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ABSTRACT 

 
Data segmentation using mixture regression models gained lot of momentum due to their ready 
applicability in market analytics, business analytics, financial analytics, supply chain analytics , Human 
Resource  analytics etc. In regression analysis it is customary to assume that error term follows a Gaussian 
distribution. Gaussian distribution has several drawbacks such as being mesokurtic and the model may not 
serve well for all types of data. Hence, in this paper we develop data segmentation method using mixture of 
regression models with Generalized Gaussian Distributed (GGD) errors. The GGD includes leptokurtic, 
platykurtic and Gaussian distribution as particular cases. The model parameters are estimated using 
Expectation Maximization (EM) algorithm. The initialization of the parameters is done by using k-means 
algorithm. The data segmentation algorithm is derived using component maximum likelihood under 
Bayesian framework. The utility of the proposed algorithm is demonstrated with market segmentation. The 
performance of the algorithm is evaluated by computing   segmentation performance metrics such as 
accuracy, misclassification rate, precision. It is observed that this method performs much better than the 
earlier data segmentation methods having Gaussian distributed errors for the data sets having leptokurtic 
and platykurtic response variables. 
Keywords:  Segmentation Methods, Regression Analysis, Generalized Gaussian distribution, Market 

Analytics, Expectation and Maximization Algorithm.  
 

1.   INTRODUCTION 

Clusterwise Linear Regression (CLR) is a 
technique based on the combination of clustering 
and linear regression.  In the literature it is also 
referred to as regression clustering, switching 
regression. The objective of CLR is to find a given 
number of linear functions each approximating a 
subset of the whole data set by minimizing the 
overall sum of regression errors. CLR can be 
considered as extension of linear regression. One 
linear function is used to fit the whole data set in 
the linear regression where as CLR approximates 
the data using more than one linear functions.  CLR 
has been applied to several application domains 
including customer benefit segmentation [9], 
market segmentation [10], modeling of the metal 
inert gas welding process [11], pavement 

management systems [12], rain fall prediction [13] 
and PM10 prediction [14].   

Wayne S. Desarbo et.al [1] presented a 
conditional mixture, maximum likelihood 
methodology for performing clusterwise linear 
regression. This methodology estimates separate 
regression functions and membership in K clusters 
or groups simultaneously.  Qiang Long et.al [2] 
described various methods to solve clusterwise 
linear regression problems.  Ye Chow Kuang et.al 
[15] presented the first examination of CLR 
algorithms developed over the past two decades 
through randomized large-sample testing.  Yifan 
Zhang et.al [16] proposed a new generalized 
ordinal Bayesian finite mixture regression model 
for market segmentation which allows simultaneous 
variable selection within each derived segment and 
recovers segment profiling using concomintant 
variables. Ting Li et. Al [17] extended the classical 
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clusterwise linear regression to incorporate multiple 
functional predictors by representing the functional 
coefficients in terms of a functional principal 
component basis.  Kaisa Joki et. Al [18] studied a 
model and solved the CLR problem by using 
support vector machines for regression to 
approximate each cluster.  Paul W. Murray et. Al 
[19] applied data mining methods to identify 
behavior patterns in historical noisy delivery data in 
market segmentation.  Cathy W.S. Chen et. Al [20] 
studied a Bayesian approach to simultaneously 
classify observations drawn from a finite mixture 
and estimate regression model parameters. Graca 
Trinadade et.al [22] introduced a new application of 
the Seqential Quadratic Programming algorithm to 
perform clustering on aggregate panel data with 
application to market segmentation study.  

