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ABSTRACT 
 

Data-driven techniques for machines tool wear detection and forecasting have gained prominence in the past 
several years. The study investigates how well Temporal Convolutional Networks perform in cloud 
computing contexts for IoT data prediction. Because TCNs are good at capturing temporal patterns and long-
term relationships, they are useful for time-series forecasting problems. Utilizing convolutional layers, TCNs 
differ from conventional Recurrent Neural Networks in that they analyse data in addition, to enhancing 
adaptability and decreasing training time. Dilated convolutions are included in TCNs to further improve their 
capacity to identify trends over long periods without adding to the computational complexity, which makes 
them appropriate for connections that last and recurrent trends in IoT data. The study shows that TCNs 
perform better than existing models like RNN, LSTM, GRU-LSTM, and CNN-LSTM in terms of metrics 
like R^2 alongside and Mean Absolute Percentage Error. The study was conducted on a Python platform 
running Windows 11. TCNs attained an MAE of 98.7%, RMSE of 97.6%, MAPE of 98.0%, and R^2 of 
97.7%, according to the results. Although the error metrics are greater, the significant R^2 value suggests a 
strong model fit. The study draws attention to many problems with TCNs, such as the requirement for large 
labelled datasets, understanding, data quality, and computationally demanding requirements. The study also 
highlights how scalability and flexibility offered by cloud platforms enable effective management of massive 
IoT data streams and real-time analysis. The results indicate that TCNs may greatly increase resource use 
and forecasting accuracy in IoT-cloud environmental systems, but more development and study are required 
to fully realize their capabilities. 

Keywords:  IOT Data Forecasting, Cloud Computing In Iot, Temporal Convolutional Network (Tcns), Deep Learning, 
Dilated Convolutions, Machine Tool Wear Detection 

 
1. INTRODUCTION  

The IoT network is a collection of smart gadgets, 
including smartphones, tablets, computers, 
appliances for the home, and sensors, linked together 
over the World Wide Web. This connection provides 
the collaboration with other techniques such as 
machine learning to optimise and analyse the big data 
and complex operations in connected and rapidly 
changing environments [1]. In IoT networks, devices 
must communicate effectively to ensure 
uninterrupted data transmission while minimizing 
congestion and interference. Genetic algorithms can 

optimize communication routes, reduce latency, and 
enhance data transmission speed [1]. 

Many applications, including smart homes, 
energy networks, and transportation, are made 
possible by this kind of system, which is growing into 
an indispensable component of daily life. A dynamic 
worldwide network of interlinked items and devices, 
IoT may gather and share data amongst itself as well 
as interact with one another [2]. For servers, storage, 
databases, and analytics, both hardware and software 
are utilized since IoT provides a higher level of 
personal comfort despite its risks. As seen by 
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Amazon's 2006 EC2 debut, cloud computing has 
developed over the previous 50 years by offering 
services such as servers, storage, databases, and data 
analysis, among others [3]. However, the situation 
remains delicate. Cloud computing crudity beyond 
the planet for data. Since it reaches the upper 
troposphere, it may be analyzed on the same device 
as the data is generated. The benefits of the cloud are 
customized for the IoT, but smart gadgets are still 
vulnerable to security risks, especially in light of the 
advent of edge computing. Smart devices gather and 
send you private information that is not protected 
from a confidentiality standpoint, especially for 
elderly people who face difficulty in dealing with it 
and their community [4][5][6]. This makes the 
devices very appealing to bad software, which may 
lead to major events like data breaches and lost 
personal safety. Historically, network administration 
and security have required a high degree of precision 
in traffic scaling, and statistical approaches like 
ARMA and ARIMA have been used to achieve this. 
IoT benefits from cloud computing's scalability and 
flexibility, but the security of smart devices is still an 
issue, particularly in light of the advent of edge 
computing. Smart gadgets gather and send vast 
amounts of personal data, which attracts malware and 
presents risks including compromised personal safety 
and information exposure. Statistical models like 
ARMA and ARIMA have historically been used to 
estimate network traffic accurately, which is essential 
for resource allocation and security. To solve security 
and performance concerns, this study suggests using 
Temporal Convolutional Networks (TCNs) for 
improved IoT data forecasting in cloud contexts [7]. 
This proposed study is needed to enhance IoT data 
forecasting in cloud environments, improving 
resource allocation, security, and performance using 
advanced Temporal Convolutional Networks 
(TCNs). According to the report, there are other ways 
to address the safety and efficiency concerns 
associated with IoT devices in addition to fully 
disclosing how they operate and creating automatic 
servicing procedures. To solve security and 
performance challenges, the study recommends 
adopting TCNs for enhanced IoT data prediction in 
cloud environments. Improved Internet of Things 
data forecasting in cloud environments is necessary 
for more effective, secure, and equitable resource 
allocation. Internet of Things devices equipped with 
sophisticated TCNs will safeguard the Internet of 
Things in the future. 

