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ABSTRACT 

K-means clustering has several limitations, such as sensitivity to initialization and determining the number 
of clusters. It is sensitive to outliers, especially when identifying clusters with irregular shapes or varying 
sizes. Handling categorical data directly in k-means can be challenging. This study aims to present methods 
to improve the existing k-means clustering algorithms. It proposes designing two distinct proximity matrices 
for this purpose. The study suggests that the new algorithm performs better than traditional clustering 
methods based on several evaluation metrics. Randomly chosen centroids lead to unstable outcomes. The 
unpredictable initialization of centroids makes it difficult to replicate clustering results. Spectral clustering 
begins by creating a similarity matrix, followed by eigenvalue decomposition applied to the Laplacian matrix. 
This decomposition results in a spectral representation. However, optimal clustering outcomes cannot be 
guaranteed in the initial stage of the spectral clustering algorithm. This research proposes a solution to this 
issue. An Initialization & Similarity approach is recommended, where both the representation and the 
similarity matrix are determined in a cohesive manner. Additionally, it improves clustering performance by 
using sum of norms regularization. Based on evaluation metrics, this clustering technique proves to be better 
than the original k-means algorithm. Using normalized mutual information, purity, and accuracy as measures, 
the proposed technique demonstrates superiority over traditional algorithms. This study presents a novel 
approach to K-Means clustering by integrating a weighted adjacent matrix, significantly enhancing clustering 
accuracy and effectively handling high-dimensional data. The proposed methods, KM-AM and KM-WAM, 
show improved performance metrics such as normalized mutual information, accuracy, and purity, offering 
a more efficient and robust solution for various data analysis applications. 
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1. INTRODUCTION  
 

The k-means technique is popular and widely 
used in data clustering. It falls under unsupervised 
machine learning. In this method, a given dataset is 
divided into a specified number of clusters, denoted 
by k, which is chosen by the user. A centroid is 
initially designated as the cluster centre, achieved by 
randomly selecting k points from the dataset. In an 
iterative process, each data element is assigned to a 
group with the nearest centroid. Following this, the 
cluster centre, or centroid, is recalculated iteratively 
by averaging all the data elements within the cluster. 
The k-means algorithm aims to minimize inertia, 
which is the sum of squared distances of points 
within a cluster. This method groups similar data 
points within a cluster. K-means is frequently used 
for customer segmentation, image compression, 
anomaly detection, and document clustering. 
However, this simple and efficient algorithm may 

struggle with issues such as non-linearly separable 
or overlapping clusters. 
 

The goal of clustering in unsupervised data 
mining algorithms is to design and partition data 
points into groups where all points share certain 
similarities. Similar data points are placed in one 
group, while dissimilar points are placed in another 
cluster. Clustering is an unsupervised learning 
algorithm that analyses data without labelled 
datasets, in contrast to supervised learning. 
Therefore, labelled data is not required for k-means 
to function during training. It examines the data's 
underlying structure using only the input features. K-
means divides the data into a specified number of 
clusters, denoted by "K," a user-defined quantity. 
Each data point is a member of the cluster whose 
mean is closest to it. Here, the cluster centre is 
referred to as the "centroid." 
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The concept of a centroid describes the 
central values within a cluster, derived from all the 
data values in that cluster. The algorithm iteratively 
updates the centroids of the clusters until 
convergence is achieved. It begins with an initial 
random selection of centroids, denoted by K, and 
aims to minimize the sum of squared distances 
between the data elements and the centroid of the 
cluster. This algorithm can efficiently handle large 
datasets due to its low computational complexity, 
making it widely used in practice. It is also simple to 
apply, requiring minimal effort. 

 
The k-means algorithm involves initializing 

the centroids of each cluster. All data points are 
assigned to the cluster with the nearest centroid, and 
the centroids are then iteratively updated until 
convergence is achieved. K-means works well with 
numerical or continuous data, as distances between 
data points are calculated based on their numerical 
properties. This technique groups data points into 
clusters with the nearest centroid, making the 
resulting clusters interpretable. The characteristics 
of these clusters can be analyzed to better understand 
the data. Consequently, k-means clustering has 
gained significant attention in research. It is also 
popular in the field of data mining and extensively 
used in machine learning due to its effectiveness. 

 
Along with these characteristics, k-means has 

a few drawbacks. Initial centroids have an impact on 
this algorithm. Varied approaches to the first 
centroid placement can provide varied clustering 
outcomes and impact algorithm performance. 
Various initializations can lead to diverse outcomes, 
such as becoming trapped in local optima. As a 
result, selecting the best result from among those 
produced after several runs using various 
initializations is standard procedure. 
K-means clustering assumes that all clusters have 
equal variance, which makes it challenging to 
process datasets with non-spherical or unevenly 
sized clusters. The algorithm is particularly sensitive 
to outliers, as their presence can significantly impact 
the centroid calculation, leading to skewed clusters 
and suboptimal grouping. 
 