The concept of market segmentation 
emerged in marketing. Market Segmentation is 
defined as representing a heterogeneous market as a 
set of homogeneous submarkets. Segmentation 
involves creating groups of customers who show 
similar characteristics and can be targeted with 
customized strategies in context of product markets. 
Market segmentation is the process of segmenting a 
market into distinct groups of customers who share 
similar characteristics, needs, or behaviors. This 
approach enables the companies to customize their 
business strategies for each segment to improve the 
company sales and profits. [25]. Philippe 
Masset[24] applied  market segmentation to wine 
data to predict the price of fine wines over their life 
cycle using regression approach. Tuma, M et.al 
[26] reviewed finite mixture models in market 
segmentation. Juan Prieto-Rodriguez et.al [27] 
investigated whether the null hypothesis of a unique 
segment of prices in the high end of art market can 
be rejected using Finite Mixture Model (FMM). 
Aytaç B et.al [28] considered the two regression-
based techniques used to detect herding among 
investors. Herding is described as the tendency of 
investors to imitate others by suppressing their own 
beliefs. They also introduced an approach based on 
the autocorrelation of returns and tested all models 
on a unique dataset of wine prices. Renneboog L 
et.al[29] examined geographical segmentation and 
its effects on price formation and returns in the 
international art auction market. Arouri M.E et.al 
[30] presented a theoretical Capital Asset Pricing 
Model (CAPM) to price assets in different market 
structures and analyzed whether when markets are 
partially segmented using the local or the global 
CAPM yields significant errors in the estimation of 
the cost of capital for a sample of firms from 
developed and emerging countries. Ashish Sood 

et.al [31] studied a model for predicting market 
penetration of new products through functional 
regression. Carsten Hahn et.al [32] developed an 
approach for capturing unobserved customer 
heterogeneity in structural equation modeling by 
using a modified finite-mixture distribution 
approach based on partial least squares.  Di Mari et. 
al [33] developed a two step approach to build 
penalized clusterwise linear regression modeling.  
Clusterwise linear regression models are used to 
build efficient strategic decision making models in 
the field of market analytics.  

In all these papers, it was assumed that 
feature vector of the segmentation data set follows 
Gaussain distribution and the whole data set is 
represented by mixture of Gaussian distribution.  
The major drawback of the Gaussian model is, it 
assumes feature vector is mesokurtic. But in some 
data sets   the feature vector associated with data 
may not have mesokurtic distribution. Hence, to 
build accurate modeling, it is necessary to 
generalize the Gaussian model. One of the 
generalization is including platy, lepty and meso 
kuritc distributions. Generalized Gaussian 
distribution is capable of describing platy, lepty and 
meso kurtic distributions. Very little work has been 
reported in the literature regarding data 
segmentation using mixture regression models with 
Generalized Gaussian Distributed errors. To 
develop efficient data segmentation, in this paper 
an algorithm is developed assuming that the feature 
vector associated with the data set follows a 
multivariate generalized Gaussian mixture model 
and proposed method is applied super market 
dataset [21] to segment customers based on product 
category into low profit, medium profit and high 
profit margin contributed customers to the super 
market store.  

The rest of the paper is presented as 
follows: Section 2 is concerned with regression 
model with Generalized Gaussian Mixture Model. 
Section 3 describes the K-Means algorithm for 
identifying the number of clusters using regression 
model. Section 4 deals with the initialization of the 
model parameters. Section 5 provides the 
estimation of model parameters using Expectation 
and Maximization (EM) algorithm. Section 6 
describes the segmentation algorithm for regression 
models with Generalized Gaussian Mixture model. 
Section 7 deals with experimental results and 
performance evaluation of the model. Section 8 
deals with conclusions.  
In this paper we follow the following notations: 
𝑖 = 1,2,3, … … . 𝐼 are subjects / observations/ data 
points. 
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  𝑗 = 1,2,3, … … . . 𝐽 are independent variables. 
  𝑌 = the value of the dependent variable for 
subject / observation. 
𝑥 = the value of the jth independent variable. 
𝑘 = 1,2, … … . 𝐾 Clusters. 
 
