
 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1597

EVALUATING FORMAL METHODS FOR VERIFYING
SECURITY PROTOCOLS: A CASE STUDY OF TAMARIN,

AVISPA, AND PROVERIF

ADEL HASSAN1, ISAM ISHAQ2, JORGE MUNILLA3

 1Faculty of Engineering and Information Technology, Arab American University, Jenin, Palestine
 2Faculty of Engineering and Information Technology, Al-Quds University, Jerusalem, Palestine
 3Faculty of Engineering and Information Technology, Telecommunication Engineering, University of

Malaga, Spain
Email: 1adel7377@gmail.com , 2isam@alquds.edu , 3munilla@ic.uma.es

ABSTRACT

Verifying security protocols using formal methods is crucial to ensure their robustness against cyber
threats. Several verification tools, including Tamarin, AVISPA, and ProVerif, offer different methodologies
for protocol analysis. However, a comprehensive comparative analysis of these tools under uniform
conditions remains limited. This study systematically evaluates these three tools by assessing their
verification mechanisms, supported programming languages, and usability. A standardized testing
framework was employed to ensure a consistent comparison, focusing on two widely used security protocols:
the Diffie-Hellman Key Exchange Protocol and the Needham-Schroeder Public Key Protocol. The findings
highlight distinct strengths and weaknesses in each tool. Tamarin demonstrated superior capability in
detecting active attacks such as Man-in-the-Middle (MitM) attacks, while ProVerif was more effective in
identifying passive attacks like eavesdropping. AVISPA, on the other hand, provided a broader but less
detailed security analysis. These insights help researchers and practitioners select the most appropriate tool
based on protocol complexity and security requirements. Unlike prior research that focused on individual
tools, this study offers a comprehensive empirical comparison, providing deeper insights into their practical
effectiveness and limitations. The results contribute to enhancing security protocol verification
methodologies and informing future improvements in formal verification tools.
Keywords: Formal Methods, Security, Security Protocol, Protocol Modeling, Verification Processes,

Testing Tools.

1. INTRODUCTION

A network protocol is a set of
instructions and rules that govern the exchange of
information across a network. In terms of security
protocols, these rules ensure that transmitted
messages remain unaltered and protected using
encryption mechanisms. However, despite these
encryption techniques, security protocols may

still be vulnerable to attacks, making security,
privacy, and data confidentiality critical concerns
for researchers. This underscores the need for
robust security verification methods that can
assess protocol integrity, privacy, and
authenticity.
According to Yang et al. [2], security protocols
are typically verified using two primary
approaches:

1. Proven security: where a protocol’s
security is mathematically demonstrated
by evaluating its maximum
confidentiality level.

2. Formal methods: which use
mathematical modeling techniques to
verify protocol specifications and
security guarantees.

Despite the availability of these approaches,
several key challenges persist in security protocol
verification, as outlined below. Current
Challenges in Security Protocol Verification With
the increasing complexity of security protocols
and their reliance on advanced encryption
mechanisms, verifying their security has become
a significant challenge for researchers and

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1598

developers. Although numerous formal
verification tools exist, three main challenges
remain unresolved:

1. Protocol Complexity: Modern security
protocols involve multiple interactions
between entities, making formal
verification computationally intensive
and time-consuming.

2. Evolving Attacks: The emergence of
new attack types, such as Man-in-the-
Middle (MitM) attacks and Replay
Attacks, necessitates tools that can
dynamically detect and mitigate diverse
security threats.

3. Limitations of Existing Tools: Many
formal verification tools struggle to
handle complex protocols or fail to
detect specific attack types.
Additionally, some tools require
advanced technical expertise in
programming languages or mathematical
models, limiting their usability among
non-experts.

To address these challenges, this research
systematically evaluates three widely used
verification tools—Tamarin, AVISPA, and
ProVerif—to determine their strengths,
weaknesses, and applicability in different security
contexts.
This study is structured as follows:

 The first part reviews key formal
verification tools used in security
protocol testing.

 The second part presents the results of
empirical security tests conducted on
two well-known protocols: Needham-
Schroeder Public Key Protocol and
Diffie-Hellman Key Exchange (DHKE)
Protocol.

 The third part analyzes and compares
the characteristics of these tools, leading
to a set of practical recommendations for
improving security protocol verification
methods.

Research Hypothesis
Different formal verification tools exhibit varying
effectiveness in detecting security vulnerabilities,
with each tool excelling in specific attack
scenarios and protocol structures. This study
hypothesizes that no single tool is universally
superior; rather, a combination of verification
tools may provide optimal security assessment
and a more comprehensive evaluation of security
protocols.

2. IMPORTANCE OF THE RESEARCH
AND ITS OBJECTIVES

2.1 Research Objective

This study aims to explore and evaluate
the performance of three protocol testing tools—
Tamarin, AVISPA, and ProVerif—by conducting
comprehensive security tests on two widely used
security protocols: the Needham-Schroeder
Public Key Protocol and the Diffie-Hellman Key
Exchange (DHKE) Protocol. The research
investigates the unique advantages of each tool
and assesses their effectiveness in identifying
vulnerabilities. Additionally, it examines whether
the success of a verification tool is influenced by
the nature of the protocol itself.

2.2 Importance of the Research

Given the complexity of security
protocols and the limitations of existing
verification tools, a systematic comparative study
is crucial. This research bridges the gap by
analyzing the effectiveness of Tamarin, AVISPA,
and ProVerif in identifying vulnerabilities within
well-established protocols.

Although numerous studies have
explored security protocol verification, no
comprehensive comparative analysis has been
conducted to highlight the strengths and
weaknesses of each tool across different security
scenarios. This study addresses this gap by
evaluating the tools against two well-known
security protocols, offering insights into their real-
world applicability.

Through this comparative analysis, the
study provides practical guidelines for researchers
and developers in selecting the most suitable
verification tool based on protocol characteristics
and attack models. Additionally, it contributes to
a deeper understanding of formal verification
methodologies and proposes recommendations to
improve the efficiency and flexibility of security
verification tools in the future.

2.3 Research Problem Statement

With the growing reliance on security protocols in
modern systems, ensuring their robustness has
become a critical necessity. However, the
increasing complexity of contemporary security
protocols and the evolving nature of cyber threats
pose significant verification challenges. While
numerous formal verification tools and
methodologies exist, their effectiveness and
applicability remain constrained by specific

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1599

limitations, necessitating further evaluation and
comparative analysis.

For instance, widely used tools such as
Tamarin, AVISPA, and ProVerif offer distinct
advantages and drawbacks. Some tools excel at
detecting specific attacks but struggle with highly
complex protocols, while others provide user-
friendly interfaces yet cannot identify advanced
security threats. Additionally, many verification
tools require specialized knowledge of
programming languages or mathematical models,
limiting their accessibility to non-expert users.