K-means operates under the assumption that 
clusters are spherical and equal in size. However, 
some datasets may form asymmetric or overlapping 
clusters, making it difficult to accurately represent 
the data's structure. The number of clusters (k) must 
be specified in advance, and determining the optimal 
number of clusters can be challenging if the dataset 
lacks a clear clustering structure. An incorrect value 

for k can result in either under-segmentation or over-
segmentation. 

 
The algorithm does not account for noise and 

extraneous features, treating each data point equally. 
Noisy data points can negatively impact centroid 
calculation, distorting the clustering outcome. 
Scalability is another issue with K-means, as its 
computational cost increases linearly with the 
number of data points, making it less suitable for 
large datasets. Additionally, K-means suffers from 
the "curse of dimensionality," which makes it 
challenging to apply to high-dimensional data, as the 
significance of the distance measure diminishes in 
such spaces. 
 

The solutions produced by K-means 
clustering are not unique, as the algorithm's results 
depend on the initial centroids and the order of data 
points. By examining the similarities between data 
points, the algorithm's efficiency can be improved, 
and its limitations can be managed. Accurate 
assessment of similarities between data points can be 
achieved through similarity measurement 
techniques. 
 

 To achieve an accurate similarity 
assessment, this study aims to develop an effective 
similarity matrix. We propose using the similarity 
matrix to enhance clustering efficiency. As part of 
this research, two novel feature representations are 
independently constructed, drawing inspiration from 
the spectral clustering algorithm. The first 
representation of the initial data points is in the form 
of an adjacency matrix. The second representation is 
a weighted adjacency matrix. K-means clustering is 
then applied to these output representations to 
improve efficiency. Consequently, the study 
suggests a more effective method for enhancing k-
means clustering results by using two different 
adjacency matrices. 

 

2. OBJECTIVE OF THE RESEARCH 

Conducting research on “Modified K-Means 
Approach for Effective Clustering Using Weighted 
Adjacent Matrix” addresses core concerns related to 
clustering accuracy, handling complex data, and 
optimizing computational resources, which are 
crucial for advancing data analysis techniques across 
various domains. The study is crucial for reasons as: 

 
2.1 Improved Clustering Precision  

Traditional K-Means clustering often 
struggle to accurately determine the optimal number 
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of clusters and initialize centroids. By incorporating 
a weighted adjacent matrix, the modified approach 
can enhance clustering accuracy by capturing 
relationships between data points more effectively. 
 
2.2 Managing High-Dimensional Data 

Modern datasets often have a large number of 
features making clustering challenging. The 
weighted adjacent matrix helps manage high-
dimensional data, leading to meaningful clusters. 

 
2.3 Performance Enhancement 

Studies have shown that modified K-Means 
approaches can outperform classical clustering 
algorithms in various evaluation metrics. This can 
lead to more efficient data analysis and better 
decision-making in applications such as image 
segmentation, market segmentation, and anomaly 
detection. 

 
2.4 Application Across Various Fields 

Effective clustering is vital in numerous 
fields, including data mining, machine learning, and 
bioinformatics. Improved clustering techniques can 
enhance algorithm performance in these areas, 
leading to technological and scientific 
advancements. 

 
2.5 Optimization of Computational Resources 

By improving the clustering process, the 
modified approach can reduce computational time 
and resource usage, making it more feasible to 
handle large datasets on standard hardware. 

 
3. LITERATURE SURVEY 

Many studies have been conducted to address 
the challenges associated with the k-means 
clustering technique. Kodinariya and Makwana 
developed a method based on a rule of thumb, 
finding that the clustering result varies with the 
cluster parameter. Before clustering, it is necessary 
to determine the number of model parameters or 
cluster numbers. Their research examined six 
alternative methods for obtaining appropriate cluster 
numbers, addressing the primary difficulty of cluster 
analysis. These techniques include the rapid 
clustering technique with the k-means strategy used 
to choose the cluster number [1]. 
 

Tibshirani, Walther, and Hastie [2] 
introduced the gap statistic technique, which aims to 
optimally select the value of k. The method estimates 
the number of clusters in a given dataset by 
comparing the actual and adjusted dispersion within 
the cluster, using the output of clustering algorithm, 

such as hierarchical or k-means algorithms. Murtagh 
and Contreras' study [3] surveyed hierarchical 
clustering methods, showing that outliers impact 
these techniques. Their research examined 
hierarchical self-organizing maps using mixture 
models, as well as grid-based and hierarchical 
density-based grouping. The study concluded with a 
grid-based, linear-time hierarchical clustering 
algorithm, which is said to be highly effective. 

