was. The 
confusion matrices of the 
proposedLeafDiseaseNet and baseline models, 
specific to VGG16, ResNet50, and Faster RCNN, 
are provided to demonstrate the classification 
results visually. With the disease category along 
the X-axis and the corresponding predictions of 
these models along the Y-axis, these matrices 
visualize the models' performance accurately 
classifying the disease categories and their 
respective capabilities in managing a 
misclassification. Discussion of the results will 
show improvement of the proposed model over 
baseline models. 
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Table 3: Test Image, Actual Label, And Predicted Label 

Test Image Actual Label Predicted Label 

 

Tomato_Leaf_Mold Tomato_Leaf_Mold 

 

Potato_Late_blight Potato_Early_blight 

 

Tomato_Healthy Tomato_Healthy 

 

Pepper_bell_Healthy Pepper_bell_Healthy 

 

Tomato_Septoria_leaf_spot Tomato_Septoria_leaf_spot 

 

Potato_Bacterial_spot Potato_Bacterial_spot 
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Table 3 compares the test images' actual labels 
with the LeafDiseaseNet model's predicted labels. 
One row corresponds to one test image. Column 1 
shows the picture; Column 3 shows the projected 

label from the model, whereas the actual label 
from the data set is shown in Column 2. This table 
aids in assessing the model's precision and 
disease-identification capabilities. 

 

 

Figure 7:  C M (Confusion Matrix) For Leafdiseasenet 

 

Figure 8: C M (Confusion Matrix) For Inceptionv3 
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Figure 9: C M (Confusion Matrix) For VGG16 

 

 

Figure 10: C M (Confusion Matrix) For Resnet50 

Figures 7-10 show Confusion matrices for 
LeafDiseaseNet, InceptionV3, VGG16, and 
ResNet50 models. Each matrix represents the 
accurate labels (rows) and the predicted labels 

(columns) for plant disease detection across 
multiple plant species and disease categories. The 
intensity of the color reflects the number of 
predictions, with darker shades indicating a higher 
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count of correct or incorrect classifications. These 
matrices emphasize each model's advantages and 
disadvantages by visually depicting how each 
model categorizes various plant diseases. Off-
diagonal elements show misclassifications, while 
diagonal elements show correct classifications. 
This enables a thorough model performance 
examination across a variety of plant diseases. 

Table 4: Comparison Of Leafdiseasenet With Baseline 
Models 

Model Accur
acy 
(%) 

Precis
ion 
(%) 

Rec
all 
(%) 

F1-
Sco
re 
(%) 

LeafDiseas
eNet 

97.68 97.5 97.2 97.
3 

VGG16 93.45 92.8 93.1 92.
9 

ResNet50 95.10 94.5 94.8 94.
6 

InceptionV
3 

94.87 94.0 94.3 94.
1 

On the PlantVillage dataset, we compare 
LeafDiseaseNet's performance with selected 
baseline models (VGG16, ResNet50, and 
InceptionV3) in Table 4. LeafDiseaseNet exceeds 
the baselines with an accuracy of 97.68% and the 
best precision, recall, and F1 score. From the 
above results and accuracies, we can clearly see 
that LeafDiseaseNet works efficiently in detecting 
plant diseases and can be used for actual 
agricultural purposes. 

 

Figure 10: Comparison Of Leafdiseasenet With 
Baseline Models 

LeafDiseaseNet outperforms the baseline models 
across all the evaluation metrics. LeafDiseaseNet 
achieves an accuracy of 97.68 % and outperforms 
the state-of-the-art models on plant disease 
classification, making it the most efficient one. 
This benefit comes from implementing techniques 
in this architecture, such as residual connections 
and the SE block, which assist the model more 
effectively in attending to the most salient features 
in images, thereby improving classification 
performance. The model’s increased precision 
lowers the risk of false positives. In contrast, its 
improved recall lowers the risk of false negatives, 
making it more appropriate for high-stakes real-
world applications where false positives and false 
negatives can be equally fatal. 

Moreover, the LeafDiseaseNet model is based on 
the data augmentation techniques that help 
resolve the class imbalance issues, which also 
must be the reason behind its better performance 
compared to VGG16, ResNet50, and 
InceptionV3. Although those baselines showed 
effective results, they do not use such innovations; 
they use more classical CNN architectures, which 
might not be as capable of learning complex 
patterns in the plant disease images. Our 
prediction solution using LeafDiseaseNet with 
optimized architecture can serve as an approach to 
accurate and practical plant disease identification 
in industrial agriculture. 
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4.3 Ablation Study 

We carried out an ablation study to assess the 
effects of various essential LeafDiseaseNet 
architectural elements. The contribution of each 
model component is evaluated by methodically 
eliminating crucial components such as Data 
Augmentation, Squeeze-and-Excitation (SE) 
Block, and Residual Connections. The analysis 
outlines the potential features with maximum 
significance and confirms their need to make the 
model proficient in performing plant disease 
detection. The ablation study can be used to 
understand the architectural construction of 
LeafDiseaseNet and the role of individual 
components in obtaining maximum classification 
performance on disease classification tasks. 