Despite extensive research on security
protocol verification, a structured comparative
evaluation of these tools under consistent testing
conditions remains lacking. Prior studies have
either assessed individual tools in isolation or
provided limited comparative insights, leaving an
open research gap in understanding how these
tools perform across diverse protocol
complexities and attack scenarios.

To bridge this gap, this study conducts
an empirical evaluation of Tamarin, AVISPA, and
ProVerif, systematically analyzing their
effectiveness in detecting security vulnerabilities
in two widely used protocols: the Needham-
Schroeder Public Key Protocol and the Diffie-
Hellman Key Exchange (DHKE) Protocol.
Through this analysis, we aim to identify the
strengths and weaknesses of each tool and provide
practical guidelines for researchers and
developers in selecting the most suitable
verification tool based on protocol characteristics
and security requirements.

By establishing a unified comparative
framework, this research contributes to the
advancement of formal verification
methodologies, assisting both academia and
industry in enhancing the security of
cryptographic protocols.

2.4 Previous Literature

Previous research has extensively
explored formal verification of security protocols
using advanced mathematical modeling
techniques. Palombo et al. (2015) [3], highlighted
that formal verification tools such as ProVerif
face challenges when dealing with protocols with
unbounded states, affecting the accuracy and
effectiveness of verification.

Additionally, Palombo demonstrated
that certain tools may fail to detect complex
attacks due to inherent modeling limitations. For
instance, some verification frameworks struggle

with analyzing security properties under dynamic
threat conditions, leading to potential blind spots
in security assessments.

Furthermore, Palombo analyzed the
application of techniques such as Horn clauses
and pi-calculus in ProVerif, emphasizing the
practical challenges associated with
implementing these methods. Despite their
mathematical robustness, these techniques often
require deep expertise and may not generalize
well to all protocol types.

Despite these studies, a comprehensive
comparative evaluation of Tamarin, AVISPA, and
ProVerif under uniform conditions and across
multiple security protocols remains lacking. This
research builds upon existing literature by
conducting a structured, empirical comparison of
these tools, analyzing their effectiveness in
detecting vulnerabilities and identifying potential
areas for improvement to better align with modern
security requirements, Palombo et al. (2015) [3].

3. FORMAL METHODS VERIFICATION
TOOLS

There are many accredited formal methods built
on formal loading tools, three of which were
selected and tested in this research, namely:

1. AVISPA.
2. ProVerif.
3. Tamarin.

3.1. AVISPA
AVISPA [4, 5, 6, 7] (Automated

Validation of Internet Security Protocols and
Applications) is a multi-party tool developed to
analyze information security protocols that
support the new generation of Internet
applications. This tool is designed to be a
comprehensive system for automatic verification
of the security level of security protocols. This
tool integrates different approaches to security
analysis, starting from model inspection
techniques for protocol forgery analysis to
symbolic verification methods based on abstract
verification. The main feature of this tool is the
loading tools provided. It consists of four tools –
Figure (1) illustrates the structure of AVISPA and
its tools – where the protocol is encoded in
HLPSL (High-Level Protocol Specification
Language).

AVISPA consists of four main tools:

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1600

1. CL-Atse (Constraint-Logic-based Attack
Searcher): It uses constraint logic, where it
applies solvers for solution and simplification
with redundancy elimination techniques.

2. OFMC (On-the-Fly Model-Checker): It uses
encoding techniques to examine the
performance of protocol penetration, in
addition to bounded loading, by exploring the
state space in a need-based manner.

3. Sat-MC (SAT-based Model-Checker): It
builds proposed encoding equations for all the

potential effects on the protocol and uses a
SAT-type solution algorithm.

4. TA4SP (Tree Automata for Security
Protocols): It relies on an automatic
approximation method for loading to know the
penetration, and it uses regular tree languages
and rewrites the protocol to provide
approximate difference values.

Figure 1: Structure of AVISPA and its tools [3].

3.1.1 AVISPA PROPERTIES:

1. Working method: machine tool.

2. Complexity: Somewhat difficult to use.

3. Prerequisites for using this tool:

A. Deep knowledge of the analyzed
protocols.

B. Learn a New Programming
Language (HLPSL).

4. Reliability: Validation or detection of defects.

5. Ease of use: This can be used to prove a
malfunction in the protocol.

6. Analysis method: Analyze all messages that
make up the protocol at the same time.

7. The tool is efficient in: Verifying that the
protocol under test is strong against restart
attacks and intermediary attacks.

3.2. ProVerif :

ProVerif is a tool for solving security
protocols using pi calculus techniques and their
extensions of equation and function theories,
which can represent cryptographic operations.
ProVerif is capable of handling an unlimited
number of protocol sessions and unlimited
messaging space Copet et al. (2024) [8].

The main steps in the verification process are:

1. An attacker sentence is added to each
message.

2. The attacker then tries to infer the data through
Horn sentences M. Arapinis et al. (2014) [9].

Horn sentences are a type of logistical
sentence where one sentence is often positive,

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1601

and all the other sentences are negative¹. These
sentences bear the name of Alfred Horn who
described them in the 1951 article. These
sentences are mainly used in logistics
programming and provide a basis for logical
thinking and logistics programming Blanchet et
al. (2022) [10].

In 1999, Weidenbach proposed using Horn
sentences to model security protocols [11]. In
this model, protocols are encoded as first-order

Horn sentences. This allows protocols to be
analyzed more complexly and increases the
intruder's ability to identify. This approach can
allow false attacks and does not guarantee
overall termination.

If the tool is unable to prove a particular property,
it tries to rebuild an attack, i.e., tracking the
execution of the protocol that fails to achieve the
desired property. Figure 2 shows the structure of
ProVerif:

Figure 2: ProVerif architecture [10]

3.2.1 ProVerif properties
The protocol is designed using century phrases or
pi-calculus.
• The tool must be run through the command line
interface.
• It generates the following possible outputs:

 the property is true,
 the property is false and the attack effect

is generated, and the property cannot be
proven when a false attack is found,

 the tool may not end.
• A step-by-step tracking is created to explain the
operation and attack.
• Trace is generated only for the inspected
property.
• Connected parties need to be process modeled.
• Equality can be verified using ‘if…then’ or
‘let…in’.
• It only checks for those attacks for which the
"query" is specified in the code.

• ProVerif does not require any such
specifications.
• No special code is required for a ProVerif
Novelty attack.
• Communication channels must be identified.
• ProVerif is a powerful tool for verifying
protocols in formal models. It works for an
unbounded number of sessions and an
unbounded message space.