 
Zheng, Zhu, et al.'s self-paced learning 

technique is another noteworthy contribution to the 
field. They suggest that outliers should be given less 
weight compared to important samples. The 
researchers adapted the feature selection process by 
incorporating regularization to reduce the impact of 
outliers. The proposed method selects a subset of 
significant samples necessary for building a feature 
selection model, enhancing its generality by 
incorporating more relevant samples [4]. Similarly, 
Abe & Abe [5] demonstrated how this approach 
improves the support vector machine's ability to 
generalize datasets through feature selection surveys 
and support vector machines. Their study's main 
objective was to create a similarity matrix that would 
enable the extraction of multiple features using an 
algorithm. 

 
In their research, Arora and Varshney 

evaluated k-means and k-medoids using dispersed 
data points. They compared the space complexity of 
overlapping clusters and the time required for cluster 
head selection. It was determined that k-medoids are 
more efficient in terms of execution time and are less 
affected by outliers, making them better at 
minimizing noise. However, this method is more 
complex compared to k-means [6]. 
 

Bachem, Lucic, and colleagues [7] explored 
the impact of centroid initialization on the sensitivity 
of k-means. They proposed a seeding strategy for k-
means, replacing the D2 sampling step with an 
approximation based on Markov Chain Monte Carlo 
sampling. Their experiments demonstrated that this 
technique performs well with large-scale and real-
world datasets, significantly reducing runtime. 
 

Zhang [8] developed a target-resource 
framework with target and cost scales, creating a 
cost-sensitive learning model to aid in the 
categorization and analysis of medical data. These 
approaches have been shown to be effective in 
decision tree learning, as demonstrated and 
evaluated through experiments. 
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Zhu, X., et al. introduced a sparse low-rank 
subspace as a space projection of the initial data 
using a transformation matrix for clustering. In 
subspace learning with feature selection, the affinity 
matrix and rank constraint are utilized. This results 
in the creation of a matrix of intrinsic and dynamic 
affinity. The clustering result is represented by the 
affinity matrix in the low-dimensional space [9]. 

 
DBSCAN, a density-based clustering 

method, can be used for clusters of any shape. 
Sharma, A., and Sharma, A. highlighted the 
limitations of this clustering method, such as its 
reliance on user-defined parameters. They proposed 
a combination technique that achieves parameter-
free clustering by integrating density-based 
clustering with k-nearest neighbour information. 
The data accumulation within the cluster structure 
helps guide parameter setting [10]. 

 
He, L., et al. proposed an efficient method for 

spectral clustering in large datasets. This technique 
represents data in kernel space using random Fourier 
features. This explicit mapping method accelerates 
eigenvector approximation, leading to improved 
prediction speed for spectral clustering [11]. 

 
Chen, J., et al. [12] found that traditional data 

clustering methods are less effective for online data 
streams. To address this, they proposed a grid-based 
clustering algorithm that performs better with hybrid 
data streams. They developed a model of non-
uniform attenuation to increase noise resistance and 
introduced a similarity calculation method to 
achieve accurate grouping. Experiments showed that 
their quick clustering centre determination 
procedure was highly effective. 
 

Ding, Y., and Fu, X. proposed a kernel-based 
algorithm for c-means clustering, specifically for 
pattern recognition applications. The advantage of 
this method is its ability to produce high-quality 
modelling outcomes. The study aimed to optimize 
fuzzy c-means clustering through a genetic 
algorithm to address existing issues with FCM 
clustering [13]. 
 

Ferreira, M. R. P., et al. presented a kernel-
based clustering technique that included automatic 
variable weighting and metric kernelization. They 
evaluated all kernels for each variable and combined 
into a kernel function. The dissimilarity metrics in 
their technique were calculated as the sum of the 
Euclidean distances between the centroids [14]. 
 

Du, L., et al. developed a robust k-means 
algorithm using the 12,1-norm in feature space, and 
extended it to kernel space. This study proposed a 
multiple-kernel k-means algorithm that proved to be 
robust. The primary feature of this new algorithm is 
its ability to simultaneously determine the best 
clustering label with cluster membership and the 
optimal arrangement of multiple kernels. They also 
devised an alternating iterative schema to determine 
the ideal value [15]. 

 

4.  PROBLEM STATEMENT 

While the K-Means clustering algorithm is 
widely used and popular, it encounters several 
difficulties in accurately clustering data, especially 
with high-dimensional datasets and determining the 
optimal number of clusters. Traditional K-Means 
often experiences issues such as inadequate 
initialization of centroids, convergence to local 
optima, and struggles with varying cluster sizes and 
densities. These limitations impede its effectiveness 
in many practical applications where precise and 
efficient clustering is essential. 
 

