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ABSTRACT 
 

Urban traffic jams remain a pressing issue due to increasing vehicle concentrations, inadaptive traffic signal 
management, and unreliable road conditions. Fixed or semi-adaptive traditional traffic control systems cannot 
adaptively change in real-time traffic environments, leading to wasted time, excessive fuel usage, and greater 
pollutant emissions. 
This study proposes a comprehensive framework for the optimization of urban traffic, leveraging predictive 
modeling, adaptive signal control, and distributed messaging infrastructure. The platform collects real-time 
sensor information, employs machine learning techniques for short-term traffic prediction, and optimizes 
signal timing through heuristic approaches such as Simulated Annealing (SA) and Reinforcement Learning 
(RL). The asynchronous messaging architecture supports flexible communication among prediction modules, 
controllers, and external services to facilitate flexibility and scalability. 
Experimental validation was conducted using the SUMO traffic simulator, where a standard fixed-cycle 
signal scheme was compared to the proposed adaptive scheme. Results indicate that there is a 21.6% 
reduction in average waiting time, a 12.9% reduction in CO₂ emissions, and a 15.6% improvement in fuel 
efficiency. These findings validate the effectiveness of the system in mitigating congestion and enabling 
green urban mobility. 
Future work will involve incorporating vehicle-to-everything communication data (V2X communication), 
multi-intersection coordination, and deep learning traffic flow predictions in order to better enhance 
adaptability and robustness at the large-scale deployment stage. 
 
Keywords: Intelligent Transportation Systems, Traffic Optimization, Adaptive Signal Control, Predictive 

Modeling, Reinforcement Learning, Smart Cities 
 

1. INTRODUCTION 

The increasing problem of traffic congestion in 
urban centers has become the trademark of modern 
cities, with far-reaching effects on economic 
efficacy, environmental sustainability, and the 
overall health of urban dwellers. With expanding 
urban populations and the unabating use of private 
cars, the volume of traffic on roads tends to outstrip 
the planned capacity of the available network, 
particularly in populous metropolitan cities [1]. This 
imbalance between traffic demand and supply of 
infrastructure is felt as persistent congestion, leading 
to highly increased travel times, wasted fuel, and 
excessive levels of harmful air emissions and 
greenhouse gases. These impacts extend beyond 
individual annoyance, affecting supply chains, 

limiting economic activity, and encouraging climate 
change [2]. 

The traditional method of traffic management, 
based heavily on fixed signal control systems, is 
growing ever more insufficient to respond to the 
dynamic and often unpredictable nature of traffic in 
the 21st century. While relatively easy to implement, 
these static signal timings inherently lack the 
capacity to adjust in real-time to the constantly 
changing traffic demands, unexpected events like 
accidents or road closures, and inclement weather 
conditions that can have a profound impact on traffic 
flow [3]. The inflexibility of fixed-time control 
systems tends to create non-optimal signal settings, 
which ironically produce congestion, leading to 
excessive queue formation, increased delays, and an 
elevated risk of stop-and-go traffic conditions, 
further contributing to increased fuel consumption 
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and emissions [4]. 
Realizing the limitations of the conventional 

approaches, Intelligent Transportation Systems 
(ITS) has been one of the leading research and 
development areas. ITS has the purpose of applying 
advanced technologies such as sensors, 
communication networks, data analysis, and 
intelligent computation to develop efficient, 
adaptive, and responsive traffic management [5]. 
Designing and deploying Adaptive Traffic Signal 
Control (ATSC) systems has been one of the major 
interests of ITS. In contrast to fixed-time schedules, 
ATSC schedules vary the timing of traffic lights 
according to prevailing traffic conditions. It has the 
purpose of enhancing the movement of traffic, 
minimizing the delay of the vehicles, and reducing 
the adverse environmental impact due to congestion 
[6]. 

New research within ATSC has been charting 
many new paths. Predictive modeling with the help 
of machine learning and statistics is gaining more 
and more influence. Predictive models are making 
short-term traffic volume predictions based on 
historic traffic, sensor measurements in real-time 
and external factors like weather and events. 
Accurate traffic prediction is crucial for intelligent 
and effective signal optimization [7]. One of the 
most critical areas for improvement is in the use of 
Reinforcement Learning (RL) algorithms. RL has 
the potential to allow traffic signal controllers to 
learn to optimize traffic signaling through 
experimentation with different actions and error-
based learning. It can learn through interacting with 
the traffic environment and adapt in real-time 
without the need for complicated, pre-defined traffic 
models [8]. Also with the advent of Connected and 
Automated Vehicles (CAVs) come new 
possibilities. CAVs with their vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V) 
capabilities have the potential to provide very 
detailed and timely information about vehicle 
positions, velocities, and planned itineraries. This 
copious information stream can be leveraged for 
enhancing situational awareness and for making 
more accurate and responsive traffic control 
strategies [9]. Multi-agent systems are also highly 
beneficial for traffic management [10]. 