3.3 Tamarin:

Tamarin Prover [12, 13] is a powerful tool
for symbolic modeling and analysis of security
protocols. It takes as input a security protocol
model, specifying the actions performed by agents
running the protocol in different roles (for
example, protocol initiator, reply, trusted key
server), along with identifying the adversary and
specifying the desired protocol properties.
Tamarin can be used to create automatic proof that
the protocol, even when an infinite number of

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1602

instances of protocol roles overlap in parallel,
along with adversary actions, meets its specified
characteristics.

3.3.1 Characteristics of the Tamarin Tool

1. Protocol modeling: The Tamarin tool
models protocols using Maude, a
symbolic rewrite language. This allows
Tamarin to model complex protocols
with different cryptographic operations
and state transitions.

2. Tool execution: Tamarin is executed
through a command-line interface,
making it easy to integrate into an
automated security analysis workflow.

3. Output generation: Tamarin generates
the following possible outputs:

 Valid property: When the protocol meets the
specified security property.

 Property violation detected: When the
protocol violates the specified security
property, an attack trace is generated.

 Property cannot be proven: If the tool fails to
prove or refute the specified security feature.

 Potential non-termination issue: It refers to a
situation where the program can encounter an
infinite loop, meaning the program continues
to execute certain operations or commands
repeatedly and endlessly. This usually
happens due to complex states in the program
or due to a design or programming error. In
this case, the program does not reach a specific
or final result, and therefore it continues to
operate continuously without stopping or
ending. This phenomenon is also known as
‘infinite loop’ or ‘infinite repetition’.

 Attack Tracking: Tamarin provides detailed
step-by-step tracking of the attack, explaining

how a security violation occurred. Table -1
shows a comparison of the characteristics of
protocol security analysis tools.

4. Property identification: Tamarin allows
security properties to be defined using
temporal logic, enabling the definition of
a variety of security requirements, such
as confidentiality, authenticity, and non-
rebuttal capabilities.

5. Attack detection: Tamarin detects both
active and passive attacks, including
replay attacks, man-in-the-middle
attacks, and impersonation attacks.

6. Message sequence analysis: Tamarin
effectively analyzes message sequences,
identifying potential vulnerabilities and
discrepancies in the flow of protocol
communications.

7. Complexity Processing: Tamarin can
handle protocols of medium to high
complexity, making it suitable for
analyzing protocols used in real-world
applications.

8. Ease of use: Tamarin is relatively easy
to use, even for users with a limited
background in formal methods.

9. Learning resources: Tamarin provides
comprehensive documentation and
learning resources to help users use the
tool effectively.

Tamarin provides a balance between ease of
use, powerful attack detection capabilities, and
support for complex protocols, making it a
valuable tool for analyzing the security of
cryptographic protocols.

Table 1 - Comparison of the characteristics of protocol security analysis tools

Feature Tamarin AVISPA ProVerif
Protocol
Modeling

Maude language HLPSL language Horn clauses or pi-calculus

Tool Execution Command-line interface Semi-automatic requires user
interaction

Command-line interface

Output
Generation

Property is true, Property is
false, Property cannot be
proven, Tool might not
terminate.

Property is true, Property is
false, Attack trace is
generated, Property cannot be
proven.

Property is true, Property is
false, Attack trace is
generated, Property cannot be
proven.

Attack Trace Step-by-step trace explaining
the run and attack

Detailed explanation of the
attack and the path to the
attack

Step-by-step trace explaining
the run and attack

Property
Specification

Temporal logic Temporal logic, CTL*
(computation tree logic*),

Temporal logic

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1603

and LTL (linear temporal
logic)

Attack
Detection

Active and passive attacks Active and passive attacks Active and passive attacks

Message
Sequence
Analysis

Effective analysis of message
sequences

Analyzing all messages
simultaneously

Analyzing message sequences
in isolation

Complexity
Handling

Moderate to high complexity High complexity Moderate to high complexity

Ease of Use Relatively easy to use for
users with basic formal
methods knowledge

Difficult to use for beginners,
requires deep HLPSL
knowledge

Relatively easy to use for
users with basic formal
methods knowledge

Learning
Resources

Comprehensive
documentation and learning
resources

Limited documentation and
learning resources

Comprehensive
documentation and learning
resources

4. TESTED PROTOCOLS:

Two protocols have been chosen:

1- First Protocol: Needham-Schroeder
Public Key Protocol

2- Protocol II: Diffie-Hellman Key
Exchange (DHKE)

4.1 Needham-Schroeder Public Key Protocol:

The Needham-Schroeder Public Key
Protocol is a two-party mutual authentication
protocol using public key cryptography. The
protocol was proposed by Roger Needham and
Michael Schroeder in 1978.

The Needham-Schroeder Public Key Protocol is
secure against retransmission attacks, but
vulnerable to man-in-the-middle attacks [14, 15,
16, 17].

The Needham-Schroeder Public Key
protocol relies on the use of a public-key
encryption algorithm. In this context, both Alice
(A) and Bob (B) collaborate with a trusted server
(S) to distribute public keys upon request. These
keys include:
KPA: The public key of A
KPB: The public key of B
KPS: The public key of server S
KSS: The private key of server S
The protocol operates as follows:

 𝐴 → 𝑆: {𝐴, 𝐵}

Here, A requests the public key of B from S.
𝑆 → 𝐴: {𝐵, 𝐾𝑃𝑏}ೄೄ

S responds with the public key KPB along with the
identity of B, signed by the server for
authentication purposes.

𝐴 → 𝐵: {𝑁, 𝐴}ುಳ

A chooses a random number Na and sends it to B.

𝐵 → 𝑆: {𝐵, 𝐴}
Now, B knows that A wants to communicate, so
B requests the public keys of A.

𝑆 → 𝐵: {𝐾 , 𝐴}ೄೄ

The server responds.
𝐵 → 𝐴: {𝑁, 𝑁}ುಲ

B chooses a random number NB and sends it to A
along with NA to prove the ability to decrypt using
KSB.

𝐴 → 𝐵: {𝑁}ುಳ

A confirms NB to B, to prove the ability to decrypt
using KSA.
At the end of the protocol, both A and B know
each other’s identities, and both know NA and NB.
These nonces are not known to eavesdroppers.

This protocol establishes a secure communication
channel between parties A and B, allowing them
to exchange messages confidentially. The server
plays an essential role in facilitating key exchange
and ensuring the authenticity of the parties
involved, as shown in Figure 3.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1604

Figure 3: Needham-Schroeder Public Key Protocol Scheme and Code

In a man-in-center attack, the attacker
eavesdrops on communications between parties
A and B, then intervenes and sends fake
messages to both parties.