Earlier research has looked into several deep-
learning strategies to improve IoT data forecasting 
accuracy in cloud computing settings. Wu et al [8]. 
proposed deep learning approach to minimize the 
latency of wireless communication between edge 
clouds and end users. Deep learning methods hold 
great potential for resolving such complex real-world 

problems, as they are overwhelmingly advantageous 
in a variety of IOT applications. While broadcasting 
networks are still in their early stages of 
investigation, businesses and academics are already 
quite concerned about this confluence. This research 
mainly assesses the latest advances in academia and 
the noteworthy technical use of DL in wireless 
communications advancement. By doing this, it seeks 
to address new practical and theoretical issues as well 
as basic ideas that will serve as guidelines for 
research for the next wireless network layouts and 
uses. In deep learning-driven 
wireless communications, this study highlights the 
core ideas and methods of end-to-end interaction, 
signal acknowledgment, channel estimate, and 
reduction of detecting, decoding, encoding, security, 
and secrecy. More instances of the primary 
challenges, potential benefits, and developing 
developments regarding the combination of DL 
systems in mobile communication scenarios are 
given. Takur et al. [9] recommended to gives a 
thorough rundown of how deep learning is affecting 
the Internet of Things (IoT), covering how sensor 
data is analyzed to find patterns and anticipate 
outcomes, and how this will affect various sectors 
highlighting manufacturing, healthcare,  DL 
structures, architectures, IoT connection 
terminology, IoT apps, and the functions and 
problems of DL in IoT are all covered in this survey 
report. The paper also includes quantitative results 
that show how IoT and DL may affect circumstances 
like energy use and precision farming. All things 
considered, the survey study is an invaluable tool for 
academics who want to learn more about the 
possibilities of IoT and DL in their subject. 

Several deep learning techniques have been 
studied in the past to improve IoT data predictions in 
cloud computing environments. Using DL to lower 
wireless connection latency among end users and 
outer clouds. While this approach shows promise, it 
has issues with scalability and processing in real-
time. Examined how DL affects the Internet of 
Things by examining sensor data to find trends and 
forecast results in industries like healthcare and 
industry such as [10][11]. Although thorough, this 
method frequently suffers due to elevated computing 
expenses and the requirement for huge datasets 
to train algorithms efficiently. Furthermore, even 
though they are strong, conventional DL models like 
CNNs and LSTMs may have trouble with intricate 
temporal connections and need a lot of fine-tuning. 
While several of these constraints can be addressed 
by more recent techniques like TCNs, which also 
enable improved handling of consecutive data and 
fewer training durations, additional research is still 
needed to fully optimize their use in a variety of IoT 
contexts. 
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The key contribution of the proposed study id 
following below, 

 Employing TCNs to overcome the 
drawbacks of conventional mathematical 
approaches like ARMA and ARIMA to increase the 
forecasting accuracy of IoT data in cloud computing 
settings. 

 Demonstrates how more precise forecasts 
of network activity and utilization of resources made 
possible by sophisticated DL frameworks may 
optimize the use of resources in the Internet of 
Things wireless networks. 

 Utilizes DL techniques to identify and 
neutralize possible attacks, improving both the 
safety of individual information and device integrity. 
This approach addresses safety issues in cloud and 
IoT contexts. 

 Demonstrates the advantages of the 
scalability and flexibility of online computing and 
how TCNs can effectively handle the increasing 
amount and intricate nature of IoT data. 

 Provide a thorough analysis of the most recent 
developments and uses of DL in the Internet of 
Things, involving topics such as identifying 
anomalies, signal identification, and end-to-end 
communication. This evaluation will help 
plan upcoming research and practical 
applications. 

The remainder of this study is structured as 
follows. The review of literature of this study is 
briefly explained in Part 2. Part 3 briefly discuss the 
problem statement of this study. Part 4 describe the 
methodology of the proposed study. Section 5 
discusses the result and conclusion.  This paper ends 
with concluding remarks in Part 6. 

2. LITERATURE REVIEW  

Saxena et al. [12] proposed a study that gives a 
comprehensive evaluation of machine learning 
models for predicting cloud workloads. This research 
is relevant to Deep Think IoT. The strength of DL in 
the Internet of Things because it focuses on advanced 
deep learning practices to elevate IoT applications. 
The study includes building machine learning models 
such as SVM, Random Forests, and Neural Networks 
to predict cloud resource usage accurately through 
optimization. It underscores the usage of those 
models in efficiently handling the cloud environment 
and resource management improvement. To collect 
data, the researchers turned to the cloud data centers 
workload traces of data gathering, then followed 
them with the preprocessing and feature extraction 
process. The data was partitioned in training and 
testing subsets, usually the models were trained on 
80% and tested on 20% or 70% and 30%, to assess 

and assure the performance. There are several issues 
with using quantum neural networks and explainable 
AI to solve the forecasting challenge. These solutions 
frequently include intricate optimization techniques, 
computational demands are rising overall, and open, 
equitable, and precise AI-powered resource control 
can be challenging. 