This study tries to address these challenges by 
developing a modified K-Means approach that 
incorporates a weighted adjacent matrix to enhance 
clustering performance. The weighted adjacent 
matrix will improve the algorithm's capability to 
capture relationships between data points, resulting 
in more accurate and meaningful clustering 
outcomes. This study will investigate the potential 
advantages of this modified approach in handling 
high-dimensional data, improving initialization, and 
achieving better computational efficiency. 
 

By tackling the core concerns related to 
clustering accuracy and performance, this research 
seeks to contribute to the advancement of clustering 
techniques, offering a more robust and effective 
solution for various data analysis and machine 
learning applications. 

 

5. RESEARCH HYPOTHESIS 

Despite the improvements offered by 
incorporating a weighted adjacent matrix for 
enhanced clustering accuracy, the modified K-
Means approach may still face challenges related to 
parameter sensitivity and computational complexity. 
These challenges could potentially limit its 
applicability across diverse datasets with varying 
characteristics, affecting the generalizability and 
scalability of the proposed methods. 
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6. ORIGINAL K-MEANS AND THE 
MODIFICATIONS 

This study examines the original k-means and 
suggests a few changes. Along with the 
implementation, a basic understanding of spectral 
clustering and k-means is required. 

 
6.1 Clustering by Original K-means  

Let the data input be X= (x1,  ..,xn) ∈ Rn x d,                                                                                                                  
where, xi is ith row. X is the matrix, xi,j is 
component of row i and column j. 
K-means algorithm: 
Input of initial data elements: X= {x1, ..,xn } ∈ Rn 
x d;                                                                                                              
Step i) Initialisation of centroid by random 
selection of k data points.                                                                
Step ii) continue                                                                                                                                                    
Step iii) Assigning a closest centroid to the data 
points.                                                                                       
Step iv) Calculating the mean of all data elements. 
Updating the centre of every cluster named as 
centroid.                                                                                                                               
Step v) Repeat                                                                                                                                                       
Step vi) Centroids stop changing and algorithm 
converges. 
 

K-means clustering aims for SSE, or least 
sum squared errors. It also denotes the lowest overall 
intra-cluster variance for a specific number of 
clusters, k. SSE is a metric used to assess a clustering 
solution's quality. An alternative name for it is the 
"within-cluster variance." Within a cluster, the 
square of distances between every data element and 
the centroid is calculated.  The total of this distance 
is taken out.  

 
To compute it, we follow these steps: 
a. Calculating the squared Euclidean distance for 
each data element and the centroid. Following 
formula yields the squared Euclidean distance 
among a centroid c and a data element x: 

 
Squared Euclidean Distance = ∑𝒏

𝒊ି𝟏

(𝐱𝐢 −  𝐜𝐣)2 
 

n is referred as the number of dimensions, xi is 
value of data elements in dimension i. ci is value of 
the centroid in dimension i. 

 
b. Add up all of the data points' squared distances 
inside the cluster. This is how we get the SSE for 
that cluster. 

 
c. For every cluster, repeat steps 1 and 2 in turn. 

 
d. Add the SSE in all clusters to find the total SSE 
for the entire dataset. 

 
Mathematically, the SSE can be represented as: 

SSE =  ∑ ∑ ||
𝒕𝒋
𝒊ୀ𝟏

𝒌
𝒋ୀ𝟏  xi - cj ||2

2                  (1)

               

 k refers to the number of clusters 
 tj refers to the da ta elements within 

the cluster j 
 || xi - cj ||2 refers to l2 norm of xi - cj 
 ci is centroid for cluster i 
 

SSE is reduced using K-means clustering. A lower 
SSE suggests a tighter and better clustering solution 
because it shows that the data points are close to their 
centroids. Data points are assigned to clusters 
iteratively by K-means. In order to reduce the SSE 
till convergence, it updates the cluster centroids.  
 
7. CHALLENGES WITH K-MEANS 

Clustering with minimum SSE achieves the 
best results when the centroids are initially chosen at 
random. Determining the similarity metric and 
predicting the actual number of clusters are 
significant challenges. The exact number of clusters, 
k, is unknown, which complicates finding an 
effective solution. However, there are a few methods 
to address this issue. 
 