In the case of the Needham-Schroeder Public
Key Protocol, an attacker could do the following:

𝐴 → 𝐼: {𝑁, 𝐴}ು

 A sends 𝑁 to I, who decrypts the message
with 𝐾ௌூ

𝐼 → 𝐵: {𝑁, 𝐴}ುಳ

 I relays the message to B, pretending that A is
communicating

𝐵 → 𝐼: {𝑁, 𝑁}ುಲ

B sends NB
𝐼 → 𝐴: {𝑁, 𝑁}ುಲ

I relays it to A

𝐴 → 𝐼: {𝑁}ು

A decrypts NB and confirm it to I, who learn it
𝐼 → 𝐵: {𝑁}ುಳ

I re-encrypts NB, and convinces B that she's
decrypted it

At the end of the attack, B falsely believes
that A is communicating with him and that NA
and NB are known only to A and B.

Thus, the attacker has managed to grab the session
key for both parties, allowing him to read all
messages that are sent between the two parties.

Figure 4 shows how a man-in-the-middle attack
occurs on the Needham-Schroeder Public Key
Protocol.

A man-in-the-middle attack can be avoided by
using other key exchange techniques, such as the
Diffie-Hellman protocol.

Figure 4: Attack on Needham-Schroeder Public Key Protocol

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1605

4.1.1 Needham-Schroeder Public Key
Protocol Test Using Proverif Technology:

The test result is as follows:
Verification summary:
Query inj-event(endBparam(x)) ==> inj-

event(beginBparam(x)) is false.
Query inj-event(endAparam(x)) ==> inj-

event(beginAparam(x)) is true.
Query not attacker(secretANa[]) is true.
Query not attacker(secretANb[]) is true.
Query not attacker(secretBNa[]) is false.
Query not attacker(secretBNb[]) is false.

These results reflect the security
characteristics of the protocol:

1. Query inj-
event(endBparam(x)) ==> inj-
event(beginBparam(x)) is false.: This
means that client B does not necessarily
start a session before it ends. This could
indicate a vulnerability in the protocol
where an attacker could send fake
messages.

2. Query inj-
event(endAparam(x)) ==> inj-
event(beginAparam(x)) is true.: This
means that client A must start a session
before it ends. This is the expected
behavior.

3. Query not
attacker(secretANa[]) is true. and Query
not attacker(secretANb[]) is true.: This
means that the attacker cannot access
the secrets secretANa and secretANb.
This is good for protocol security.

4. Query not
attacker(secretBNa[]) is false. and
Query not attacker(secretBNb[]) is
false.: This means that the attacker has
access to the secrets secretBNa and
secretBNb. This indicates a security
vulnerability in the protocol.

Based on the results of the Proverif test, it
can be said that the Needham-Schroeder Public
Key protocol is not completely secure. The
reasons are:

1. Client B does not have to start
a session before it ends, which means
that an attacker can send fake messages.

2. The attacker has access to the
secrets secretBNa and secretBNb.

So, obviously, there are some security
vulnerabilities in the protocol that need to be
addressed.

4.1.2 Using AVISPA Technology:

The test result is as follows:

% OFMC
% Version of 2006/02/13
SUMMARY
 UNSAFE
DETAILS
 ATTACK_FOUND
PROTOCOL
 /home/span/span/testsuite/results/
Needham.if
GOAL
 secrecy_of_nb
BACKEND
 OFMC
COMMENTS
STATISTICS
 parseTime: 0.00s
 searchTime: 0.01s
 visitedNodes: 8 nodes
 depth: 2 plies
ATTACK TRACE
i -> (a,6): start
(a,6) -> i: {Na(1).a}_ki
i -> (b,3): {Na(1).a}_kb
(b,3) -> i: {Na(1). Nb(2)}_ka
and -> (a,6): {Na(1). Nb(2)}_ka
(a,6) -> i: {Nb.) _ki
i-> (i,17): Nb(2)
i-> (i,17): Nb(2)

% Reached State:
%
% secret(Nb(2),nb,set_70)
% witness(b,a,alice_bob_na,Na(1))
% contains(a,set_70)
% contains(b,set_70)
% secret(Na(1),na set_74)
% contains(a,set_74)
% contains(i,set_74)
%
state_alice(a,i,ka,ki,4,Na(1),Nb(2),set_7
4,6)
%
state_bob(b,a,ka,kb,3,Na(1),Nb(2),set_7
0,3)
%
state_alice(a,b,ka,kb,0,dummy_nonce,d
ummy_nonce,set_62,3)
% witness(a,i,bob_alice_nb,Nb(2))
% request(a,i,alice_bob_na,Na(1),6)

The result indicates that the protocol is not
secure. An attack was found to violate the
confidentiality of the protocol. The attack is

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1606

carried out by attacking messages that are shared
between the parties.

Offensive tracking shows the steps an
aggressor follows to gain access to confidential
information. In this case, the aggressor has access
to the value Nb (2), which must be confidential.

Statistical analysis shows that the tool has
visited 8 nodes and 2 layers deep to find this attack
within 0.01 seconds.

Target status at the end of the trace shows the
final state of the protocol after the attack. It can be
seen that the aggressor received the value Nb (2),
which confirms that the attack was successful.

Please note that this attack is based on the
aggressor's ability to listen to and manipulate
messages shared between parties. If this capability
is not available, the protocol may be secure.
Therefore, security should always be assessed in
the context of the surrounding environment.

4.1.3 Using Tamarin Technology:
The test result is as follows showing a summary
of summaries:
analyzed: Needham.spthy
 types (all-traces): verified (33 steps)
 nonce_secrecy (all-traces): verified (54 steps)
 injective_agree (all-traces): verified (92 steps)
 session_key_setup_possible (exists-trace):
verified (5 steps).

4.1.4 Explanation of the test result:
The Needham.spthy protocol has been analyzed
and the protocol has been validated in all possible
cases. The following characteristics have been
verified:

1. types (all-traces): Species-related
properties validated.

2. nonce_secrecy (all-traces): Validated
characteristics related to the
confidentiality of random numbers.

3. injective_agree (all-traces): Validated
characteristics related to the real
agreement.

4. session_key_setup_possible (exists-
trace): Validated properties related to the
ability to set up the session key.

All properties have been successfully verified.
The Needham-Schroeder Public Key Protocol can
be considered safe due to the test result. The
protocol was validated in all possible cases and
the characteristics related to types, the
confidentiality of random numbers, the real
agreement and the possibility of setting up the

session key were verified. All properties have
been successfully verified.

4.2 Protocol II: Diffie-Hellman Key Exchange
(DHKE)

The Diffie-Hillman key exchange protocol is one
of the most important advances in public key
cryptography and is still frequently implemented
in a variety of modern security protocols. It allows
two parties who have never met before to create a
key that they can use to secure their
communications [18, 19, 20].

In the Diffie-Hillman key exchange protocol, each
party generates a public/private key pair and
distributes the public key. After obtaining an
original copy of each other's public keys, Alice
and Bob can calculate a shared secret without an
internet connection. A shared secret can be used,
for example, as a key for symmetric encryption.

The basic steps of the Diffie-Hillman key
exchange protocol are as follows:

1. A sends the following information to B:

- n: common large exponential prime
number.