2. REGRESSION MODEL WITH 

GENERALIZED GAUSSIAN MIXTURE 
MODEL 

                  
The mixture of regression models are 

composed using the conditional mixture and 
maximum likelihood methodology. The CLR 
models based on the maximum likelihood 
methodology are also called as finite mixture 
models for regression problems and finite mixture 
of linear regression [6]. Finite mixture models for 
regression were discussed in [7]. In the 1990s, these 
models were extended by mixing standard linear 
regression models and generalized linear models 
[8]. 
   In the mixture model method, it is 
assumed that the data points (observations) arise 
from k distinct random clusters [1]. Each of the 
clusters is modeled by specific density function. Let 
z be a random variable and P(z, 𝜑𝑘)be a probability 
density function for each k=1,2,.. K. Then the 
variable z is said to arise from a finite mixture 
model if it has a density function in the following 
represented form.                       ℎ(𝑧, 𝜑) =
∑ 𝛼  𝑃(𝑧, 𝜑𝑘)   

ୀଵ 𝛼  ≥ 0,  ∑ 𝛼 = 1
ୀଵ                                                     

(2.1) 
where 𝜑𝑘 is the component parameter vector for 
the density function and 𝛼 is the mixing 
proportion of the component k, k= 1,2, …. K. 
The density function P can be used to formulate the 
relationship between the independent and 
dependent variables in the regression. Let X is 
independent feature vector, Y is response 
(dependent) feature vector of a dataset D and 
assume that Y is distributed as a finite mixture of 
conditional Generalized Gaussian densities.  
The probability density function (pdf) of the 
Generalized Gaussian Distribution (GGD) with 
mean𝜇 = 0 is defined as follows. 
             𝑓(𝑥, 𝜃) =
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     , 𝜎 is 

standard deviation, 𝜃 is shape parameter and Γ(. ) is 
Gamma function.  Figure 2.1 represents the 
frequency curve of Generalized Gaussian 
Distribution with different shape parameters. 

 Figure 2.1: Generalized Gaussian Distributions With 
Different Shape Parameters 

 
The finite mixture regression model with k 
components is   
  ℎ(𝑌|𝑋, 𝜑) = ∑ 𝛼 𝑃(𝑌|𝑋, 𝜑𝑘)   

ୀଵ   𝛼  ≥ 0,  
∑ 𝛼 = 1

ୀଵ                                                  (2.3) 
where, 𝑃(𝑌|𝑋, 𝜑𝑘) is the probability density 
function of the kth component and 𝜑 is the vector 
of all parameters. Then CLR is modeled as a finite 
mixture or sum of conditional univariate densities 
as 
      Yi~∑ 𝛼  𝑃𝑖𝑗(𝑌𝑖|𝑋, 𝜑𝑘)   

ୀଵ                      (2.4)  
Where, Pij are univariate Generalized Gaussian 
densities. The model becomes a mixture of standard 
linear regression model. If Pij are members of the 
exponential family then we get a mixture of 
generalized linear regression models [9]. 
A mixture model based approach to regression 
analysis assumes that the observations of a data set 
originate from various groups with unknown 
segment affiliation. 
The mixture of linear regression is defined as 
follows. 
𝑌 = ∑ 𝛼𝑓(𝑌|𝜑) + 𝜖 , 𝑖 = 1,2,3, . 𝐼 

ୀଵ        (2.5) 
𝑌  is the dependent variable , 𝛼 is the relative size 
(mixture proportion) of segment k. where 
∑ 𝛼 = 1

ୀଵ    and 𝛼 > 0 ∀ 𝑘 = 1,2, … … . 𝐾 
Now 𝑌   is distributed as a finite sum or mixture of 
conditional univariate Generalized Gaussian 
Distribution (GGD). 
   𝑌 =  ∑ 𝛼𝑓൫𝑦ห𝑥 , 𝜎, 𝛽൯

ୀଵ    Where 𝛽  is 
regression coefficient. 
 𝑌 =

∑ 𝛼
ఏೖ(ఏೖ)

ଶఙೖ
𝑒

ି(ఏೖ)൬
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3. K-MEANS ALGORITHM FOR 
IDENTIFYING THE NUMBER OF 
CLUSTERS USING REGRESSION 
MODEL 