Despite the huge potential and benefits brought 
with such recent approaches, there are many core 
issues that prevent ATSC systems from being 
implemented efficiently and on large scale. 
Scalability is the major issue. The majority of 
solutions, particularly those developed around 

complex optimization algorithms, are heavy in 
computation and cannot scale economically to large 
and complex urban transportation networks. Real-
time traffic management for the whole city requires 
computationally efficient algorithms along with 
distributed computing infrastructure that can 
efficiently handle the huge amount of data generated 
[11]. The quality and availability of real-time traffic 
data are also important limiting factors. Data-hungry 
approaches, such as predictive modeling and RL, are 
heavily dependent on accurate, complete, and timely 
data. Incomplete, noisy, or tardy data can severely 
undermine the performance and reliability of such 
systems. Interoperability and system integration 
represent further challenges. Seamless integration of 
disparate components, like sensors, controllers, 
communication networks, and data processing 
platforms, that are typically acquired from a variety 
of vendors, into a complete and functional system 
remains an elusive goal. Standard communication 
protocols and open, modular system architectures 
are necessary to achieve interoperability. Finally, 
ATSC systems must be robust and fault-tolerant to 
unexpected situations, sensor malfunctions, and 
communication disruptions. Fault-tolerant 
architectures, adaptive control techniques, and 
robust information handling methods are necessary 
to ensure reliable performance in the presence of 
uncertainty. 

This work meets these challenges by introducing 
an integrated urban traffic optimization strategy. The 
approach combines synergistically short-term traffic 
flow forecasting, adaptive signal control, and 
distributed communication supported by a message-
oriented middleware (MOM). This framework is 
such that it maximizes the strength of each module 
while minimizing its limitations. It gathers real-time 
data via a network of sensors, applies machine 
learning techniques to predict near-future traffic 
conditions, applies a metaheuristic optimization 
algorithm (Simulated Annealing) to determine the 
optimal signal durations, and applies a messaging 
infrastructure (specifically, infrastructures like 
MQTT or Kafka) to enable flexible, scalable, and 
fault-resilient communication between the various 
system components. This modular and integrated 
approach aims to achieve a much better efficiency of 
traffic flow, reduced levels of congestion, lower 
emissions of pollutants, and greater flexibility with 
the dynamic and usually uncertain nature of urban 
traffic conditions. The performance of the 
considered system is thoroughly tested with the aid 
of realistic simulation based on the SUMO 
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(Simulation of Urban Mobility) traffic simulator. 

2. STATE OF THE ART 

 
In the past, standard city traffic regulation has 

relied considerably on fixed-timing or, 
optimistically, semi-adaptive control schemes in 
plans. Such infrastructure operates at planned cycles 
that are typically fine-tuned to suit specific expected 
traffic conditions, for example, off-peak or peak-
hour situations. Whilst easy to make use of, such an 
approach virtually lacks a level of sensitivity to 
effectively respond to real-city traffic's internal 
dynamism and stochasticity. Random events, such as 
accidents, roadworks, incidents, or even climatic 
changes, can cause traffic movements to change 
drastically, rendering pre-configured signal control 
settings highly inefficient and also contributing to 
more congestion, delays, and emissions [12]. This 
inherent limitation of traditional approaches has 
been the key reason for considerable research and 
development into more adaptive and dynamic traffic 
management strategies. 