One approach is manually selecting the value 
of k, which represents the number of clusters, in an 
on-demand selection algorithm. The SSE versus k 
graph can be used to determine the optimal value of 
k using the elbow method, a refined version of the 
gap statistic method. The process creates the given 
equation to determine the k’s value: 

 
k ≈   n/2                                  (2) 
 
 

In the k-means algorithm, identifying the 
initial position of the centroid poses another 
challenge. The simplest method is to randomly select 
the initial centroid, but this approach can negatively 
affect clustering outcomes, leading to incorrect 
partitions. Hierarchical centroid selection [16] 
addresses this issue by repeatedly running the basic 
k-means algorithm with random initialization. The 
resulting centroids are then used as input data to 
create the final centroids. After randomly selecting 
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the first centroid, referred to as k1, simple cluster 
seeking is used to find the next element at a 
predetermined distance from k1. This element is 
identified as k2, the second centroid. This process is 
repeated until k centroids are obtained. Simple 
cluster searching (SCS) [17] is employed within the 
MATLAB suite for this purpose. 

 
Another challenge in k-means clustering is 

defining the similarity measure between data points. 
As the distance between data points increases, their 
common features decrease. Various similarity 
metrics, such as the Pearson correlation coefficient, 
the Jaccard coefficient, and cosine similarity, are 
used alongside Euclidean distance. The final issue 
with k-means is determining the similarity 
measurement between data points. 

 
8. USE OF SPECTRAL CLUSTERING 
 

Spectral clustering pre-processes training 
data points by substituting high-order relationship 
data points for the original training data points [18]. 
This graph-based method is more effective for 
complex data structures that require dimensionality 
reduction techniques. The relationships between 
data points are represented as a similarity matrix. In 
spectral clustering, Euclidean distance is used as the 
basis for both distance metrics and similarity 
measures, providing an estimate of the separation 
between two data points. 

 
Wi,j   =   ∑ (𝑥 𝑖, 𝑡 − 𝑥𝑗, 𝑡)ௗ

௧ୀଵ
2     

 i & j ∈ [1,n], t  ∈ [1,i]                                 (3) 
W denotes similarity matrix, i,j are the ith, jth  
elements and t indicates tth feature of the element. 

 
Later, the Laplacian matrix L is created by 

transferring the similarity grid into a sparse grid 
taking help of a kernel function. The similarity grid 
is referred to as the adjacent matrix in this study. The 
definition of normalized Laplacian grid L is: 

 

L = ( 1 /  D  )  ( D – A )  ( 1 /  D  )                   (4) 
         

 
L declares Laplacian grid, ‘A’ is the adjacent 

matrix, ‘D’ mentions a diagonal grid. All the rows in 
the adjacent matrix ‘A’ are summed and placed as 
the elements of the diagonal grid. 
Dimensional reduction is thus achieved using 
spectral grouping. This is accomplished by first 
choosing k eigenvectors from L, and then using this 
reduced matrix to perform clustering using k-means 
algorithm. 

 
9. PROPOSED K-MEANS 

 
This study introduces two clustering 

techniques that address the shortcomings of the 
original k-means clustering. We propose two types 
of k-means algorithms: one based on an adjacency 
matrix (KM-AM) and the other on a weighted 
adjacency matrix (KM-WM). KM-AM directly 
applies the k-means algorithm to the pre-constructed 
adjacency matrix, while KM-WM performs k-means 
clustering after calculating the feature weights. 

 
9.1 K-means Based on Adjacent Matrix (KM-

AM) 
Spectral clustering process begins with the 

construction of the similarity grid. The elements are 
put in an undirected graph to create the similarity 
matrix. Graph G = (V, E). Here E is considered as 
connecting edge sets that joins with the vertices. 
Also E= {e1,e2,e3….em} and (m= n * (n-1)/2) and V 
denotes  set of vertices V={v1,v2,v3….vn}. Similarity 
grid W represents this unidirectional graph. 

 
W = (wi,j) ni, j =1    where  wi,j ≥ 0 
 
According to a specified distance matrix, it 

provides the similarity between xi and xj. Previous 
studies have created adjacent matrices such as fully 
linked graphs, ε-neighbourhood graphs, and k-
nearest neighbour graphs. If one is the closest 
neighbour to the other, vi and vj will be connected in 
the k-nearest graph. Efforts are needed to render the 
graph symmetric due to the non-symmetrical nature 
of the neighbourhood relationship, resulting in a 
directed graph. As a result, a completely connected 
graph with a similarity scalar connecting every 
vertex is created.  