 The methodology suggested by Al-Ghuwairi et 
al. [13] uses a framework for forecasting built on the 
Facebook Prophet approach in conjunction with a 
feature selection (FS) method to evaluate its efficacy. 
We present the FS approach, an integrated feature 
selection method that combines stationary, causality, 
and anomaly detection tests with time series analytic 
methodologies. The difficulty of making false 
linkages among time series abnormalities and 
assaults is particularly addressed by this method. Our 
findings show that the number of predictors used in 
the forecasting model was significantly reduced from 
70 to 10 while metrics for performance including 
Made, DTW, MAE, MSE, and RMSE were all 
improved. Moreover, this methodology has led to 
reductions in cross-validation, prediction, and 
training durations of around 97%, 15%, and 85%, 
respectively. While the use of memory stays the 
same, utilization time has decreased dramatically, 
leading to a large reduction in resource usage. By 
using less training data and resources, the suggested 
approach decreased the total amount of input 
forecasting factors and increased forecast accuracy. 
The investigations were carried out using a sizable, 
current dataset. The tests have shown promising 
results, including increased forecast accuracy, less 
complexity, fewer input predictors, and shorter 
prediction times. Although the suggested approach 
produces respectable results, further training data and 
hyperparameter adjustment are required to maximize 
its efficacy. Subsequent research necessitates more 
complex trials, feature selection, and evaluation 
against other forecasting models. 

To solve the problems and go above the 
limitations of the earlier work, Xu et al. [14] 
introduced a deep neural networking approach 
dubbed esDNN, which is an algorithm for supervised 
learning based on efficient prediction of cloud 
workload. Initially, a sliding windows representation 
is employed to generate a multivariate data set which 
can be utilized to train the DL. To obtain accurate 
prediction, an upgraded GRU built with the greatest 
amount of recent data is then employed. In addition, 
the author presents the outcomes of authentic trails 
operating on Google and Alibaba data centers 
to illustrate the functionality of esDNA. The 
outcomes demonstrate that the esDNN is capable of 
accurately and efficiently predicting the cloud 
workload. When esDNN is contrasted with the most 
sophisticated baselines, it is included in the research 
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carried out by the cloud prediction system that 
predicts esDNN the best. by up to 15% compared to 
the other one using only GRU. Specifically, by 
reducing the number of active hosts, which lowers 
host expenditures, this study uses esDNN to auto-Sc 
to the computer. Using the strategy for supplying 
optimization in a container-based prototype 
platform like Kubernetes has a downside. 
To accommodate some edge computing apps that 
require a low response time to consumer mobility and 
position changes, earlier research suggested and put 
into practice automated unloading techniques that 
were highly complex. Achieving effective, flexible 
system management becomes further complicated 
and challenging when automated esDNN is 
implemented with the MAPE paradigm. 

Humayun [15] Research was suggested by 
Humayun [15] to identify the burgeoning tendencies 
in CC, BGD, and IoT. The integration of these 
methods and how they affect different applications in 
real-time, as well as the advantages and difficulties of 
each method, present market trends, and potential 
areas for future study with a particular emphasis on 
the healthcare industry. Additionally, the study offers 
a theoretical framework that combines CC, BGD, and 
IoT to create an IoT-focused cloud architecture. 
Since the healthcare sector is one of the most 
significant real-world applications, this study also 
covered the new real-time applications of IoT, CC, 
and BGD. Additionally, some statistics from 
reputable sources were included to demonstrate how 
these three theories are gaining market share in the 
sector. However, by using these three paradigms in 
real-world applications, certain statistics on the 
benefits and drawbacks of the merging of IoT, CC, 
and BGD may be discovered. Ultimately, this study 
has explored how the combination of each of these 
models contributes to maximizing the advantages of 
modern innovations, and we have offered a structure 
that illustrates the interrelationships among these 
three conceptions. 

To recreate printed documents using text-based 
steganography, Stergiou et al. [16] presented a 
safe architecture that makes use of big data analysis 
in cloud settings interconnected via IoT networks. 
This has been accomplished by repeatedly encoding 
text into an item after it has been transformed into 
characters. The structure ensures the confidentiality 
and integrity of data by using cutting-edge encryption 
methods to safeguard data during storage and 
transport. To evaluate and deal with the data, it 
incorporates several ML techniques, strengthening 
privacy protocols in cloud-based Internet of Things 
networks. The study's findings demonstrate that 
under certain circumstances, knowledge retrieval in 
its entirety is accomplished. Even if an item can be 
torn, data can still be partially recovered from its 

ripped sections, aiding in the content's reconstruction. 
The research is not without limits, though. The cover 
object is an RTF file. For implantation, only texts are 
utilized. Paper of the A4 size is used for printing. 
Exclusively text data is utilized with excellent 
scanners and OCR software, such as the HP Scanjet 
G4050A4 scanner with OCR Application C1957A. 
This may also be expanded to include additional 
formats including data in tables, graphics, and logos. 
The research is not without limits, though. The cover 
object is an RTF file. For implantation, only texts are 
utilized. Paper of the A4 size is used for printing. 
Exclusively text data is utilized with excellent 
scanners and OCR software, such as the HP Scanjet 
G4050A4 scanner with OCR Application C1957A. 
This may also be expanded to include additional 
formats including data in tables, graphics, and logos. 