The domain of Intelligent Transportation Systems 
(ITS) has seen substantial advancements in recent 
years, with special focus on adaptive traffic signal 
control (ATSC) system development and 
improvement. One of the leading research paths in 
ATSC is the use of reinforcement learning (RL). 
Compared to traditional control methods that rely on 
pre-established rules or fixed models, RL allows 
traffic signal controllers to learn the best control 
policies through real experience with the traffic 
environment. This is typically achieved by a trial-
and-error procedure, wherein the controller (the 
"agent") takes actions (adjusting signal times), looks 
at the resulting state of the traffic network (e.g., 
delay, queue length), and receives a reward signal 
(e.g., penalty for increased congestion). Over time, 
the RL agent learns to connect actions with their 
consequences and finds a policy maximizing the sum 
of rewards, basically optimizing traffic flow [10], 
[13]. Recent advances in deep reinforcement 
learning (DRL), the marriage of RL and deep neural 
networks, have shown strong promise to handle the 
high-dimensional state and action spaces common to 
complex traffic networks. DRL allows the 
acquisition of complex, non-linear associations 
between traffic states and optimal control actions, 
which could be transformed into more effective and 
responsive signal control strategies. But the 
computational demands of DRL, particularly during 

training, can be extremely high, which is a serious 
drawback for real-time application in dynamic, 
large-scale cityscapes. Also, explainability and trust 
issues arise with DRL, since the decision-making 
process of the neural network might be opaque, and 
it can be difficult for traffic engineers to understand 
and check the behavior of the system [14]. 

Along with the primary goal of minimizing car 
waiting times, there is growing realization of the 
need for multi-objective optimization in traffic light 
control. Modern urban traffic control is not only 
needed to look after efficiency but also eco-
friendliness. Researchers are now working on how 
to minimize energy consumption, pollutant 
emissions, and noise pollution at the same time, in 
addition to the traditional methods like travel time 
and capacity [15]. This entails the fusion of different 
information sources, for example, traffic flow, 
vehicle emissions models, and even possibly air 
quality sensors. The control algorithms to be 
implemented will subsequently need to acquire 
solutions in satisfying these often competing 
requirements, making choices that are the best 
compromise between efficiency and ecological 
regard. Vehicle-to-infrastructure (V2I) 
communication is increasingly becoming a master 
enabler of this multi-objective optimization 
framework. V2I allows real-time sharing of vehicle-
to-infrastructure information, such as detailed 
vehicle information about their locations, velocities, 
and even engine conditions. The rich information 
stream can be used to create more accurate and 
comprehensive traffic movement and emissions 
models, allowing for greater control of car 
trajectories and signal timings. Combined with the 
use of advanced optimization procedures and the 
incorporation of V2I data, traffic efficiency will be 
greatly improved along with improved 
environmental performance  [16]. 

Predictive modeling is also included in modern 
ATSC systems. Predictive short-term traffic flow 
forecasting is crucial in enabling anticipatory as 
opposed to reactive control measures. With 
predictive traffic demand, signal times can be 
adjusted prior to congestion development and prior 
to the creation of unnecessary delays and even 
improving the performance of the network as a 
whole. Current research has focused on applying 
sophisticated machine learning techniques, namely 
deep learning models, to forecast traffic flows more 
accurately and robustly. Deep learning models can 
learn complex spatial and temporal 
interdependencies in traffic data, leveraging 
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historical traffic trends, real-time sensor readings, 
and environmental inputs such as weather, holidays, 
special events, and even social media metrics [17]. 
Graph Neural Networks (GNNs), among other 
models, have been of particular interest due to their 
ability to represent road network connectivity in a 
good manner. GNNs are able to capture interactions 
among different road segments and intersections and 
the spreading of congestion within them, leading to 
higher accuracy of prediction, especially in complex 
urban scenarios [18]. With all these advanced 
models comes a greater computational complexity of 
the system. 

Despite these significant advances, several key 
challenges continue to exist, which hinder the large-
scale deployment and effectiveness of ATSC 
systems. Computational complexity of recent 
approaches, e.g., deep reinforcement learning 
approaches and complex deep learning prediction 
models, usually necessitates large computational 
resources, and therefore, their real-time application 
in high-dimensional dynamic urban environments is 
a highly challenging problem. This computational 
burden can limit the system's responsiveness and the 
agility of its response to changing traffic conditions. 
Additionally, the effectiveness of data-centric 
approaches, both predictive modeling and 
reinforcement learning, is directly coupled with data 
quality and availability. Delayed, noisy, or missing 
data can significantly deteriorate model accuracy 
and lead to sub-optimal control actions. Developing 
robust methodologies that are able to deal with data 
uncertainties and missing data is therefore a research 
priority [19]. Finally, the integration of a multitude 
of and often heterogeneous elements in a traffic 
management system poses a big challenge. Different 
sensors, controllers, communication networks, and 
data processing platforms, usually from different 
manufacturers, must be integrated together 
seamlessly to create a coherent and functioning 
system. Lack of interoperability between these 
constituents can rule out large-scale deployment, 
hinder full exploitation of existing resources, and 
introduce complexity in system maintenance and 
upgrading. Open architectures, standardized 
communication protocols, and modular system 
design are necessities to surmount this lack of 
interoperability [20]. Solving these issues of 
computational complexity, robustness and quality of 
data, and system integration holds the answer to 
unlocking the complete potential of intelligent, 
adaptive, and sustainable urban traffic management 
systems [20]. Solving these issues of computational 

complexity, robustness and quality of data, and 
system integration is necessary in order to achieve 
the full potential of intelligent, adaptive, and 
sustainable urban traffic management systems. 