 
The K-means algorithm for obtaining the 

number of clusters is as follows [23] 
          Step 1:  Identify the value of k initially  
          Step 2:  Initialize k cluster centriods. 
          Step 3:  Determine the cluster 
memberships of N observations by assigning them 
to the nearest  cluster centroid. 
         Step 4:  Re estimate the k cluster 
centroids by assuming that the membership found 
above is correct. 
         Steps 5:  If none of the N observations 
changed membership in the last iteration, then exit;   
else go to step 3 
 
4. INITIALIZATION OF MODEL 
PARAMETERS 

 
The process of identifying the initial 

estimates of the parametric set for the given linear 
regression model based on GGD, one need to 
update the parameters using EM algorithm. The 
main constraint in the execution of EM algorithm is 
that it is totally dependent on the number of clusters 
and initial estimates of the model parameters [3]. 
The initial estimates are obtained by using method 
of moments and ordinary least square method. 

The updated equations are to be calculated 
for 𝛼 (the mixing parameter), 𝜎(Standard 
Deviation) and 𝛽 (Regression Coefficient). Since 
the process is unsupervised, the initial knowledge 
about the parameters within the data is highly 
unpredictable. 

 
5. ESTIMATION OF THE MODEL 
PARAMETERS USING EM ALGORITHM 

 
 In this section, we consider estimation of 

model parameters using Expectation Maximization 
(EM) algorithm that maximizes the likelihood 
function of the model [3].  Given a sample of I 
independent subjects / observations we can form 
the likelihood expression 
  𝐿 =

∏ ∑ 𝛼

ୀଵ

ఏೖ(ఏೖ)

ଶఙೖ
𝑒

ି(ఏೖ)൬
หೊష൫ഁబశഁభೖೣభశഁమೖೣమశ …….శഁೖೣ൯ห
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ഇೖ

൩ூ
ୀଵ      

                                                                           (5.1)                       
        where 0 ≤ 𝛼 ≤ 1, ∑ 𝛼 = 1, 𝜎 > 0

ୀଵ  

  The log likelihood function is  ln 𝐿 =

 ∑ 𝑙𝑛 ∑ 𝛼

ୀଵ

ఏೖ(ఏೖ)

ଶఙೖ
𝑒

ି(ఏೖ)൬
หೊష൫ഁబశഁభೖೣభశഁమೖೣమశ …….శഁೖೣ൯ห

ೖ
൰

ഇೖ

൩ூ
ୀଵ      

                                                                       (5.2) 
To estimate the values of 

parameters 𝛼 , 𝜎, 𝛽 , EM algorithm comprising 
of two steps i.e. Expectation (E) step and 
Maximization (M) step is utilized. The primary step 
in the EM algorithm needs the estimation of initial 
estimates from a given dataset. The refined 
estimates of parameters 𝛼 , 𝜎 , 𝛽are obtained by 
maximizing the expected value likelihood or log 
likelihood. The procedure given by [4] is utilized to 
estimate the shape parameter 𝜃. 

The idea of the EM algorithm is then to 
iteratively calculate the maximum likelihood 
estimate of the unknown parameter set 𝜑 =

൫𝛼  , 𝜎 , 𝛽൯.  The first step of EM algorithm is to 
estimate initial model parameters 𝛼  , 𝜎, 𝛽 from a 
given observations of data. The second step is to 
maximize Q(𝜑, 𝜑 (1) ) [5]. Using the steps in the EM 
algorithm, we get the following updated equations 
for the model parameters.  

for 𝜶𝒌 :  

 𝛼=
∑ ഢೖෞ

సభ

ூ
                                      (5.3)              

for𝜷𝒋𝒌: 
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ୀଵ 𝜃 𝑠𝑔𝑛 ቀ𝑌 − ൫𝛽 +

∑ 𝛽𝑥
ୀூ,ୀ,ୀ
ୀଵ,ୀଵ,ୀଵ ൯ቁ ห𝑌 − ൫𝛽 +

∑ 𝛽𝑥
ୀூ,ୀ,ୀ
ୀଵ,ୀଵ,ୀଵ ൯ห

ఏೖିଵ
𝑥=0                  (5.4) 

 
As a special case if 𝜃 = 2 we have Gaussian 
distribution. Then for 𝜃 = 2  we have 