Haji et al. [17] suggested research that examined 
the uses of IoT and cloud computing innovations to 
find complementing elements in a distinct setting 
from the primary forces behind the Future Internet. 
The future of the Internet is being drawn by the 
Internet of Things and cloud computing. New uses 
for these modern innovations are always emerging, 
providing fascinating new avenues for research as 
well as industry. We identified the primary research 
issues of relevance for each of the many fresh 
applications that were made possible by the adoption 
of the IoT and Cloud Computing paradigms. The 
Internet of Things (IoT) enables connections and 
interactions between a vast number of objects to 
share data, expertise, and data that improves the 
standards of daily life. As a substitute, cloud 
computing offers suitable, flexible, and on-demand 
network access, which enables the contribution of 
processing power that aids in the integration of 
dynamic data from different sources of data. 
However, there are too many obstacles and 
challenges in this research to apply cloud computing 
and IoT in FI. The goal of the present study is to 
provide an overview and clarification of the core 
ideas behind cloud computing and the Internet of 
Things. 

This literature review looks at a wide range of 
machine learning and deep learning approaches that 
may be used for IoT and cloud workload prediction 
jobs. It also highlights the issues, optimal solutions, 
and improvements. They address difficulties with 
computational demands, management of resources, 
and accuracy enhancements across diverse real-
world applications, and they describe the most 
beneficial ways to track the optimal use of resources 
HRM through cutting-edge machine learning, 
creative neural network algorithms, and effective 
architectures for the case of the characteristic vital 
tasks involved. 
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3. PROBLEM STATEMENT 

The IoT is made up of networked, web-connected 
devices that use sensors to collect data from their 
surroundings, analyses it, and transmit it via a 
network. Cloud computing is a type of computing 
service wherein Internet-based resources, such as 
servers and storage, are made available to clients 
based on their specific needs. Although resource 
administration and cloud workload forecasting 
technologies have advanced significantly, there are 
still many significant problems that negatively 
impact these systems' functionality. Saxena et al. [12] 
emphasized the computing requirements and 
computational complexity regarding quantum neural 
networks and explainable AI for predicting 
problems, pointing out that such approaches 
frequently call for complicated optimization 
strategies. Al-Ghuwairi et al. [[13]] noted that 
although their Facebook Prophet-based forecasting 
technique and feature selection model greatly 
shortened the training and forecasting timeframes, 
their system's efficacy is limited by the requirement 
for substantial hyperparameter tweaking and more 
training data. Moreover, the esDNN approach for 
cloud workload prediction was presented by Xu et al. 
[14], who also showed enhanced prediction accuracy 
and resource optimization. They did, however, also 
note that sophisticated offloading techniques and 
adaptability in handling system operations are 
required, especially when integrating such as 
Kubernetes. The manifestation of these flaws 
highlights how crucial it is to adopt a more flexible 
and successful tactical planning approach for IoT 
data forecast in cloud systems. To address these 
drawbacks, the proposed method makes use of TCNs 
to produce and analyse the projection structure 
through ML, thereby minimizing computational 
prerequisites, requiring less application, and 
delivering precise and effective cloud-managed 
approaches. Additionally, this will increase the 
system's administrative adaptability. Other 
disadvantages are also considered, including higher 
processing needs, intricate unloading strategies, and 
resource consumption restrictions. This approach 
will increase the method's IoT data forecasting 

effectiveness and adaptability in cloud computing 
platforms. 

4. PROPOSED TCN FOR FORECASTING 
IOT DATA IN CLOUD COMPUTING 
ENVIRONMENTS  

The proposed IoT seeks to identify Internet of 
Things data via cloud computing. To make precise 
and effective predictions, these networks 
appropriately identify time-related relationships in 
the time-series data. For many IoT applications, the 
use of TCNs in the cloud facilitates scalability, real-
time analysis, and decision-making. TCNs 
are capable of recording long-range correlations via 
causal convolutions and dilation, they are perfect for 
anticipating IoT data. Because TCNs provide 
parallelism during training and do not experience 
gradients that diminish as RNNs do, they are an 
excellent choice for effectively managing enormous 
amounts of time-series data. 

 
Fig. 1. Internet of Things  

Fig 1. depicts several facets and uses for IoT. This 
illustrates the vast and varied IoT ecosystem. The 
"IoT" is represented by the middle green hexagon, 
which shows symbols of many gadgets and 
technologies, including wearables, cloud computing, 
networking, sensors, and data analytics. 
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Fig. 2. Architectures of proposed model TCN  

 

The Fig 2 provides an outline of a simple TCN is, 
emphasizing its main elements and the organization's 
framework. The proposed frame work utilize IoT 
data as their input and preprocess it, the framework 
consists of an IoT data collecting and preliminary 
processing block, a Dilated Causal Convolution 
block, and a residual block. These effectively provide 
the projected output by employing the TCN to 
capture connections in time. 

4.1. Data Collection 

In this study, “Real-world IoT data for 
environmental analysis IOT sensor DHT for 
temperature, humidity and heat index” was collected 
from Kaggle. The dataset is an accumulation of data 
that a DHT sensor stored for almost a year. 
Investigating relationships between temperature and 
humidity and time series analytics can benefit from 
this data. Shortly, it will improve and clean the 
dataset with more thorough data [18]. 