3. METHODOLOGY 

This study proposes an integrated approach to the 
optimization of urban traffic flow based on real-time 
data collection, short-term prediction of traffic flow, 
adaptive traffic signal control, and distributed 
communication through a message-oriented 
middleware. The overall system architecture, 
depicted in Figure 1, is meticulously designed to be 
modular, scalable, and adaptable, allowing for future 
extensions and modifications. The core principle is 
to dynamically adjust traffic signal timings at an 
intersection based on predicted traffic conditions, 
aiming to minimize average vehicle waiting times 
while adhering to operational and safety constraints. 

 
Fig. 1. Conceptual Architecture Overview: This 

representation highlights the components and their 
interactions. Multiple urban intersections (I1, I2, I3) are 

equipped with sensors (S) and a local con-troller (C). 
Raw data (vehicle flow, densities, weather conditions) is 
transmitted via the messaging infrastructure (M) to the 

prediction server (P). The server returns optimized 
instructions to be ap-plied at traffic lights, while third-

party services (T) – such as fleet management systems – 
can sub-scribe to real-time information streams. 

 
The foundation of the system is a heterogeneous 

sensor network, responsible for collecting real-time 
data about the traffic environment. This network, as 
illustrated in a typical intersection setup in Figure 2, 
comprises several key sensor types. Strategically 
positioned cameras, equipped with advanced 
computer vision algorithms, are used to detect the 
presence of vehicles, estimate traffic density, 
classify vehicle types (e.g., cars, trucks, buses), and 
identify incidents such as accidents or stalled 



 Journal of Theoretical and Applied Information Technology 
30th April 2025. Vol.103. No.8 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
3536 

 

vehicles [21]. This visual data provides a rich and 
comprehensive understanding of the traffic situation 
at the intersection. Complementing the cameras are 
inductive loop detectors, embedded within the 
roadway surface. These loops measure vehicle 
counts and occupancy, providing believable and 
accurate data concerning traffic volume and flow 
rates [22]. Radar sensors are also part of the system 
to measure the speeds of vehicles so that traffic flow 
characteristics like average speed and headway can 
be estimated, which play an essential role in 
ascertaining the general state of traffic [23]. 
Furthermore, local meteorological stations monitor 
the environmental state in real time, i.e., 
temperature, precipitation (rain or snow), visibility, 
and wind speed. The weather state is observed to 
significantly affect the traffic dynamics and hence 
included into the forecasting models so as to advance 
their precision and strength [24]. The system is 
likewise extensible, with the potential for 
incorporating information from linked vehicles 
(V2X) in future forms, further expanding its 
situational awareness. 

 
Fig 2. Detailed View Of A Connected Intersection. 

 
The sensor network information is routed to a 

central prediction server, the analytical brain of the 
system. This server is responsible for making short-
term traffic flow predictions, typically 5-10 minutes 
into the future, for each entrance to the intersection. 
The prediction process itself uses advanced machine 
learning techniques that can understand the complex 
and dynamic interrelation between historical traffic 

patterns, current sensor readings, and contextual 
information. The prediction model takes a number of 
significant inputs: historical traffic flow, providing 
the baseline day-to-day and week-to-week 
fluctuation in traffic; current data from sensors built 
into cameras, inductive loops, and radars showing 
the state at the moment; and context, including 
weather forecast, news on any special event (such as 
concerts or sports events) expected to lead to a 
disruption, and any planned or unplanned roadworks 
closure. The model used would be a combination of 
deep learning that is either LSTM or GNN [25]. This 
combination is particularly well-suited for capturing 
both the temporal dependencies in traffic flow (using 
LSTM) and the spatial relationships between 
different road segments (using GNN). The predicted 
traffic flows, denoted as λ௜(𝑡) for approach i at time 
t, are a critical output of this stage and serve as a key 
input to the subsequent optimization process. 