 𝑝పෞ

ூ

ୀଵ

ቮ𝑌 − ቌ𝛽 +  𝛽𝑥

ୀூ,ୀ,ୀ
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ഢೖෞ

ఙೖ
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As a special case if 𝜃 = 2 we have Gaussian 
distribution. Then for 𝜃 = 2  we have 
 

σ୩ =

 ൭
∑ ഢೖෞ ቀቚିቀఉబା∑ ఉೕೖ௫ೕ

స,ೕస,ೖస಼
సభ,ೕసభ,ೖసభ

ቁቚቁ
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సభ

∑ ഢೖෞ
సభ

൱

భ

మ

       (5.6) 

Solving the equations (5.3),(5.4) and (5.5) 
simultaneously and iteratively , the refined 
estimates of the model parameters  𝛼  , 𝜎, 𝛽 can 
be obtained. 
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Once estimates of 𝛼 , 𝜎, 𝛽are obtained, 
one can assign each observation i to each cluster k 
via the estimated posterior probability using Bayes 
rule. 

𝑝పෞ =

ఈೖෞ 
ೖቆ𝑌 ቤ𝑥 , 𝛼ෞ, 𝛽ప

 ቇ

∑ ఈೖෞ 
ೖቆ𝑌 ቤ𝑥 , 𝛼ෞ, 𝛽ప

 ቇ

಼
ೖసభ

      (5.7)                                                                                                           

Assign observation i to cluster k iff 𝑝పෞ > 𝑝పෞ∀ 𝑙 ≠
𝑘 = 1,2, … … 𝐾. 
 
5.1 Expectation – Maximization Algorithm for 
GGD Error Regression Model 
 Step1:  Select the initial parameters  
 Step 2:  Obtain revised estimates of the parameters  
𝛼 , 𝜎, 𝛽   using equations (5.3), (5.4) , (5.5) and 
(5.6). 
 Step 3:  Repeat the process until the parameters do 
not change or the difference in successive  
 computations is within the given threshold value.   
Step 4:  Write the final estimates of parameters  
𝛼 , 𝜎, 𝛽 
 
6. SEGMENTATION ALGORITHM FOR 

REGRESSION MODELS WITH 
GENERALIZED GAUSSIAN MIXTURE 
MODEL 

   In this section, the segmentation 
algorithm for regression models with Generalized 
Gaussian Distribution is presented for identifying 
the new data tuple with one of the available 
clusters. The steps involved in this algorithm are as 
follows: 
  Step 1: Draw the scatter surface diagram for the 
training data set in order to obtain the initial 
number of clusters by using the k-means algorithm. 
  Step 2:  Obtain initial estimates of the model 
parameters. 
  Step 3:  Obtain the refined estimates of the model 
parameters using the updated equations of the EM  
algorithm given in section 4.  
 Step 4:  For a new data point, compute the 
conditional likelihood with the model parameters of 
the kth class and assign it to the segment for which 
the sample conditional likelihood is maximum. i.e.  
 the classification is C=argmaxkP(Dt│Ck). 
where C is the maximum likelihood class and Dt is    
the new  data point. 
 
7. EXPERIMENTAL RESULTS AND 

PERFORMANCE EVALUATION 
 
In this section, the utility of the developed 

algorithm for segmenting marketing data is 
demonstrated. The dataset was collected from 

Kaggle dataset repository [21]. This dataset has 21 
features among them category (category of the 
product ordered), Sales (Sales of the Product), 
Quantity (Quantity of the Product) and Profit 
(Profit/Loss incurred) are considered as relevant 
features for this study. Here there are three groups 
of product categories like Office Supplies, 
Furniture and Technology. After considering super 
market dataset, it was understood that two features 
sales(X1) and quantity(X2) are most important for 
determining the profit(Y) margins such as low 
profit margin, medium profit margin and high profit 
margin of the store.  Here Office Supplies category 
products falls under low profit margin, Furniture 
category products comes under medium profit 
margin and Technology category products under 
high profit margin. To identify the margins of the 
profit, it is required to segment the data set into 
various clusters based on sales and quantity 
variables. The number of clusters in the super 
market data is not known and requires unsupervised 
learning algorithms to identify various margins of 
profit. Hence a study is carried out by collecting a 
sample of 80 data points with sales and quantity 
variables of super market data set.  
 Using k-means algorithm, the number of 
profit margins according to sales and quantity is 
determined. For implementing the k-means 
algorithm, the initial number of clusters is required. 
Hence, using the training data, the sample data 
points are plotted in scatter responses through a 3-
dimensional graph shown in figure 7.1. 