- g: exponential root of variable unit n.
- gx mod n: a synthetic result calculated by

user A using a secret number x and the
global numbers n and g. This value is
converted to a specific formula.

2. B receives the information from A and sends
the following information to A:

- gy mod n: synthetic result calculated by
user B using a secret number y and the
global numbers n and g. This value is
converted to a specific formula.

After receiving both steps, both user A and user B
use the global numbers they received to calculate
the shared key.

To calculate the shared key, user A calculates gyx
mod n and uses it as a shared key, while user B
calculates gxy mod n and also uses it as a shared
key.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1607

Now, A and B have the same common key that
can be used to encrypt and decrypt messages by
the symmetric encryption algorithm. Figure (5)

shows the mechanism and the Diffie-Hellman
Key Exchange code:

Figure 5: Diffie-Hellman Key Exchange Mechanism and Code [21]

4.2.1 Testing the protocol with ProVerif:
Test result:

C:\ProVerif>check Diffie_Hellman.pv

Linear part:

exp(exp(g,x),y) = exp(exp(g,y),x)

Completing equations...

Completed equations:

exp(exp(g,x),y) = exp(exp(g,y),x)

Convergent part: No equation.

Biprocess 0 (that is, the initial process):

{1}new a: exponent;

{2}new b: exponent;

{3}new c: exponent;

{4}out(d,
(exp(g,a),exp(g,b),choice[exp(exp(g,a),b),exp(g,c
)]))

-- Observational equivalence in biprocess 0.

Translating the process into Horn clauses...

Termination warning: v ≠ v_1 &&
attacker2(v_2,v) && attacker2(v_2,v_1) -> bad

Selecting 0

Termination warning: v ≠ v_1 &&
attacker2(v,v_2) && attacker2(v_1,v_2) -> bad

Selecting 0

Completing...

Termination warning: v ≠ v_1 &&
attacker2(v_2,v) && attacker2(v_2,v_1) -> bad

Selecting 0

Termination warning: v ≠ v_1 &&
attacker2(v,v_2) && attacker2(v_1,v_2) -> bad

Selecting 0

RESULT Observational equivalence is true.

Verification summary:

Observational equivalence is true.

Explaining the result from ProVerif in detail:

1. Linear part: exp(exp(g,x),y) =
exp(exp(g,y),x): This refers to the linear
part of the protocol, and it expresses the
equation that must be true at all times.
In this case, it expresses the basic
property of the Diffie-Hillman protocol:
(gab) = (gba).

2. Completing equations... Completed
equations: exp(exp(g,x),y) =

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1608

exp(exp(g,y),x): This indicates that
ProVerif has completed the equations
necessary to verify the protocol.

3. Convergent part: No equation.: This
indicates that there are no equations that
need to be solved in the converging part
of the protocol.

4. Biprocess 0 (that is, the initial process):
{1}new a: exponent; {2}new b:
exponent; {3}new C: exponent;
{4}out(d,
(exp(g,a),exp(g,b),choice[exp(exp(g,a),
b),exp(g,c)])): This refers to the initial
process analyzed. In this case, three
secret numbers (a, b, and c) are
generated and a message containing
g^a, g^b, and a choice is sent between
(ga)b and gc.

5. -- Observational equivalence in
biprocess 0. : This indicates that the
protocol has passed the observed
equivalence test.

6. Translating the process into Horn
clauses...: This indicates that ProVerif
translates the protocol into a set of Horn
statements to verify security features.

7. Termination warning: v ≠ v_1 &
attacker2(v_2,v) & attacker2(v_2,v_1) -
> bad: These are termination warnings.
They indicate that ProVerif has not been
able to prove that the protocol always
expires. This doesn't necessarily mean
there's a problem, but it does indicate
that ProVerif couldn't verify this aspect
of the protocol.

8. : RESULT Observational equivalence is
true.: This indicates that the protocol
has passed the observed equivalence
test. This means that an attacker cannot
distinguish between the two different
protocols.

9. Verification summary: Observational
equivalence is true.: This is a summary
of the results and confirms that the
protocol has passed the observed
equivalency test.

In general, this result means that the protocol you
provided works as expected and is secure
according to the characteristics verified by
ProVerif.

4.2.2 Protocol testing with AVISPA:

Test result:
result Diffie_Hellman.hlpsl
% OFMC
% Version of 2006/02/13
SUMMARY
 UNSAFE
DETAILS
 ATTACK_FOUND
PROTOCOL
 /home/span/span/testsuite/results/DH3.if
GOAL
 secrecy_of_nb
BACKEND
 OFMC
COMMENTS
STATISTICS
 parseTime: 0.00s
 searchTime: 0.01s
 visitedNodes: 12 nodes
 depth: 2 plies
ATTACK TRACE
i -> (a,6): start
(a,6) -> i: {Na(1).a}_ki
i -> (b,3): {Na(1) XOR i XOR b.a}_kb
(b,3) -> and: {Nb(2). Na(1) XOR i}_ka
and -> (a,6): {Nb(2). Na(1) XOR i}_ka
(a,6) -> i: {Nb.) _ki
i-> (i,17): Nb(2)
i-> (i,17): Nb(2)
% Reached State:
%
% secret(Nb(2),nb,set_66)
% contains(a,set_66)
% contains(b,set_66)
% witness(a,i,bob_alice_na,Na(1))
% secret (Na(1),na,set_70)
% contains(a,set_70)
% contains(i,set_70)
% state_alice(a,i,ka,ki,2,Na(1),Nb(2),set_70,6)
%state_bob(b,a,kb,ka,1,Na(1) XOR
b,Nb(2),set_66.3)
%
state_alice(a,b,ka,kb,0,dummy_msg,dummy_non
ce,set_57,3)
% witness(b,a,alice_bob_nb,Nb(2))
% wrequest(a,i,alice_bob_nb,Nb(2),i)

Explanation of the result:
The result of testing the protocol with AVISPA
indicates the presence of an attack
(ATTACK_FOUND) and the non-fulfillment of
the confidentiality property of the element Nb
(secrecy_of_nb). Let's interpret the results in
detail:

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1609

- The tested protocol is in the
Diffie_Hellman.hlpsl file.
- The objective required for verification is the
confidentiality of the element Nb
(secrecy_of_nb).
- The OFMC algorithm was used as an algorithm
for analysis.
- An attack (ATTACK_FOUND) was found,
which means that there is an attack that can be
carried out in the protocol.
- Detailed information was presented about the
context of the attack, which is a series of
messages and interactions between the
participants of the protocol.
- The situation reached during the attack is
clarified, and shows the existence of confidential
information NB and Na.
In short, there is a vulnerability in the Diffie-
Hellman protocol that allows an attacker to
expose and manipulate the value of Nb. This
means that the protocol is not secure and does
not achieve the confidentiality of important
elements. The protocol should be reviewed and
improved to correct this vulnerability and ensure
its integrity.
The results indicate that the protocol is not
secure. An attack was found to be a secret
breach.
The attack is carried out as follows:

1. The hacker sends a "start" message to
Alice.

2. Alice responds with a message
encrypted with the hacker's public key.

3. The hacker sends a message to Bob
encrypted with Bob's public key.

4. Bob responds with a message encrypted
with Alice's public key.

5. The intruder sends the message he
received from Bob to Alice.

6. Alice responds with a message
encrypted with the hacker's public key.

7. The hacker can now decrypt the
message and obtain the secret key.

This means that the hacker can interfere with the
communication between Alice and Bob and
obtain the secret key. Therefore, the protocol
must be modified to prevent this type of attack.