The core of the adaptive signal control system lies 
in its mathematical model, which formalizes the 
optimization problem. The model considers a single 
intersection with N distinct approaches, each 
controlled by a traffic signal. The signal operation 
follows a cyclic pattern with a total cycle length C 
(seconds). The decision variable, x௜(𝑡), represents 
the green phase duration (in seconds) for approach i 
during the cycle starting at time t. The optimization 
is performed over a control horizon T, spanning 
several cycles. A key simplifying assumption is that 
the traffic flow λ௜(𝑡) is quasi-stationary over short 
intervals (5-10 minutes), based on empirical 
evidence suggesting that significant flow variations 
typically occur over longer periods [12], [26]. This 
allows for real-time adjustments without needing to 
model extremely rapid fluctuations within each 
cycle. Although the initial model focuses on an 
isolated intersection, its modular design, particularly 
the use of a messaging infrastructure, facilitates 
future extension to network-level control involving 
multiple interconnected intersections. 

The primary objective is to minimize the average 
waiting time for vehicles at the intersection. The 
average waiting time for approach i at time t, w௜(𝑡), 
is a function of both the predicted traffic flow λ௜(𝑡) 
and the green phase duration x௜(𝑡). The overall 
objective function to be minimized is the sum of 
these average waiting times across all approaches: 
minimize  

min ෍ w୧(t)

୒

୧ୀଵ

 

A common and effective approximation for w௜(𝑡), 
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derived from queuing theory, is to model it as being 
proportional to the ratio of traffic flow to green time, 
incorporated to the objective function as minimize 

𝑚𝑖𝑛 ∑ ቀ
ఒ౟(୲)⋅୶౟(୲)

େ
ቁ୒

୧ୀଵ . 

This captures the inverse relationship between 
green time and waiting time. Because the 
optimization problem is non-linear and 
combinatorial, a metaheuristic approach, 
specifically Simulated Annealing (SA), is employed. 
SA's ability to escape local optima and find near-
globally optimal solutions makes it well-suited for 
this dynamic, real-time control problem [10], [13]. 

The optimization is subject to strict operational 
constraints. Each green phase must have a minimum 
duration x௠௜௡ to allow vehicles to safely clear the 
intersection and a maximum duration x௠௔௫ to 
prevent excessive delays for other approaches: 

x௠௜௡  ≤ x௜(𝑡) ≤ x௠௔௫, ∀i, t. 
The sum of the green phase durations, plus inter-

green times I௜, must equal the total cycle length C: 
∑ (𝑥௜(𝑡) + 𝐼௜)ே

௜ୀଵ = 𝐶, ∀𝑡.  
This ensures consistent and predictable signal 

operation. Furthermore, to enable proactive control, 
the incoming traffic flow λ௜(𝑡) is not treated as a 
constant but is predicted using a forecasting model, 
f, which takes into account past flow values and 
external factors: λ௜(𝑡) = 𝑓(λ௜)(𝑡 − 𝑝), Z௝(𝑡 − 𝑞), 
where p and q represent temporal lags, and Z௝(𝑡) 
represents external variables like weather or events 
[27], [28]. 

The predicted traffic flows from the prediction 
server are then used by an optimization module to 
determine the optimal signal timings, employing the 
Simulated Annealing (SA) algorithm. The SA 
algorithm starts with an initial solution (e.g., uniform 
green time distribution) and iteratively perturbs this 
solution by randomly adjusting the green times. 
Each new candidate solution is evaluated based on 
the objective function and checked for feasibility 
against the operational constraints. Solutions 
improving the objective function are always 
accepted, while those worsening it are accepted with 
a probability determined by the Metropolis criterion, 
dependent on a "temperature" parameter that 
gradually decreases according to a cooling schedule. 
This allows the algorithm to escape local optima and 
converge towards a near-globally optimal solution. 

The communication between the various 
components of the system (sensors, prediction 
server, controllers, and potentially external services) 
is facilitated by a message-oriented middleware 
(MOM) infrastructure, as depicted in Figure 3.  

 
Fig 3. Information Flow between Prediction, 

Optimization, and Control. 
 