 
Figure 7.1: Scatter plot of data points 

Using the initialization of parameters 
discussed in section 4, the initial estimates of 
parameters 𝛼  , 𝜎 , 𝛽 are obtained for 3 profit 
margins such that low profit margin corresponds to 
cluster 1, medium profit margin corresponds to 
cluster 2 and high profit margin corresponds to 
cluster 3. The computed initial estimates of the 
model parameters are presented in Table 7.1 
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Table 7.1:  Initial Estimates Of The Model Parameters 

Parameter Cluster 1( 
Low Profit 
Margin)  

Cluster 
2 ( 
Medium 
Profit 
Margin) 

Cluster 
3(High 
Profit 
Margin) 

𝛼 0.9000 0.0500 0.0500 
𝜎 313.5360 932.730

5 
12895.55
78 

𝛽  Intercept 17.0813 55.4252 193.5787 
Coefficient 1 0.1270 0.0504 0.2853 
Coefficient 2 -1.6845 -2.6176 -63.5386 
Using these initial estimates and the EM algorithm, 
the refined estimates of parameters for each cluster 
are obtained and presented in Table 7.2. 
 

Table 7.2: Final Estimates Of The Model Parameters 

Parameter Cluster 
1( Low 
Profit 
Margin)  

Cluster 2 
( 
Medium 
Profit 
Margin) 

Cluster 
3(High 
Profit 
Margin) 

𝛼 0.7277 0.2052 0.0671 
𝜎 52.7779 190.2404 2426.3718 

𝛽  Intercept 10.4305 64.2997 230.1186 
Coefficient 1 0.0863 0.0853 0.2934 
Coefficient 2 -0.5878 -8.3996 -63.2065 
 
With these final estimates, the 3 clusters of profit 
margins are estimated as  
Cluster 1: Office Supplies Product category (low 
profit margin) 
The estimated regression equation is: 
 Y= 10.4305 + 0.0863X1 – 0.5878X2 
Here X1 represents sales, X2 represents quantity and 
Y represents profit 
Cluster 2: Furniture Product Category (medium 
profit margin) 
The estimated regression equation is: 
Y= 64.2997 + 0.0853X1 – 8.3996X2 
Cluster 3: Technology Product Category (high 
profit margin) 
The estimated regression equation is: 
Y= 230.1186 + 0.2934X1 – 63.2065X2 

. Therefore, the model characterizes the 
whole data set is a three-component mixture of 
Generalized Gaussian Mixture Model (GGMM) 
whose component weights are: 𝛼ଵ =0.7277, 
𝛼ଶ=0.2052, 𝛼ଷ=0.0671, respectively.  For 
evaluating the developed algorithm, the test data 
consisting of 80 data points is considered. The 
developed unsupervised algorithm using GGMM 
identified 58 data points as low profit margin, 16 

data points as medium profit margin and 6 data 
points as high profit margin. For evaluating the 
performance of the proposed algorithm, accuracy, 
misclassification rate, precision, recall and F-
measure are used. For the proposed unsupervised 
learning algorithm of GGMM, the performance 
measures for each cluster are computed and 
presented in Table 7.3. 
 

Table 7.3: Performance Measures Of The Mixture Of 
GGMM Classifier 

 True 
Positive 
Rate(TP
R) 
Recall 

Precisi
on 

False 
Discov
ery 
Rate 

F-
Measu
re 

Cluster 1 0.9682 0.9839 0.0317 0.9760 
Cluster 2 0.9166 0.7857 0.0833 0.8461 
Cluster 3 0.8000 1.0000 0.2000 0.8888 
To compare the efficiency of the developed 
GGMM classifier with earlier Gaussian Mixture 
Model (GMM) classifier, recall, precision, false 
discovery rate and F-measure are computed and 
presented in Table 7.4. 
 