Table I: Type Styles 

NO. _time Heat_index Humidity Temperature 

0 2022-043T21:38:00Z 26.389790 32.400000 26.800000 

1 2022-413T21:39:00Z 26.39[13]28 32.433333 26.800000 

2 2022-043T21:40:00Z 26.377855 32.100000 26.800000 

3 2022-04-T21:41:00Z 26.401618 31.916667 26.850000 

4 2022-04-T21:42:00Z 26.414282 31.716667 26.883333 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2114 

 

Table I. displays time-series data recorded from 
an IoT sensor. Each row represents a timestamp, with 
columns or Heat_index, Humidity and Temperature 
For instance, at “2022-04-13T21:38:00Z”, the heat 
index was 26.39, humidity was 32.40%, and 
temperature was 26.80°C. The data is collected at 
one-minute intervals, capturing variations in 
environmental conditions over time [19]. 

4.2. Data Pre-processing 

The process of cleaning, converting, and 
integrating raw data to get it ready for additional 
analysis or data processing steps is known as data 
preparation. To enable more efficient data mining 
and analysis, it seeks to transform redundant, noisy, 
or incomplete data into a usable format. For this 
proposed study, the data pre-processing involved 
data cleaning, splitting, and normalization. 

4.2.1. Data Cleaning: A series of crucial yet 
required steps known as "data cleaning" get the data 
ready so that accurate modelling may take place. 
You can discover neighbouring data points that 
provide estimations of gaps and replace the missing 
values using forward-filled, backward-filled, 
or interpolated imputation processes. Damaged 
columns or rows may be eliminated if imputation is 
impractical due to a large amount of missing data. 
To maintain the dataset's data credibility, misfits are 
identified using numerical methods such as the Z-
score IQR, and these variations are then either 
rectified or eliminated. Two primary activities are 
involved in data cleaning: (1) locating duplicates 
and eliminating them, and (2) discovering gaps in 
the data via in-depth inspection and some kind of 
imputing to fill in the gaps using techniques like 
forward fill or interpolation. This guarantees the 
dataset's accuracy and error freeness for the 
successful forecasting of TCN systems [20]. 

4.2.2. Data Splitting: To get reliable findings, 
data splitting for forecasting time- series involves 
dividing the data into validation, training, and test 
sets whilst preserving the chronological structure of 
the data. Periodic partitioning of the dataset 
guarantees the use of past events to forecast future 
events, hence preserving reasonability [21]. 
Typically, the data is divided into three categories 
for training purposes:  70% for training, 15% for 
validation, and 15% for testing. 

4.2.3. Data Normalization: In general, the 
process of producing clean data is known as data 
normalization. On closer inspection, nevertheless, it 
becomes clear that data normalization has two 
functions or meanings: 

a) Data normalization is the act of arranging 
data so that it looks consistent in every entry and 
document. 

b) Enhancing entry-type consistency 
facilitates lead development, cleansing, and better 
segmentation of data processes. 

𝑋ᇱ =
௑ି௑೘೔೙೔೘ೠ೘

௑೘ೌೣ೔೘ೠ೘ି௑೘೔೙೔೘ೠ೘
                                                  

(1) 

Where 𝑋  is the pixel value, 𝑋௠௜௡௜௠௨௠  is the 
image minimum pixel value, and  𝑋௠௔௫௜௠௨௠  is the 
maximum pixel value in the image. This scales the 
pixel values to a range of [0, 1] or [0, 255] depending 
on the requirement of the model [18]. 

4.2.4. Handling missing data: One of the most 
important steps in data preparation is handling 
missing data, which entails methods for filling in 
dataset gaps. Incomplete datasets are the outcome of 
missing data, which happens when an element is 
devoid of data points. Typical techniques include: 

a) Deletion : Remove any rows or columns 
that have missing values. 

b) Imputation: Use the mean, median, mode, 
or forecasts to fill in the blanks. 

The missing data handling technique was briefly 
explained in eqn (2) 

𝑥௡௘௪ =
ଵ

௡
∑ 𝑥௜

௡
௜ୀଵ                                                               (2) 

where 𝑥௡௘௪  is the imputed value and 𝑥௜  are the 
observed values [23]. 

4.3. Feature Extraction 

Fig 3. represents the feature extraction process 
within a Temporal Convolutional Network (TCN) 
model designed for forecasting IoT data. The raw IoT 
data is first passed through several 1D convolutional 
layers and a residual block to protect data. Included 
in the TCB are Dropout, ReLU, and WeightNorm. 
The data travels to the output layer via a completely 
linked structure. 
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4.3.1. Convolutional Layer: Applying 1D 
convolutions to the input data, convolutional layers 
are a kind of spatial layer. When certain features, 
including patterns and trends, are identified, it 
becomes easier to predict a model correctly since the 
time-series data's potential impacting regions of 
interest are identified. The layers' function is to 
provide the model with a sense of time so that it may 
make predictions based on the sequence's context 
[24]. 
4.3.2. Residual Block: To swiftly combine the 
next layers and skip certain system layers, 
the residual block performs residual activities. In the 
latter, gradients can move through the network 
instead of being choked, and the key information is 
also maintained thanks to the architecture. 
Remaining blocks give the structure a shortcut 
across layers, making it easier for it to understand 
complex sequences; Their justification did not center 
on achieving the standard deviation of gradient 
dispersion during training. La Giak without weight 
conditioning and with a degree of normalization 
[25]. 
4.3.3. TCB: TCB consists of three parts: The first 
one discusses TCB's feature extraction capabilities. 
In such a situation, the WeightNorm approach 
provides the opportunity to get the same weights, 
whereas the normal method would result in an 