This infrastructure utilizes a publish-subscribe 

communication paradigm. Sensors publish their 
real-time data to specific topics (e.g., 
"traffic_flows/axisX"). The prediction server 
subscribes to these sensor data topics, performs its 
calculations, and publishes the predicted traffic 
flows to another topic (e.g., 
"predicted_flows/axisX"). The optimization module 
subscribes to the predicted flow topic, calculates the 
optimal signal timings, and publishes these to a 
"traffic_signal_decisions/intersectionY" topic. The 
controllers, located at each traffic signal, subscribe 
to the decision topic and implement the new signal 
timings. This asynchronous communication 
mechanism, using platforms like MQTT or Kafka 
[29], provides several advantages: it decouples the 
components, allowing them to operate 
independently; it enhances the scalability of the 
system, as new components can be easily added or 
removed without disrupting the overall operation; 
and it improves the fault tolerance of the system, as 
the failure of one component does not necessarily 
bring down the entire system. 

The entire system is implemented using a 
combination of well-established programming 
languages and software tools, chosen for their 
suitability for the specific tasks involved. Python is 
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used for developing the prediction and optimization 
modules, leveraging its extensive libraries for 
machine learning (e.g., TensorFlow, PyTorch) and 
scientific computing (e.g., NumPy, SciPy). The 
SUMO (Simulation of Urban MObility) traffic 
simulator is used for experimental validation of the 
methodology. The TraCI (Traffic Control Interface) 
library provides the interface between the Python 
code and the SUMO simulation environment, 
allowing for real-time interaction and control of the 
simulated traffic signals and vehicles, as illustrated 
by figure 4. This setup allows for a rigorous and 
realistic evaluation of the proposed adaptive traffic 
signal control strategy compared to a traditional 
fixed-time control strategy, using a variety of key 
performance indicators, including average vehicle 
waiting time, CO2 emissions (estimated based on 
vehicle speeds and idling times), and fuel 
consumption (estimated using vehicle and engine 
models within SUMO). 

 
Fig 4. SUMO simulation environment 

4. OPTIMIZATION AND ADAPTIVE 

CONTROL 

Following the data acquisition, prediction, and 
mathematical modeling stages, the critical step is 
determining the optimal green phase durations for 
each traffic signal cycle. This involves a dynamic 
and adaptive process that responds to the fluctuating 
and often uncertain nature of real-world traffic flow. 
The system continuously considers the predicted 
traffic flows, the previously defined operational 
constraints (minimum and maximum green times, 

cycle length conservation), and any relevant 
contextual information (such as weather conditions 
or special events) that might influence traffic 
patterns. This optimization problem is inherently 
complex, falling under the category of multivariate 
and non-convex optimization. This complexity 
arises from the non-linear relationships between 
traffic flow, green times, and waiting times, as well 
as the combinatorial nature of selecting optimal 
green times for multiple approaches simultaneously. 
Therefore, robust and flexible optimization 
algorithms are required, capable of delivering 
satisfactory solutions within the strict computational 
time constraints imposed by real-time traffic control 
[30], [31]. 

The global vehicle optimization mechanism is 
coded to determine the exact setting of green phase 
durations that minimizes the specified objective 
function – our example being the mean waiting time 
of cars at the intersection – under all working 
constraints. In each control cycle, or at a regular re-
estimation interval, the system employs the most 
recent traffic flow predictions and context variables 
from which it determines the signal durations. The 
optimizing step is iterative in nature. An initial 
solution, expressed as a collection of green phase 
durations for all routes, is progressively refined by 
reiterated calculation and modification. This initial 
solution could be a simple uniform distribution of 
green times across all approaches, a solution derived 
from historical traffic data, or even the solution from 
the previous control cycle. 

The core of the optimization process is the 
Simulated Annealing (SA) algorithm, a 
metaheuristic technique chosen for its ability to 
handle complex, non-linear optimization problems 
with multiple local optima [32]. SA is inspired by the 
physical process of annealing in metallurgy, where a 
material is heated and then slowly cooled to reduce 
defects and reach a low-energy state. In the context 
of traffic signal optimization, the "energy" 
corresponds to the objective function (average 
waiting time), and the "cooling" process represents a 
gradual reduction in the algorithm's willingness to 
accept solutions that worsen the objective function. 
The SA algorithm begins by taking as input the 
predicted traffic flows for each approach (λ௜(𝑡)), the 
operational constraints (minimum green time x௠௜௡, 
maximum green time x௠௔௫ and total cycle length C), 
and a set of algorithm-specific parameters, including 
the initial temperature (T௠௔௫) and a cooling 
schedule. 