Table 5: Ablation Study Of Leafdiseasenet Model 

Model 
Configurat
ion 

Accur
acy 
(%) 

Precisi
on (%) 

Rec
all 
(%) 

F1-
Sco
re 
(%) 

LeafDiseas
eNet (Full) 

97.68 97.5 97.2 97.3 

Without 
Residual 
Connection
s 

94.15 93.5 93.8 93.6 

Without SE 
Block 

95.45 94.0 94.5 94.3 

Without 
Data 
Augmentati
on 

92.30 91.2 91.5 91.3 

Table 5 also features an ablation study focusing 
on the working of LeafDiseaseNet architecture. 
The study measures the effects on the model's F1 
score, recall, accuracy, and precision if some key 
components (Residual Connections, SE Block, 
and Data Augmentation) are removed 
individually. Overall, the LeafDiseaseNet (Full) 
configuration, which includes all components, 
shows the best performance in all metrics, 
achieving 97.68% accuracy. Removing the 
Residual Connections drastically decreases 
performance; they help ensure deeper networks 
maintain a meaningful gradient and learn. The 
removal of the SE Block results in an accuracy of 
95.45%, demonstrating the significance of The 
model's ability to focus on essential features 
because of this attention mechanism. Data 

Augmentation→None: Removing Data 
Augmentation leads to a drop in performance to 
92.30%, demonstrating that augmenting the 
dataset improves the model's ability to generalize 
differences in plant disease photos. Table 1: 
Ablation study on LeafDiseaseNet architecture, 
validating that each of its players directly leads to 
its top performance, and removing it causes a 
performance drop in the model. 

 

Figure 11: Ablation Study Of Leafdiseasenet Model 

The performance drop can be seen when 
disassembling each significant component, as 
shown in Figure 11. Significantly, the accuracy 
without Residual Connections is only 94.15%, 
which emphasizes the need for Residual 
Connections to keep networks efficient. Applying 
a similar pair of processes where we remove the 
SE Block yields a decrease in performance of 
95.45%, highlighting the power of attention 
features in focusing the model toward significant 
features of the acts. Lastly, without Data 
Augmentation, the accuracy drops to 92.30%, 
highlighting the significance of artificially 
expanding the dataset so that the model can 
generalize well and become robust. The outputs 
validate that all parts of the presented 
LeafDiseaseNetw contribute to a clear separation 
of performances from other methods. 

4.4 Comparing with the State of the Art 

We then compare the performance of our 
proposed LeafDiseaseNet model in plant disease 
detection to other state-of-the-art models, in 
contrast to the State of the Art section. Inception-
Tiny [2], Faster RCNN [5], VGG16 [6], 
DenseNet-121 [7], and ResNet50 [8] are the 
models chosen for comparison, trained on 
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different plant disease datasets, such as Cross-
crop,  Tomato leaf, Citrus leaf, Apple leaf, and 
Rice leaf datasets respectively. Those models 
were successful in their domains and, at the same 
time, can be detected as baselines to measure 
LeafDiseaseNet performance. This comparison is 
intended to underscore each model's critical 
aspects and advantages in generalizing plant 
species and/or disease types. We compare 
LeafDiseaseNet with the baseline models to 
demonstrate the improvements in detecting plant 
diseases in terms of accuracy, robustness, and 
versatility against different agricultural 
environments. In this section, we will explore how 
the architectural improvements in 
LeafDiseaseNet contribute, compared to the 
advantages and disadvantages of the current 
methods, to the total performance gains of our 
technique. 

Table 6: Leafdiseasenet's Comparison With Cutting-
Edge Models 

Model Dataset Accur
acy 
(%) 

Key 
Features 

LeafDiseas
eNet 

PlantVill
age 

97.68 Optimize
d CNN 
architectu
re with 
residual 
connectio
ns, SE 
block, and 
data 
augmenta
tion. 

Inception-
Tiny [2] 

Cross-
crop 
dataset 

94.04 Small 
Inception 
model for 
cross-
crop plant 
disease 
detection. 

Faster 
RCNN [5] 