unreliable and inefficient procedure that changes 
constantly. Rectified Linear Units, or ReLUs, 
introduce non-linearity to the data to help it absorb 
and handle complex data structures and 
relationships. Dropout is a common technique that 
helps to regulate the neural network by randomly 
removing a particular number of units during the 
training phase. Excessively dependent on a single 
neuron, dropout is unable to sufficiently generalize 
to new information [26]. 
4.3.4. Fully Connected Layer: The layer in 

which the temporal and convolutional blocks were 
used to improve the retrieved features before they 
were attached in the FCL. The system discovers how 
the features relate to one another and how to create a 
forecast based on the input by combining these 
features in a sophisticated way [28]. 
4.3.5. Output Layer: The output layer, the 

network layer also known as the output layer, is the 
portion of the network that will examine the data that 
has been handled and develop value predictions. It 
makes predictions about future data points based on 
the information the network has learned.  

 
Algorithm 1: Pseudo Code for Deep Learning-

Driven Forecasting Model for IoT Data in Cloud 
Computing Environments 

Input: IoT data sequence A 

Convolutional layer

Mapping 
calculatio

n

1*1 
Convoluti

on

+

Residual 
Block

x₁ 

x₂ 

xₙ
₋₁   

.

.

. 

xₙ 

Dense 
Layer

Output 
Layer

Dropout

ReLU

Weight 
Normalization

Dilated Casual 
Conv

ReLU

Weight 
Normalization

Dropout

Dilated Casual 
Conv

1D 
Conv

+ 

Temporal Convolutional Block

Fully 
Connected 

layer

 

Fig. 3. Architectures of proposed model TCN 
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 Output Forecasted IoT data sequence B 

Load the dataset 

Normalize the IoT data sequence A 

Split the data into training and testing sets // Data 
Preprocessing 

Initialize TCN model with specified 
hyperparameters 

Layers of the TCN 

Dilated 1-D Convolutional Layers 

Skip Connections  

Batch Normalization  

Parametric ReLU (PReLU) activation  

Deepwise Convolutional Layers // Model 
Initialization 

for epoch in range(num_epochs) 

for each batch in training data 

Forward pass through the TCN layers     

Compute loss 

Backward pass to compute gradients // Model 
Training 

Use the trained model to predict on the testing set 

Calculate performance metrics // Model Evaluation 

Use the trained TCN model to forecast future IoT 
data points // Forecasting 

Output the forecasted IoT data sequence B // 
Output 

5. RESULLT AND DISCUSSION 

The outcomes of the TCN-based models for 
forecasting will be presented and analyzed in the 
study's results section. This part will contain an 
analysis of the TCN approach's performance on many 
IoT datasets, a thorough comparison with other 
cutting-edge techniques, and a computational 
efficiency assessment. 

 
Fig. 4. Testing and Training Accutacy 

Figure 4 shows how testing and training accuracy 
increased dramatically across epochs. Both 
accuracies started at zero and grew gradually; by the 
100th period, training accuracy had reached 0.99 and 
the accuracy of testing had reached 0.95. This 
illustrates how well the model learns and how well it 
generalizes, guaranteeing reliable results in practical 
settings. By the 100th epoch, the training accuracy of 
the suggested model had reached 0.99, while the 
testing accuracy had reached 0.95, indicating strong 
learning and generalization. A consistent reduction in 
testing and training losses signifies efficient learning, 
low excessive fitting, and robust efficiency, 
guaranteeing accurate and dependable forecasting in 
real-world scenarios. 

 
Fig. 5. Testing and Training Loss 

The testing and training loss for a deep learning 
model throughout epochs is depicted in the figure 5. 
Since both losses are excessively high at first, the 
model has not yet been trained. This complicates the 
process of learning about weights for us. Successful 
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learning is shown by rapid declines in the early 
epochs. Losses are the same after 20 epochs of loss. 
Conversely, the loss from training is decreasing over 
time, with a few small oscillations, but it is also 
growing in tandem with the testing loss, which is 
falling, meaning the model is grasping the general 
notion of the right direction it has to travel. 

    

                          (a)                                             (b)  

Fig. 6. Training and  Validity (a) Accuracy, (b) Loss 

In fig 6, the graphs show the model’s learning 
process. The training loss decreases while the 
accuracy increases, indicating improvement. 
Validation loss and accuracy fluctuate more, 
suggesting variability in performance on unseen data. 
If validation loss rises or accuracy plateaus 
significantly, it may indicate overfitting, where the 
model learns training data well but generalizes poorly 
to new data. 

5.1. Performance Evaluation 

Usually, Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), Mean Absolute 
Percentage Error (MAPE), and Coefficient 
Determination are used as performance measures in 
this study (𝑅ଶ). 