The algorithm then enters an iterative loop. 
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Within each iteration, the performance of the current 
solution (the current set of green phase durations) is 
evaluated by calculating a cost function. In the 
simplest case, this cost function is the total average 
waiting time across all approaches, as defined by the 
objective function. However, the framework is 
flexible enough to incorporate multi-objective 
considerations, such as minimizing pollutant 
emissions or prioritizing certain types of vehicles 
(e.g., buses or emergency vehicles) [33], [34]. Once 
the cost of the current solution is determined, the 
algorithm attempts to improve it by making small, 
random changes to the green phase durations. These 
"perturbations" typically involve selecting one or 
more approaches at random and slightly increasing 
or decreasing their allocated green time by a few 
seconds. 

Before evaluating the cost of this new, perturbed 
solution, the algorithm rigorously checks whether it 
satisfies all operational constraints. This feasibility 
check ensures that no green phase duration falls 
below the minimum allowed value x௠௜௡ or exceeds 
the maximum allowed value x௠௔௫, and that the sum 
of all green phase durations, plus the inter-green 
times, equals the total cycle length (C). If any of 
these constraints are violated, the perturbed solution 
is immediately rejected, and a new perturbation is 
generated. If, however, the new solution is feasible, 
its cost is calculated. 

The defining characteristic of SA, and its key 
advantage in avoiding local optima, is its ability to 
accept not only solutions that improve the cost 
function (i.e., reduce waiting time) but also, with a 
certain probability, solutions that worsen the cost 
function. This is governed by the Metropolis 
criterion, a probabilistic rule that determines whether 
to accept or reject a worse solution. If the cost of the 
new solution is lower than the current best cost 
(meaning the new solution is better), it is always 
accepted. However, if the cost of the new solution is 
higher (meaning it is worse), it is accepted with a 
probability calculated as exp(-(Cost_new - 
Best_Cost) / T), where Cost_new is the cost of the 
new solution, Best_Cost is the cost of the best 
solution found so far, and T is the current 
"temperature" of the system. This temperature 
parameter is among the control parameters of the SA 
algorithm. It starts at a high value (Tmax), making the 
algorithm more likely to accept worse solutions, and 
is gradually decreased according to a predefined 
cooling schedule. A common cooling schedule is 
geometric cooling, where the temperature is 
multiplied by a constant factor (between 0 and 1) in 

each iteration. 
This constant drop in temperature has a significant 

effect on the behavior of the algorithm. At high 
temperatures, the algorithm explores the solution 
space broadly, readily accepting both good and bad 
solutions, allowing it to escape from local optima. 
As the temperature decreases, the algorithm 
becomes increasingly selective, accepting fewer and 
fewer worse solutions, and focusing on refining the 
solution in promising regions of the solution space. 
The iterative process – perturbation, feasibility 
check, cost calculation, acceptance/rejection, and 
temperature reduction – continues until a predefined 
stopping criterion is met. This criterion could be a 
maximum number of iterations, reaching a minimum 
temperature, observing a negligible improvement in 
the objective function over a specified number of 
iterations, or reaching a predefined computational 
time limit to ensure real-time applicability [35]. 

The final output of the SA algorithm is the best 
solution found during the entire process – the set of 
green phase durations that minimizes the objective 
function while satisfying all constraints. This 
optimized solution is then transmitted to the local 
traffic signal controllers at the intersection for 
immediate implementation. The controllers adjust 
the signal timings accordingly, and the process 
repeats at the next control cycle (or at a predefined 
re-evaluation interval), ensuring continuous 
adaptation to the ever-changing traffic conditions. 
The real-time nature of this adaptive control strategy 
is a significant advantage over static or semi-
adaptive approaches. By continuously monitoring 
traffic flow and adjusting signal timings in response 
to real-time predictions, the system can significantly 
reduce travel times, minimize congestion, and 
improve the overall efficiency of the traffic network 
[36], [37]. While SA is the primary optimization 
algorithm used in this study, it's important to 
acknowledge that other optimization techniques 
could also be employed within this framework. 
These include gradient-based approaches or 
numerical methods derived from nonlinear 
programming, although these are often less effective 
for highly non-linear and combinatorial problems 
[38]. Heuristics and metaheuristics, such as genetic 
algorithms and ant colony optimization, are also 
viable choices [39]. Additionally, Reinforcement 
Learning (RL) techniques, where an agent learns 
optimal control policies through learning from 
experience, are a promising research area but 
typically require large training data and are 
computationally intensive [40]. The choice of SA in 
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this case relies on its efficacy, computational speed, 
and ease of implementation. 