4.2.3 Test result with Tamarin-prover as
follows:

Summary of summaries:

analyzed: Diffie_Hellman.spthy

 can_be_run (exists-trace): verified (11 steps)

 man_in_the_middle (all-traces): falsified -
found trace (11 steps)

Tamarin-prover is a symbolic analysis tool for
security protocols1. It can validate protocols and
look for potential vulnerabilities. The result you
received indicates that the tested protocol
(Diffie_Hellman protocol) has been parsed.

Other details in the result include:

1. can_be_run (exists-trace): verified (11
steps): This indicates that the protocol can run,
and this has been verified. The statement
"exists-trace" indicates that the protocol can run
if there is at least one path that protocol 2 can
follow. The number "11" indicates the number
of steps taken to verify this2.

2. man_in_the_middle (all-traces):
falsified - found trace (11 steps): This indicates
that the protocol is not safe against "man-in-the-
middle" attacks. The phrase "all-traces"
indicates that the protocol should be safe against
"man-in-the-middle" attacks in all possible
paths. However, a path was found that the
attacker could use to carry out a "man-in-the-
middle" attack, thus confirming that the protocol
was not secure.

The results of the test using the three techniques
are shown in Table -2-:

Table 2 - Test results using the three techniques:

Protocol ProVerif AVISPA Tamarin
Needham-
Schroeder
Public Key

unsafe unsafe safe

Diffie-
Hellman
Key
Exchange

safe unsafe unsafe

4.2.4 Evaluation of the Formal Methods Used:

In this research, a comparison was drawn
between the advantages of each of the tools, and
a table was developed to single out the
advantages of each of these tools as in Table (3):

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1610

Table 3 - Comparison of protocol security analysis tools

Comparative
Point

Tamarin Tool AVISPA Tool Proverif Tool

Method of
Work

Semi-automatic Automatic Automatic

Complexity Relatively easy to use Rather difficult to use Relatively easy to use
Prerequisites to
Use

Familiarity with Maude's
language

Deep knowledge of the
analyzed protocols and HLPSL
programming language

Familiarity with Horn
clauses or pi-calculus

Reliability Detects from both active and
passive attacks

Detects from both active and
passive attacks

Detects passive attacks

Usability Provides detailed
explanations of attacks

Can be used to prove a protocol
flawed

Provides step-by-step traces
of attacks

Method of
Analysis

Analyzes message sequences
in isolation

Analyzes all messages
simultaneously

Analyzes message
sequences in isolation

Efficiency Suitable for protocols with
moderate complexity

Efficient for complex protocols Suitable for protocols with
moderate complexity

Strengths Ease of use, detailed
explanations of attacks

Ability to detect a wider range
of attacks

Efficient analysis of
message sequences

Weaknesses May miss subtle attacks Requires more expertise in
HLPSL

Less effective for complex
protocols

Recommended
Use

Suitable for protocols with
moderate complexity and
specific attack detection

Ideal for complex protocols
that require comprehensive
security analysis

Suitable for protocols with
moderate complexity and
specific attack detection

With Table 3- Tamarin provides ease of use and
detailed explanation of attacks, AVISPA excels at
analyzing complex protocols, and Proverif excels
at analyzing message sequences efficiently.

5. LIMITATIONS OF PROTOCOL

SECURITY ANALYSIS TOOLS:
Each protocol security analysis tool has a

set of limitations that can affect its ability to
properly test the protocol. Here are some of these
limitations:
1. Language limitations: Some tools require the

use of a specific sample language to describe
the protocol. For example, ProVerif requires
the use of Horn clauses or pi-calculus.

2. Model limitations: Some tools impose
limitations on the protocol model that can be
described. For example, Tamarin restricts the
number of protocol participants and the
number of messages that can be sent.

3. Attack limitations: Some tools focus on
detecting only certain types of attacks. For
example, AVISPA focuses on detecting active
attacks, while ProVerif focuses on detecting
passive attacks.

4. Efficiency limitations: Some tools may be
slow or ineffective in detecting attacks.

5.1 How to avoid restrictions:
Some limitations can be avoided by

choosing the right tool for the type of protocol

being tested. For example, if the protocol has a
large number of participants, a tool such as
Tamarin that restricts the number of participants
cannot be used.

In some cases, restrictions can also be
avoided by modifying the protocol, which means
modifying it to improve security, not just for
testing purposes. In some cases, it may be
necessary to modify the protocol to avoid certain
types of attacks that the tool cannot handle or
cannot provide advice to avoid. This does not
mean that the protocol is modified just for testing,
but it is modified to improve the overall security
of the protocol.

5.2 Choosing the right tool:

When choosing a tool for protocol security
analysis, consider the following factors:

1. Protocol type: The tool that supports a
typical language must be chosen suitable for the
type of protocol being tested. When choosing a
tool for protocol security analysis, the language
supported by this tool should be suitable for the
type of protocol being tested. This means that
there is a compatibility between the language of
the tool and the type of protocol designed
according to it. For example, if the protocol relies
on a specific language or follows a specific
pattern in part communication, the tool you
choose should be able to understand and analyze
this type of language or pattern effectively.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1611

2. Model limitations: You must choose a
tool that does not impose unnecessary restrictions
on the protocol model.

3. Types of attacks: You must choose the
tool that supports detecting the types of attacks
you are interested in.

4. Tool efficiency: You should choose the
tool that provides the right efficiency for your
needs.

5.3 How can I choose one of the three tools to
test a protocol?

When choosing one of the three tools to test
a protocol, consider the following factors:

1. Protocol complexity: Each tool has its
capabilities in dealing with protocols of different
complexities. For example, Tamarin is suitable
for medium-complexity protocols, while
AVISPA is suitable for high-complexity
protocols.

2. Ease of use: Protocol security analysis
tools differ in their ease of use. For example,
ProVerif is one of the easiest to use, while
AVISPA is more difficult to use.

3. Required features: The required features
of the protocol security analysis tool must be
selected before selecting. For example, if you
need a tool that can detect active and passive
attacks, you should choose Tamarin or AVISPA.