Table 7.4: Performance Measures Of The Mixture Of 
GMM Classifier 

 True 
Positive 
Rate(TP
R) 
Recall 

Precisi
on 

False 
Discov
ery 
Rate 

F-
Measu
re 

Cluster 1 0.9365 0.9672 .0635 0.9516 
Cluster 2 0.9166 0.7857 0.0833 0.8461 
Cluster 3 0.8000 1.0000 0.2000 0.8888 
Comparing   Table 7.3, Table 7.4 it is observed that 
the F value for cluster 1 using the proposed 
classifier is more compared to that of the classifier 
with GMM. The f value for cluster 2 and cluster 3 
are equal in both proposed classifier and classifier 
with GMM.  
To compare the efficiency of the developed 
unsupervised algorithm with existing unsupervised 
learning algorithm with GMM model for both sales 
and quantity variables, the same test data were 
considered and the accuracy and misclassification 
rates were computed. Table 7.5 presents the 
accuracy and misclassification rates of GGMM and 
GMM classifiers. 
 
 
 
 
 



 Journal of Theoretical and Applied Information Technology 
30th April 2025. Vol.103. No.8 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
3303 

 

Table 7.5: Performance evaluation of accuracy & 
Misclassification rate 

Classifier 
with 

Accuracy Misclassification 
rate 

GGMM 0.9500 0.0500 
GMM 0.9250 0.0750 
 

From Table 7.5 it is observed that the 
accuracy of GGMM classifier is more compared to 
the accuracy of GMM classifier and the 
misclassification rate of GGMM classifier is lesser 
compared to the misclassification rate of GMM 
classifier.  

The other parameters of both GGMM and 
GMM classifiers are presented in Table 7.6 and 
Table 7.7 

Table 7.6: The Other Parameters Of Both GGMM And 
GGM Classifiers 

Classifier 
with 

Shape  No.of 
iterations 

Log 
likelihood 

GGMM 1.3760 13 -332.8420 
GMM 2 11 -333.0135 
 

Table 7.7: The Root Mean Square Error (RMSE) Of 
Different Clusters 

Classifier 
with 

Cluster 1 Cluster 2 Cluster 3 

GGMM 1.8825 6.8082 45.1556 
GMM 1.6710 7.9293 54.7316 
 
8.    CONCLUSIONS  
 

This paper deals with the development and 
analysis of a novel method in segmentation 
algorithm for market analytics using mixture 
regression models with Generalized Gaussian 
Distribution. In market segmentation so far the 
algorithms developed using mixture regression 
models with Gaussian distribution only. For the 
first time we developed an unsupervised learning 
algorithm for market segmentation using 
Generalized Gaussian mixture regression models 
under Bayesian framework. This algorithm is more 
suitable for analyzing all types of data sets that 
exhibit behaviours such mesokurtic, playkurtic and 
leptokurtic. This algorithm is applied for analyzing 
the realistic situations in market analytics, business 
analytics, financial analytics, HR analytics etc. 
where the variables under study are correlated and 
follows Generalized Gaussian Distribution.  

Another important feature of this 
developed algorithm is integration of k-means with 

model based method in learning algorithms. The 
learning algorithm is developed based on 
component maximum likelihood under Bayesian 
framework. Hence, it is assumed that the feature 
vector is generated from a heterogeneous 
population which can be characterized by a finite 
mixture of regression models with Generalized 
Gaussian Distribution. The model parameters are 
estimated using EM algorithm. 

The performance of the proposed 
algorithm is evaluated using the super market data 
set. The experimental results revealed that the 
proposed algorithm outperforms the existing 
learning algorithms.  This learning algorithm can be 
extended to the integration of hierarchical 
clustering algorithms with mixture regression 
models using Generalized Gaussian Distribution.  
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