5.1.1. MAE: The median magnitude of errors in 
forecasting, or the discrepancy between predicted 
and real outcomes, is determined using the mean 
absolute mistake formula [29]. The MAE of the 
proposed study is explained in eqn (3), 

𝑀𝐴𝐸 =
ଵ

௡
∑ |𝑦ᵢ −௡

௜ୀଵ 𝑦෥i|                                                     
(3) 

5.1.2. RMSE: By computing the inverse of the 
root mean squared errors, RMSE, in contrast to 
MAE, draws attention to more significant mistakes 
[30].  The RMSE of the proposed study is 
explained in eqn (4), 

 

𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑ (𝑦ᵢ − 𝑦෥i)ଶ௡

௜ୀଵ                                               

(4) 

5.1.3. MAPE: The mean absolute percentage 
error, or MAPE, is an equation that shows how 
accurate a forecasting tool is by calculating the real 
mistake as a proportion of the actual data The 
MAPE of the proposed study is explained in eqn 
(5), 

𝑀𝐴𝑃𝐸 =
ଵ

௡
∑ |

௬ᵢି௬ᵢ෥

௬ᵢ

௡
௜ୀଵ | × 10                                            

(5) 

5.1.4. R-Squared: It displays the proportion of the 
dependent variable's volatility that can be forecast 
using the independent variables [31]. This 
formula is used to calculate it is computed with the 
following formula of eqn (6), 

             𝑅ଶ = 1 −
∑ (௬ᵢି௬ᵢ෥ )మ𝒏

𝒊ష𝟏

∑ (௬ᵢି௬෤)మ𝒏
𝒊ష𝟏

                                         

(6) 

where 𝑦ᵢ  is the actual value, 𝑦෤ is the 
predicted value, and 𝑦෥i  is the mean of the actual 
values. 

Table II: Performance Evaluation 

Metrics Percentage ((%) 

MAE 98.7 

RMSE 97.6 

MAPE 98.0 

R2 97.7 

 

Table II illustrate the performance indicators of 
the model according to the given percentage. The 
average size of the mistakes is revealed by the 98.7% 
MAE (Mean Absolute Error). It results in a mismatch 
between the expected and actual numbers, while the 
97.6% RMSE suggests a significant degree of 
prediction error unreliability. The average percentage 
error of the MAPE forecasts is 98%, as indicated 
by 98.0%. The R2 value of 97.7%, demonstrates a 
strong correlation between the expected and real 
values, indicating that the framework describes 
97.7% of the variance in the data throughout the 
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study of non-specialists.

 

Fig. 7. Graphical represent of Performance Evaluation 

Fig 7. explains the measurements are displayed as 
vertical bars on the bar chart, each of which 
represents a percentage. Because of the significant 
mistakes and variations in the forecasts, MAE, 
RMSE, and MAPE indicators show that they are 
high. Conversely, the R2 bar is nearly non-existent, 
indicating a good fit between the model and the 
primary explanation power. The difference between 
this set of data and the beautiful graph shows that, 
despite the model having a high coefficient of 
determination and being quite precise, it is affected 
by very real prediction errors caused by the MAE, 
RMSE, and MAPE, indicating the need for further 
work to improve the accuracy of the forecasts. 

Table III: Performance Evaluation

 

 

 

 

 

 

 

 

 

 

 

 

Performance metrics for the following models are 
compared in the table II: CNN [32], CNN-LSTM 
[33], GRU-LSTM [34], RNN [34], LSTM [35], 
and TCN (proposed). The TCN model has the best 

R2 and the highest values of MAE, RMSE, and 
MAPE showing that it adequately clarifies the 
variation in the data even with greater error rates. 

Model MAE (%) RMSE (%) MAPE (%) 𝑹𝟐 (%) 

RNN 75 80 93.5 88 

LSTM 97.9 97.0 97 95 

GRU-LSTM 90.9 83.3 96 93 

CNN 66.7 41.2 95 90 

CNN-LSTM 80 74.8 97.5 97 

TCN (proposed) 98.7 97.6 98.0 97.7 



 Journal of Theoretical and Applied Information Technology 
31st March 2025. Vol.103. No.6 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2119 

 

Fig. 8. TCN Comparison graph with Existing Models 

In fig 8, the graph compares seven models across 
four metrics: MAE, RMSE, MAPE, and Metric4. 
RNN shows moderate performance, while LSTM and 
GRULSTM improve notably, particularly in MAE 
and RMSE. CNN excels in MAE and RMSE, and 
CNN+LSTM combines their strengths, performing 

well across all metrics. The proposed TCN model 
outperforms all others, with the lowest values in 
MAE, RMSE, and MAPE, reflecting higher accuracy 
and efficiency. This visual comparison highlights 
TCN’s superiority and aids in identifying the most 
effective model overall.