6. RECOMMENDATIONS:

Based on the findings of this study, we propose
the following recommendations to enhance the
verification process for security protocols and
improve the overall security of modern systems:

1. Selecting the Appropriate Verification Tool
 For highly complex protocols: We

recommend using Tamarin, as it excels in
handling intricate security protocols and
detecting active attacks, such as Man-in-the-
Middle (MitM) attacks. However, Tamarin
requires proficiency in the Maude modeling
language, which may limit its accessibility to
non-experts.

 For simple to moderately complex
protocols: ProVerif is a suitable choice due
to its ease of use and effectiveness in
detecting passive attacks, such as
eavesdropping attacks. However, it may be
less effective in analyzing highly complex
protocols.

 For comprehensive verification: AVISPA
is recommended when a global analysis of all
protocol messages is required, especially
when detecting multiple attack types.
Nonetheless, its reliance on HLPSL makes it
challenging for users unfamiliar with formal
specification languages.

2. Improving Verification Methodologies
 Tool Integration: A hybrid verification

approach that combines the strengths of
multiple tools could enhance security
assessments. For instance, Tamarin could be
used for detecting active attacks, while
ProVerif could focus on passive attack
detection in parallel.

 Simplifying the Modeling Process:
Developing user-friendly interfaces for these
tools can reduce dependency on specialized
knowledge in mathematical modeling,
making formal verification more accessible
to non-expert users.

3. Developing Next-Generation Verification
Tools
 Leveraging Artificial Intelligence: AI-

powered machine learning algorithms can be
integrated into security verification tools to
automatically detect attack patterns and
predict potential future threats.

 Enhancing Computational Efficiency:
Optimizing existing tools or developing new
verification frameworks that reduce
computational complexity can allow for the
efficient analysis of highly intricate security
protocols.

4. Expanding Protocol Testing Scope
 Broader Protocol Coverage: Future studies

should extend the evaluation to include
modern security protocols, such as those used
in Internet of Things (IoT) applications and
blockchain-based systems.

 Real-World Environment Testing:
Conducting real-world simulations of
protocol behavior under network constraints
(e.g., bandwidth limitations, latency issues)
would provide a more practical assessment of
their security robustness.

5. Training Developers and Researchers
 Workshops and Training Programs:

Organizing formal training sessions on
security verification tools can help bridge the
gap between theoretical knowledge and
practical application.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1612

 Educational Resources: Creating
comprehensive learning materials, such as
user guides, interactive tutorials, and video
demonstrations, can improve accessibility
and facilitate wider adoption of formal
verification methodologies.

7. COMPARISON WITH PRIOR WORK:
Although numerous previous studies

have examined security protocol verification
using tools such as Tamarin, AVISPA, and
ProVerif, this study introduces several new
contributions and improvements compared to
prior research. Below, we discuss the key
differences between our work and existing
studies, highlighting the advantages and
limitations of our methodology.

1. Comprehensive Comparison of Tools

Most prior studies focused on evaluating
a single tool or comparing only two tools. For
example, Yang et al. (2022) [2] focused on
evaluating ProVerif's performance in verifying
cryptographic protocols, while Arapinis et al.
(2014) [9] compared Tamarin and AVISPA in
detecting active attacks. In contrast, our study
provides a comprehensive comparison of three
major verification tools (Tamarin, AVISPA, and
ProVerif) with a detailed analysis of each tool’s
performance in verifying two well-known
security protocols: Needham-Schroeder Public
Key Protocol and Diffie-Hellman Key Exchange
(DHKE) Protocol. This broader approach enables
a more precise identification of the strengths and
weaknesses of each tool.
2. Analysis of Different Attack Types

Many previous studies focused on
detecting only one type of attack, such as active or
passive attacks. For instance, Denning et al.
(2024) [1] focused on detecting replay attacks
using AVISPA, while Just et al. (2005) [20]
explored passive attacks using ProVerif. In our
study, we analyze the tools’ ability to detect
various attack types, including active attacks (e.g.,
Man-in-the-Middle (MitM) attacks) and passive
attacks (e.g., eavesdropping attacks). This holistic
analysis provides a broader understanding of each
tool's effectiveness in addressing diverse security
threats.
3. Improved Verification Methodology

Some previous studies relied on limited
verification methodologies, such as using simple
mathematical models or evaluating only basic
protocols. For example, Bresson et al. (2002) [19]
focused on key exchange protocols using simple

mathematical models, while Lowe (1995) [18]
analyzed security protocols with limited
complexity. In our study, we enhance the
verification methodology by employing advanced
mathematical models and evaluating complex
protocols such as Needham-Schroeder and Diffie-
Hellman. Additionally, we apply a unified
approach to presenting results, ensuring a more
accurate comparison between the tools.
4. Advantages and Limitations of Our
Methodology
Advantages:

 Comprehensive Analysis – Our study
covers a wide range of attacks and
protocols, providing a thorough
evaluation of tool performance.

 Standardized Results – The use of a
unified approach for presenting results
allows for more precise tool
comparisons.

 Practical Recommendations – The
study provides clear guidelines for
researchers and developers on how to
select the most suitable verification tool
based on protocol characteristics and
attack types.

Limitations:
 Modeling Complexity – The use of

advanced mathematical models may
make the study more complex for non-
specialist users.

 Time and Computation Costs –
Verifying complex protocols requires
significant time and computational
resources, which may limit the study’s
applicability on a larger scale.

8. CONCLUSION:

This study addressed the key challenges in
security protocol verification, focusing on the
complexities of modern protocols and the diverse
range of attacks they may encounter. Through a
comprehensive comparative analysis of three
major formal verification tools (Tamarin,
AVISPA, and ProVerif), we assessed their
effectiveness in verifying two widely used
security protocols: the Needham-Schroeder
Public Key Protocol and the Diffie-Hellman Key
Exchange (DHKE) Protocol.

Our findings highlight the need for
improvements in existing verification tools to
enhance their effectiveness in detecting various

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1613

attack types, particularly in complex security
protocols. Specifically, our results indicate that:

 Tamarin excels in detecting active
attacks such as man-in-the-middle
(MitM) attacks.

 ProVerif demonstrates superior
capability in identifying passive attacks
such as eavesdropping attacks.

 AVISPA provides a broad, high-level
analysis, making it suitable for general
security assessments but less effective
for highly intricate protocols.

However, each tool has inherent limitations.
Tamarin's computational complexity makes it
resource-intensive, AVISPA requires expertise in
HLPSL modeling, and ProVerif may struggle
with highly complex protocol structures.

Implications and Future Work
These findings have important practical

implications for security researchers and protocol
developers:

1. Tool Selection – This study provides
clear guidelines on choosing the
appropriate verification tool based on
protocol complexity and attack type.