 
The ε-neighbourhood graph joins 

neighbouring vertices (εm=1) in the condition if the 
distance comes under or less than a given threshold 
ε . If not, the value is em=0. This gives the graph's 
edges all approximately the same value. A graph 
without weight is the result. In this study. It is 
recommended to construct an adjacency matrix to 
depict the distances between data points using a 
similarity function, in order to create a fully 
connected network. The Gaussian kernel, Sigmoid 
kernel, and polynomial kernel are the three most 
often used kernel functions. When using a Gaussian 
kernel, the following formula can be used to define 
the neighbouring matrix in the condition:  
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Aij = exp [−2 σ 2 | | (xi−xj) | | 2] (i, j ∈ [1,n])
         

                                  (5)  
   

Ai,j = entry in the adjacent matrix corresponding to 
the connection between nodes                                 
xi & xj = feature vector of nodes i & j respectively 
|| xi - xj || = feature vectors xi & xj’s Euclidean 
distance 
σ = scale parameter of Gaussian kernel 
 
9.1.1 Algorithm for Spectral/Graph-Based 

Clustering 
Input – a set of data elements X is taken such that X 
= {x1, ..,xn } ∈ Rn x d;  the number of clusters k.                                                                                                                             
Output – Centroids C as an indicator of cluster for 
every data element. 
Step i) Calculating the affinity matrix W for X;                                                                                                       
Step ii) Computing the similarity/affinity matrix 
L;                                                                                            
Step iii) Computing the first k eigenvectors of L, 
denoted as  
E = {e1, ..., ek}; 
Step iv) Construction of the matrix U. The formula 
for U is obtained as ET, U ∈ Rn x d;                                                                                                
Step v) Running k-means algorithm technique for 
the obtained U;                                                                                          
Step vi) Getting output in terms of C which is the 
cluster result.     
   

In the second stage of the spectral clustering 
procedure, we calculate and compute the Laplacian 
matrix. It outputs first k eigenvectors. These k 
eigenvectors serve as initial data for the k-means 
algorithm. Larger datasets will require more time to 
process due to the computational complexity. This 
study looks for a solution to this issue. Instead of 
using a Laplacian eigenvector matrix, our first 
technique, KM-AM, performs k-means clustering 
directly on the neighbouring matrix. Utilizing KM-
AM has the benefit of avoiding the Laplacian 
matrix's computational expense. Additionally, it 
avoids the eigenvalue decomposition optimization 
cost. In the end, there is less complexity in 
computers. As a result, it permits clustering on 
bigger datasets.    

 
9.2 K-means Based on Weighted Adjacent 

Matrix (KM-WAM) 
Our study proposes clustering based on an 

adjacency matrix. However, it is important to note 
that a single data point can have multiple attributes 
or features with varying importance. Each of these 
features impacts the clustering result differently. 
Generally, a significant attribute has a greater effect 

on the clustering outcome than a minor feature. This 
variation in the relative importance of the attributes 
is logical [19]. Therefore, the feature with the highest 
weight should be prioritized when creating the 
adjacency matrix. 

 
Our paper introduces an alternative k-means 

clustering technique that uses a weighted adjacency 
matrix, based on the aforementioned rationale. The 
weight of a feature determines its precedence. Each 
data element in this adjacency matrix is identified by 
its features, with each feature associated with a 
numerical value. Consequently, this study calculates 
the weight of all features by dividing each feature's 
proportion among the other features. The process 
involves summing the data points for each feature, 
resulting in a vector with weight d. The symbol djd_j 
in the equation represents the sum of the matrix AA 
components in the jjth column. The weight vector is 
normalized using the following method: 

 
h = dj / ( ∑𝒏

𝒋ୀ𝟏 dj)    ( j ∈ [1,n] )                   (6) 
 

The above equation finds the summation of 
the elements in h. The contribution of the jth feature 
to each and every data point is displayed in every jth 
element. This is how the feature's significance can be 
determined. Next, each point in the neighbouring 
matrix A is subjected to weight vector h in order to 
obtain the weighted adjacency matrix Z:   

 
Zi,j =  Ai,j  x  h                    (7) 
 

9.3 Algorithm for Weighted Adjacent Matrix 
Input – Set of data elements X in such a way 

that X = { x1,..,xn } ∈ Rn x d, and k is the number 
of clusters.                                                                                                                 
Output – Centroids C along with the cluster 
indicators for every element. 

 
Step 1: Use equation 3) to form similarity matrix W 
of X;                                                                                                         
Step 2: Use equation 5) to compute the adjacent 
matrix A;                                                                                                                    
Step 3: Calculate the output C by running k-means 
clustering algorithm on A;       
Finally, we obtain the weighted adjacency matrix Z. 
Now, K-means clustering is then applied to Z to 
produce the clustering output. This represents the 
final clustering result for the original dataset. The 
following are the phases in our suggested strategy, 
which utilizes k-means clustering based on a 
weighted adjacency matrix. 
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Figure 1: Proposed Method – Graphical representation 

9.4 Algorithm for K-means Clustering Based on 
a Weighted Adjacency Matrix   
Input- data points X={x1,..,xn } ∈ Rn x d;  

cluster number k.                                                                                                           
Output – The centroids C along with the cluster 
indicators for all data points. 
 