5.2. Discussion 

According to the study, because time-series 
prediction operations properly capture temporal 
patterns and long-term correlations, all aspects of IoT 
development will be completed. Be aware that neural 
networks are used in over 60% of situations on 
average by IoT ML algorithm and Artificial 
hardware. Because TCNs can store long-term 
associations and modify sequence data well, they are 
very beneficial for IoT data prediction. Unlike 
conventional RNNs, TCNs use convolutional layers 
to deal with input in tandem; as a result, they can 
adapt more flexibly and accelerate learning to a 
certain degree. One special aspect of expanded TCN 
is that it allows learning across a large number of 
periods by using dilations, which don't add to the 
computational difficulty [36]. This is especially 
important for data from the Internet of Things since 
the data source frequently deals with repeating events 
and long-term connections. Additionally, they have a 
fixed-size responsive field, meaning that every 
characteristic in the input sequence makes an 
identical contribution to the output forecasts. This 
means that they improve predicting accuracy without 
changing. Because the data that is received by the 
gadget is constantly changing and requires prompt, 

immediate evaluation, TCNs are a dependable 
instrument for data presentation in the Internet of 
Things. Data quality is still another important 
consideration. The majority of the data in the 
IoT data collection is distorted, missing, or sampled 
sporadically. This might make preprocessing the 
method of forecasting more challenging and lower 
the precision of the prediction. While confronting the 
loss of data and extreme/excessive data when the data 
is dispersed and variable is difficult, it is crucial 
[37][38]. The granularity of the framework is one 
issue that might result in erroneous predictions of the 
model. Even while TCNs may eventually understand 
complicated trends, the decision hierarchy of a model 
like that may appear a little erratic and confusing. The 
"black-box" DL models might be the cause of 
problems in situations where comprehension and data 
are critical. Moreover, one of TCNs' limitations on 
capacity is that training them requires a significant 
number of labelled datasets.  
IoT data labelling is a common practice, but it 
requires a significant investment of resources and 
time [39]. Data labelling is a labor-intensive and 
resource-intensive activity. Without annotated data, 
it can be challenging to develop and refine reliable 
forecasting models. Making forecasts on IoT data 
using TCNs and cloud computing technologies is an 
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enigma since there are benefits and drawbacks. 
Another benefit of the cloud is its scalability and 
flexibility, which makes it feasible to store and 
handle enormous amounts of data from the IoT 
without having to shell out a lot of money for the 
necessary equipment upfront [40]. TCNs have high 
computational demands, but the cloud can assist them 
by providing powerful GPUs and TPUs that 
accelerate model inference and training. Moreover, 
cloud solutions provide real-time data distribution 
and continuous integration, both of which are 
essential for Internet of Things devices given the 
need for accurate and timely forecasting. Since TCN 
models may be rapidly modified and updated on the 
cloud, their predictions need to be sufficiently 
flexible to take into account the most recent 
circumstances and data. 

6. CONCLUSION 

The research projects demonstrated how TCNs 
improve IoT data forecasting precision in cloud 
computing scenarios. Furthermore, TCNs use DL to 
solve specialized statistical techniques with 
restrictions, such as ARMA and ARIMA, which 
enable the capture of precise time series. A Python 
platform was used to conduct the TCN investigation, 
and the findings produced [13] Windows. The 
experiment can also demonstrate how TCNs can 
improve the monitoring system by spotting threats 
and behaviors and by increasing resource utilization. 
The results showed that the mean absolute errors (M-
MAE) of the TCNs were 98.7%, the root mean 
squares error (RMS-ME) was 97.6%, the M-
APE was 98.0%, and the R^2 was 97.7%.  
However, even if it may be inferred that the error 
measurements are realistically greater, a high R^2 
value is still a reliable sign of a well-fitting model. 
The construction of a new AI predictor and 
equipment for multiple initiatives via the use of state-
of-the-art AI in the study and the incorporation of 
huge datasets with labels in the study were discussed 
complexities. The paper goes on to emphasize the 
significance of cloud platforms, which aid in the 
efficient administration of enormous amounts of data 
in addition to offering flexibility and scalability. The 
results and discussion effectively fulfill the study's 
key contributions by demonstrating the advantages of 
TCNs in handling IoT data forecasting and resource 
optimization. The TCN model shows superior 
performance in training and testing accuracy (0.99 
and 0.95, respectively), which illustrates strong 
learning and generalization. The consistent reduction 
in losses and minimal overfitting further affirm its 
reliability. Performance evaluation metrics (MAE, 
RMSE, MAPE, and R²) highlight that the TCN model 
surpasses traditional models like RNN, LSTM, and 
CNN, achieving high accuracy in network activity 
prediction and resource utilization. Moreover, its 

strong results in MAE, RMSE, and MAPE emphasize 
TCN’s effectiveness in mitigating errors and making 
precise forecasts, which is crucial for improving IoT 
network security and scalability. This validation of 
TCN’s performance establishes it as a robust tool for 
future applications in anomaly detection and resource 
management in IoT environments. The future work 
of this study includes refining the TCN architecture 
to enhance forecasting accuracy, integrating real-
time IoT data processing, and ensuring scalability for 
larger datasets and diverse IoT environments. It also 
involves adding advanced cybersecurity measures, 
comparing TCN with emerging models like 
transformers, and exploring energy-efficient 
solutions for large-scale forecasting. Additionally, 
multimodal data fusion will be investigated to 
improve model robustness across various IoT tasks. 
These advancements will push the boundaries of IoT 
data forecasting and resource optimization, making 
TCN-driven solutions more accurate, adaptable, and 
sustainable. 
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