2. Enhancing Verification Tools – There is
a growing need to develop more flexible
and user-friendly tools that can handle
complex security protocols while
minimizing reliance on specialized
mathematical knowledge.

For future research, we recommend:
 Expanding protocol testing – Future

studies should evaluate additional
security protocols, including those used
in IoT and blockchain applications.

 Improving verification methodologies –
Enhancing efficiency and accuracy
through hybrid verification models that
integrate multiple tools.

 Exploring AI-driven approaches –
Leveraging machine learning to
automate attack detection and improve
verification scalability.

Final Remarks
Ultimately, our findings confirm the

research hypothesis:
No single verification tool is universally

superior. While Tamarin is highly effective in
detecting active attacks, ProVerif excels in
passive attack identification, and AVISPA offers
a broad-spectrum security analysis. These
findings underscore the need for a hybrid
approach in security protocol verification, where

multiple tools are leveraged to achieve
comprehensive and reliable security assessments.

9. FUTURE WORK:

- It is proposed to test more protocols in the future
to increase confidence in tools and protocols.
- It is proposed to test protocols in the future in
new ways, based on artificial intelligence.

Abbreviations

AKE Authenticated Key Exchange

AKA Authentication and Key Agreement

AVISPA
Automated Validation of Internet Security
Protocols and Applications

EPS Evolution Packet System

HLPSL
High-Level Protocol Specification
Language

HN Home network

NRL NRL protocol analyzer

NSPK NSPK Protocol

OFMC On-the-fly Model Checker

PFS Perfect forward secrecy

PCS Post Compromise Secrecy

SATMC SAT-based Model Checker

SN Serving Network

STP signaling transport points

UE
user equipment

Compliance with Ethical Standards: The
accuracy of the information in the manuscript
rests with the writers. All ethical guidelines about
scientific research were adhered to in the conduct
of this investigation. The relevant ethical review
committee gave its approval, and each study
participant gave their consent. There was
compliance with all relevant laws and regulations.
Competing Interests: There are no pertinent
financial or non-financial interests that the authors
need to disclose. Regarding the content of this
article, the writers state that they have no
competing interests. By signing this form, each
author attests that they have no relevant
connections to, or engagement with, any
organization or institution that may have a
financial or non-financial interest in the topics or
materials covered in this book. The writers don't
own any proprietary or financial stake in any of
the content covered in this post.

 Journal of Theoretical and Applied Information Technology
15th March 2025. Vol.103. No.5

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1614

REFERENCES:

[1] D. E. Denning, "Timestamps in Key
Distribution Protocols," Communications of
the ACM, Retrieved from Academia.edu,
2024.

[2] D. Feng and K. Yang, "Concretely Efficient
Secure Multi-Party Computation Protocols:
Survey and More," Security and Safety, vol.
1, 2022, DOI:10.1051/sands/2021001.

[3] M. Palombo, "Formal Methods for Security
Protocol Analysis: Challenges and
Limitations of Automated Tools," University
of South Florida, Retrieved from
digitalcommons.usf.edu, 2015.

[4] T. M. Chau Le, X. T. Pham and V. Thinh Le ,
"Advancing Security Protocol Verification:
A Comparative Study of Scyther, Tamarin,"
Journal of Technical Education Science, vol.
19, no. 1, 2024, pp. 43-53,
DOI:10.54644/jte.2024.1523.

[5] “Automated Validation of Internet Security
Protocols and Applications”, AVISPA
Project Page,2023.

[6] A. Hassan, I. Ishaq and J. Minilla " Automated
verification tools for cryptographic
protocols”, International Conference on
Promising Electronic Technologies (ICPET),
2021.

[7] A. H. Shinde and A. J. Umbarkar, "Analysis
of Cryptographic Protocols AKI, ARPKI and
OPT using ProVerif and AVISPA,"
International Journal of Computer Network
and Information Security, vol. 8, no. 3, 2016,
p. 34.

[8] P. B. Copet and R. Sisto, "Automated Formal
Verification of Application-Specific Security
Properties," Engineering Secure Software
and Systems Conference Paper, Retrieved
from SpringerLink, 2024.

[9] M. Arapinis, "Stateful Applied Pi Calculus,"
in Principles of Security and Trust, edited by
M. Abadi and S. Kremer, vol. 8414, Lecture
Notes in Computer Science, Springer Berlin
Heidelberg, 2014, ISBN: 978-3-642-54791-
1.

[10] B. Blanchet, "The Security Protocol Verifier
ProVerif and its Horn Clause Resolution
Algorithm," HCVS/VPT@ETAPS, 2022, pp.
14-22.

[11]"Lecture 8a Reasoning with Horn Clauses -
Stanford University," 24th Euro micro
International Conference on Parallel,
Distributed, and Network-Based Processing

(PDP), Retrieved from Stanford University,
2024.

[12] "Decidable First-Order Fragments of Linear
Rational Arithmetic with Uninterpreted
Predicates," Journal of Automated
Reasoning, vol. 65, 2021, pp. 357-423.

[13] Tamarin Prover Project Page, "The Tamarin
Prover Project Page provides general
information about the project and the tool,
including what it was developed for and how
to use it," 2023.

[14] "The TAMARIN Prover for the Symbolic
Analysis of Security Protocols," Journal of
Technical Education Science, vol. 19, no. 1,
2024, pp. 43-53,
DOI:10.54644/jte.2024.15232.

[15] "Using Encryption for Authentication in
Large Networks of Computers," Journal of
Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications
(JoWUA), vol. 7, no. 2, 2024, pp. 3-193.

[16] "Timestamps in Key Distribution Protocols -
ACM Digital Library," Communications of
the ACM, vol. 63, no. 8, 2020.

[17] "Authentication Revisited: A Structured
Approach to Design and Evaluation," Journal
of Technical Education Science, vol. 19, no.
1, 2024, pp. 43-53,
DOI:10.54644/jte.2024.15232.

[18] G. Lowe, "An Attack on the Needham-
Schroeder Public Key Authentication
Protocol," Information Processing Letters,
vol. 56, no. 3, Nov. 1995, pp. 131-136,
DOI:10.1016/0020-0190(95)00144-2.

[19] E. Bresson, O. Chevassut, and D.
Pointcheval, "Dynamic Group Diffie-
Hellman Key Exchange under Standard
Assumptions," in Advances in Cryptology -
EUROCRYPT 2002, pp. 321-336.

[20] M. Just, "Diffie–Hellman Key Agreement,"
in Encyclopedia of Cryptography and
Security, edited by H.C.A. van Tilborg,
Springer, 2005, , pp. 321-336.

[21] W. Jirakitpuwapat and P. Kumam, "The
Generalized Diffie-Hellman Key Exchange
Protocol on Groups," in Econometrics for
Financial Applications, 2018, pp. 115-119.