Step 1: Use equation 3) to form similarity matrix W 
of X;       
Step 2: Use equation 5) for calculating adjacent 
matrix A; 
Step 3: Use equation 6) for computing weight 
vector h; 
Step 4: Use equation 7) to calculate and form the 
weighted adjacent matrix Z; 

Step 5: Compute the output C by running k-means 
clustering on Z; 
 
10. TRIAL AND ANALYSIS 
 

In addition to comparing the three clustering 
algorithms using the three clustering assessment 
criteria, this study assesses our two clustering 
techniques.   

 
10.1  Data Declaration 

We have selected datasets from data mining 
centre website and also from UCI ML Repository. 
The chosen data are from various categories.  This 
contains a range of features to evaluate the 
effectiveness and reliability of the proposed 
technique. The datasets are mentioned in the given 
table. 

 
10.2 Algorithm for comparison 
 The following algorithms are compared in the 
paper: 
 
a. K-means clustering is a popular and widely used 
algorithm for clustering. It groups elements or points 
into distinct clusters, with the number of clusters 
denoted as ‘k’. Data points with different features are 
expected to be in different clusters, while those with 
similar attributes are expected to be in the same 
cluster. The commonly used built-in MATLAB 
function typically has parameters for the "selection 
algorithm for initial centroid positions" and 
"distance" set to "cluster" and "Euclidean distance," 
respectively. 
 
b. Another variation of the standard k-means 
algorithm is the k-means++ algorithm. This 
algorithm finds centroids using a heuristic approach, 
which usually results in a lower sum of SSE and 
faster convergence. 
c. Normalized spectral clustering (SPCL) is a well-
known variation of the spectral clustering algorithm 
[20]. In this method, the normalized eigenvector 
matrix is used for k-means clustering. To achieve a 
norm of 1, the row sum must be normalized. 

 
10.3 Set of Parameters 

The 10-fold cross validation approach was 
employed in the study to assess each of the 
algorithms that were discussed. Adjusting the 
parameter σ is necessary for the paper's suggested 
techniques because it significantly impacts the 
kernel function's performance and the clustering 
outcome [21]. The parameter σ has been tested on 
the datasets within the range σ ∈ [10-5, … 1014]. To 
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be evaluated, Similarity matrix W’s mean value is 
chosen as σ: 
 

σ = mean (W)                    (8)
             
Similarity/Affinity matrix W is calculated using 
equation 3) 

Table 1: Evaluation of the Technique using Dataset. 

 
Dataset No of 

Samples 
No of 

Features 
No of 

Classes 

Dexter 300  20000 2 

20news 3970 8014 4 

Binalpha 1404 320 9 

Coil20Data 1440 1024 20 

SolarFlare 1066 12 6 

WebsitePhishing 1353 9 3 

Cardiotocography 2126 41 3 

ParkinsonSpeech 1040 28 2 

GermanCredit 
Data 

1000 23 2 

 
 
10.4  Evaluation Measurement 

In order to examine the many facets of the 
clustering outcomes, our study suggests using the 
assessment measurements, namely AC, NM and PR. 
Accuracy can be checked with the help of AC, purity 
is demonstrated by PR, and NM is normalized 
mutual information.   

AC = Ncorg / N                     (9)
           
Ncorg = the no. of data points placed accurately to the 
respective group or clusters 
 
NM illustrates how quality and cluster number are 
traded off:  
NM = 2 [M(xi, xj) / E(xi) + E(xj)]                    (10) 

 
sM(xi, xj) = relationship between two variables, E( ) 
= variable’s entropy 
 
PR provides an overview of each cluster's percentage 
of categorized data points: 

PR =     ቀ
𝐒𝐢

𝐧
ቁ 𝐏𝐢

𝐤

𝐢ୀ𝟏
                 (11) 

Where, k = no of clusters, Si = no. of data elements 
from ith class,  
Pi = correct segregation of data points divided into 
clusters 

     
11. COMPARISON FROM PRIOR WORK 
 

The proposed research stands apart from 
traditional K-Means clustering algorithms and prior 
modifications in several key aspects: 

 
a. Integration of Weighted Adjacent Matrix: Unlike 
standard K-Means and its variants, this study 
introduces a weighted adjacent matrix to improve 
clustering accuracy. Previous research has mainly 
focused on centroid initialization and alternative 
distance metrics but has not thoroughly explored the 
advantages of weighted adjacency. 
 
b. Dual Adjacency Matrix Approach: This research 
utilizes two distinct types of adjacency matrices—
adjacent and weighted adjacent matrices. Most prior 
studies have employed a single type of adjacency or 
similarity matrix, limiting the exploration of 
multidimensional data relationships. 
c. Enhanced Performance Metrics: By incorporating 
the weighted adjacent matrix, the proposed approach 
aims to outperform classical clustering algorithms in 
terms of normalized mutual information (NM), 
accuracy (AC), and purity (PR). This represents a 
significant departure from traditional methods that 
primarily focus on improving SSE (sum of squared 
errors). 
 
d. Optimization for High-Dimensional Data: While 
many previous studies have addressed clustering 
challenges, this research specifically targets the 
complexity of high-dimensional datasets, offering a 
more robust solution for managing large feature 
spaces. 
 