Tomato 
leaf 
dataset 

97.4 Faster 
RCNN 
with 
improved 
speed and 
accuracy 
for tomato 
disease 
detection. 

VGG16 [6] Citrus 
leaf 
dataset 

93.6 The 
standard 
CNN 
model is 
adequate 
for citrus 
disease 
detection. 

DenseNet-
121 [7] 

Apple 
leaf 
dataset 

95.5 DenseNet
-121 with 
multi-
label 
classificat
ion for 
apple 
disease 
detection. 

ResNet50 
[8] 

Rice leaf 
dataset 

96.0 ResNet50 
with deep 
residual 
learning 
for rice 
disease 
detection. 

Table 6 compares the performance of 
LeafDiseaseNet against some state-of-the-art 
models used for plant disease detection and 
validation using different datasets concerning 
classification accuracy. The highest accuracy of 
97.68% is fulfilled by LeafDiseaseNet, which is 
due to the optimized CNN architecture. This 
model combines essential components such as 
residual connections, squeeze-and-excitation (SE) 
block, and data augmentation, which makes this 
model able to generalize the different plant 
diseases. We can train a deeper network thanks to 
the residual connections' solution to the vanishing 
gradient issue, and the SE block acts as an 
attention mechanism that helps the model focus 
on the salient features of the image, increasing the 
model's accuracy. Additionally, by producing 
more varied versions of the original photos, this 
strategy can improve the model's resilience, 
minimizing the chance of overfitting by providing 
a more significant number of different 
representations to which the model will be 
exposed and trained (data augmentation). 

For reference, Inception-Tiny gets 94.04% 
average accuracy but is a comparatively small 
crop plant disease detection model. Although this 
approach is more efficient, its simple architecture 
lacks the advanced features integrated into 
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LeafDiseaseNet, which leads to a performance 
gap. Even another competitive model, Faster 
RCNN (which provides an accuracy of 97.4%), 
lacks that level of optimization and attention 
mechanism already included in LeafDiseaseNet, 
which results in slightly lesser accuracy. VGG16 
is a prevalent model used to solve this problem 
and gets us 93.6% accuracy, but still, without the 
added improvements of LeafDiseaseNet, which 
makes it a better choice to generalize across plant 
disease types. Surprisingly, DenseNet-121 (filled 
bar), which also attains an accuracy of 95.5% and 
whose dense connections should also benefit from 
indirect labels, is not able to match the 
performance of LeafDiseaseNet, likely due to the 
absence of the SE block and the lack of data 
augmentation. Ultimately, ResNet50 reaches only 
96.0% with deep residual learning, an effective 
CS model lacking the added benefits that give 
LeafDiseaseNet the edge in accuracy and 
generalization. 

The preeminent performance of LeafDiseaseNet 
is due to the presence of residual connections that 
help to optimize highly complex tasks with the SE 
block, focus on helpful information through 
feature weighting, and augmentation variations in 
training the model on large plant species variety 
in the dataset to ensure that there are little to no 
overfitting present in the model. Thanks to these 
innovations, LeafDiseaseNet exhibits superior 
accuracy and robustness compared to table 
models for applications in plant disease detection 
in the real world. With its promising prediction 
and generalization capabilities, this model is more 
helpful for this task than other, typically more 
task-specific models. 

 

5. DISCUSSION 

Deep learning techniques, which have rapidly 
evolved in response to improvements in different 
domains of the modern world, have transformed 
plant disease diagnosis due to their precision and 
automation, improving agricultural efficiency. 
Effective disease management, which boosts 
agricultural output and reduces pesticide use, 
depends on early diagnosis of plant illnesses. 
Despite achieving considerable advances, several 
gaps remain in the state of the art, particularly 
concerning generalization across different plant 
species, disease types, and environmental 
conditions. Most existing models deal with issues 
like class imbalance, environmental noise, or 
variability of symptoms in the disease, which 

often leads to poor performance in real-world 
scenarios. Another overarching gap in the 
literature was the predominance of shallow, 
species- and symptom-specific models with 
limited generalizability. Most models are 
constructed for specific crops or diseases and 
often perform poorly when applied to new or 
heterogeneous datasets. Similarly, even though 
models such as VGG16, ResNet, and Faster 
RCNN work well, their attention mechanisms are 
not sophisticated enough to selectively apply 
attention to the most relevant features in complex 
images to differentiate between similar diseases.  

The proposed LeafDiseaseNet, which aims to fill 
these gaps, has some novel aspects, such as using 
the residual connection, Squeeze-and-
Excitation(SE) block, and data augmentation 
techniques. These innovations will enhance the 
model's generalization capability over different 
diseases and environmental conditions and also 
increase the model’s robustness and accuracy 
overall. These techniques help LeafDiseaseNet 
pay attention to essential features in an image and 
distinguish a disease with similar symptoms. 