12. DESCRIPTIVE ANALYSIS OF THE 
RESEARCH  
 

By addressing these pros and cons, the present 
research aims to advance the field of clustering 
techniques, offering innovative solutions while 
acknowledging areas that require careful 
consideration and further research. 
 



 Journal of Theoretical and Applied Information Technology 
15th March 2025. Vol.103. No.5 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
1980 

 

12.1  Pros 
12.1.1 Improved Clustering Accuracy 
The use of a weighted adjacent matrix enhances the 
ability to capture intricate relationships between 
data points, resulting in more precise clustering 
outcomes. 
 
12.1.2 Effective Management of High-

Dimensional Data 
The proposed method effectively handles high-
dimensional datasets, ensuring meaningful cluster 
formations even with a large number of features. 
 
12.1.3 Reduced Computational Complexity  
By eliminating the need for eigenvalue 
decomposition in the Laplacian matrix, the proposed 
approach reduces computational overhead, making it 
feasible for larger datasets. 
 
12.1.4 Flexibility and Scalability 
The dual adjacency matrix approach provides 
greater flexibility in managing diverse datasets and 
can be easily scaled to handle extensive data points. 
 
12.1.5 Comprehensive Evaluation Metrics 
The focus on metrics such as NM, AC, and PR 
ensures a thorough evaluation of clustering 
performance, providing a clearer understanding of 
the algorithm’s effectiveness. 
 
12.2  Cons 
12.2.1 Parameter Sensitivity 
The performance of the proposed approach may be 
sensitive to the choice of parameters, particularly the 
σ parameter in the Gaussian kernel. Fine-tuning 
these parameters is essential for optimal results. 
 
12.2.2 Complexity in Implementation 
The introduction of weighted adjacency and dual 
matrices may increase the complexity of the 
implementation, requiring careful design and 
debugging. 
 
12.2.3 Dependence on Data Characteristics 
The effectiveness of the proposed method may vary 
depending on the nature of the datasets. It might not 
perform equally well on all types of data, particularly 
those with unique or highly irregular structures. 

12.2.4 Computational Overhead in Weight 
Calculation 

While the approach reduces some computational 
costs, the process of calculating feature weights and 

constructing the weighted adjacent matrix can 
introduce additional overhead. 
 
13. CONCLUSION 
 

This research effectively addresses the 
significant limitations of traditional K-Means 
clustering, particularly regarding high-dimensional 
datasets and determining the optimal number of 
clusters. By incorporating a weighted adjacent 
matrix, the proposed modified approach enhances 
clustering performance, offering a more accurate and 
robust solution for various clustering tasks. 
 

The newly developed methods, namely K-
Means based on an adjacent matrix (KM-AM) and 
K-Means based on a weighted adjacent matrix (KM-
WAM), exhibit substantial improvements over 
traditional techniques. The dual adjacency matrix 
approach enables more effective handling of 
complex data structures and high-dimensional 
datasets, resulting in clusters that are more 
meaningful and representative of the underlying 
data. Comprehensive evaluation metrics, including 
normalized mutual information (NM), accuracy 
(AC), and purity (PR), demonstrate that the modified 
approach significantly outperforms classical 
clustering algorithms. The reduction in 
computational complexity and the enhancement in 
clustering accuracy highlight the practical feasibility 
of these methods for large-scale applications. 

 
The advantages of the proposed approach, 

such as improved clustering accuracy, effective 
management of high-dimensional data, reduced 
computational overhead, and comprehensive 
evaluation metrics, underscore its potential for 
advancing data analysis techniques across various 
domains. However, it is crucial to acknowledge the 
limitations, including parameter sensitivity, 
complexity in implementation, and dependence on 
data characteristics, which require careful 
consideration and further research. 
 

In conclusion, this research makes a valuable 
contribution to the field of clustering techniques by 
providing innovative solutions that address core 
concerns related to clustering accuracy and 
performance. The findings support the initial 
problem statement and emphasize the importance of 
ongoing exploration and refinement of clustering 
methodologies to meet the evolving needs of data 
analysis and machine learning. 
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