Experiments on the PlantVillage dataset show that 
these approaches can achieve excellent results, 
achieving the highest accuracy and robustness 
levels compared to previous models in 
LeafDiseaseNet. This work improves upon 
traditional deep learning models to overcome 
limitations by proposing a new methodology 
suitable for complex, diverse plant disease 
detection tasks. It is expected to have significant 
implications for precision agricultural practices as 
this approach has the potential to provide real-
time plant disease detection in a scalable way, 
ultimately minimizing the risk of spreading plant 
pathogens and improving the management of 
crops worldwide.  

Although we performed rigorous testing to 
validate the model's effectiveness when 
evaluating LeafDiseaseNet, several threats to 
validity should be discussed. First, the 
composition of the datasets may influence 
internal validity. However, the dataset contains 
neither  environmental noise nor variations of 
uncontrolled images. Utilizing data 
augmentation techniques like rotations, flipping, 
and zooming helped reduce the impact of 
overfitting and simulated real-world conditions. 
Second, while Ons sometimes describes field 
conditions (e.g., character‐based counts, recalls 
versus physical counts, etc.), the applicability of 
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controlled datasets to real‐world situations is 
tenuous. Further testing should be performed on 
datasets with real-world noise factors, including 
differences in lighting, occlusions, and 
geographical regions. 

When selecting evaluation criteria, we chose 
standard classification metrics, namely accuracy, 
precision, recall, and F1-score, as these are widely 
used for classification tasks based on deep 
learning. We report these metrics to capture both 
model correctness (precision) measures and how 
many diseased samples the model could identify 
(recall). These are both important in cases of plant 
disease detection where misclassification could 
lead to detrimental agricultural decisions. The 
performance metrics were used with confusion 
matrices to visualize misclassifications across 
disease categories, highlighting areas for 
improvement. An ablation study was performed to 
critically measure the effects of residual 
connections, SE blocks, and data augmentation, 
which allowed for quantitative estimation and 
justification of the individual components of the 
model. Section 5.1 further discusses the 
limitations. 

5.1 Limitations of the Study 

LeafDiseaseNet outperforms other models in 
plant disease detection. However, it has some 
drawbacks. To begin with, the poor quality of the 
diverse training datasets influences the model 
performance; looking at the synthetic data, it is 
harder to learn unseen diseases in regions with 
limited data [31]. Secondly, while 
LeafDiseaseNet is well-built and performs better 
under controlled experimental scenarios,  
disturbances in real-time conditions due to factors 
like uncontrolled background illumination and 
background noise can limit successful real-time 
implementation. Finally, this model can be 
computationally expensive and may not be 
helpful in settings like mobile devices or low-
resource/low-cost agricultural settings due to how 
expensive the computation is. 

6. CONCLUSION AND FUTURE WORK 

In summary, our study introduced 
LeafDiseaseNet, a novel deep learning-based 
model for plant disease diagnosis. Presenting a SE 
block with successive residual connections, the 
model achieves superior accuracy, generalization, 
and robustness with stringent training protocols 
and data augmentation compared to cutting-edge 
methods. LeafDiseaseNet is efficient and scalable 

to other plants and diseases, with good 
classification results in the experiments.  The 
work offers contributions addressing dataset 
imbalance, environmental noise, and model 
generalizability, leading to a feasible strategy in 
precision agriculture. Combining sophisticated 
deep learning techniques, LeafDiseaseNet enables 
the early identification of plant diseases, markedly 
reducing crop losses, curbing the unnecessary 
application of pesticides, and fostering 
sustainable cultivation practices. Future studies 
will include database enhancement with realistic 
images around the globe, sharpening the model 
for low-resource devices, and deploying the 
model for IoT-based precision farming systems to 
improve the practical utility of the proposed 
system. This work establishes a new standard for 
detecting plant diseases and lays the groundwork 
for deployable, real-time monitoring systems of 
plant health in agricultural and food security 
initiatives. While it performed as well as, or better 
than, existing solutions,  the current study had 
limitations. The model's limitations include the 
dependence on high-quality, randomized datasets 
for training, sensitivity to environmental 
parameters such as lighting and background noise, 
and resource-intensiveness, which would limit 
deployment in resource-poor settings. Future 
research can be extended to more extensive data 
on different types of plant species and diseases, 
which could lead to better generalization. 
Furthermore, it could be helpful to study methods 
to optimize the model to ease deployment to 
mobile devices and how the system could 
integrate with the real-time monitoring systems 
already used on farms. In addition, integrating 
LeafDiseaseNet with IoT devices could be 
explored so that disease management and 
prevention recommendations are provided 
promptly, possibly improving global food 
security. 
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