To evaluate the performance of our holistic 
approach to optimizing urban traffic, we simulated it 
using the SUMO (Simulation of Urban Mobility) 
tool. The simulator is an ordinary open-source 
program in scientific research for simulating 
transport networks and experimenting with various 
traffic control methods. Our strategy is based on a 
comparison between the application of a static signal 
plan, uniformly applied to all strategies at an 
intersection, and an adaptive strategy that 
dynamically adjusts signal times based on real-time 
predicted traffic conditions. 

The conduct of this experiment was conducted 
using various technology tools. The SUMO 
simulator, in its current version, was utilized to 
simulate urban traffic behavior and evaluate the 
effect of various traffic light control strategies. The 
entire control and optimization code was developed 
in Python, leveraging the TraCI (Traffic Control 
Interface), which enables dynamic modifications of 
the simulator’s parameters and re-al-time interaction 
with simulation objects. The simulation was 
executed on a computer equipped with an Intel Core 
i7 processor and 16 GB of RAM, ensuring smooth 
and fast execution of the tested scenarios. 

The experiment was conducted on a simplified 
network consisting of an urban inter-section with 
four access roads, each equipped with a traffic 
signal. A total of five traffic lights were simulated, 
including coordinated traffic phases. This setup is 
typical of dense urban areas where signal control 
significantly influences traffic flow. 

Traffic conditions were configured to reflect a 
realistic scenario based on representa-tive peak-hour 
traffic volumes. Historical data used in the 
simulation indicated an average flow of 300, 250, 
200, and 150 vehicles per time interval at different 
approaches. Contextu-al events were also 
incorporated to model real-life disruptions, 
including weather condi-tions and local events. For 
example, moderate rainfall (5 mm/h) was included, 
leading to a 15% reduction in traffic fluidity. 
Similarly, a sporting event (football match) was 
simulat-ed, generating a 20% increase in vehicle 
volume on certain roads leading to the stadium. 

The experiment is based on three main steps: 
traffic flow prediction, traffic light time 
optimization, and simulation execution in SUMO. 

To anticipate traffic variations and adjust signal 
cycles accordingly, a prediction model was 
developed. This model integrates historical data, 

contextual factors such as weather and special 
events, as well as real-time observed trends. The 
goal is to estimate the volume of vehicles entering 
each approach of the intersection for the next few 
minutes, ac-counting for probable fluctuations. 

The predicted traffic flows are then used to 
dynamically optimize green light dura-tions. A 
simulated annealing algorithm was implemented to 
search for the optimal con-figuration that minimizes 
average waiting times while maintaining a balance 
between different approaches. Unlike a fixed plan 
where each signal phase is rigidly assigned, our 
approach allocates more green time to lanes with 
higher demand and reduces phase dura-tions for less 
congested approaches. Operational constraints, such 
as minimum and maximum green light durations, 
were maintained to ensure safety and traffic 
regularity. 

a. Execution and Data Collection 

Two simulation scenarios were executed: 
Fixed Plan Scenario: Traffic signals operate with 

fixed cycle durations, distributing green times 
uniformly among all approaches. 

Adaptive Plan Scenario: Traffic signal times are 
dynamically adjusted every 5 minutes based on 
traffic forecasts. 
Each simulation was run for a total duration of 3600 
seconds (1 hour of simulation), and multiple 
performance indicators were collected to analyze the 
impact of optimization on traffic flow. 

The results obtained are summarized in the 
following table: 

Methodolo
gy 

Waiting 
Time (s) 

CO₂ 
Emissio

ns (g) 

Fuel 
Consumptio

n (L) 
Fixed Plan 72.5 190.2 3.2 
Adaptive 

Optimizatio
n 

56.8 165.4 2.7 

Table 1 

 
The analysis of the results shows a 21.6% reduction 
in the average waiting time, con-firming that 
dynamic signal management significantly improves 
traffic flow. This reduc-tion in idle time also leads to 
a 12.9% decrease in CO₂ emissions and a 15.6% drop 
in fuel consumption. 

The simulation results are illustrated in the 
following graphs: 
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 Evolution of Waiting Time 

The evolution of waiting time over time 
is represented below. Congestion peaks 
are observed in the fixed plan scenario, 
whereas the adaptive approach sig-
nificantly reduces these peaks. 

 Evolution of CO₂ Emissions 
CO₂ emissions show significant 
fluctuations with the fixed plan, while 
adap-tive regulation allows for a gradual 
reduction in emissions. 

 Evolution of Fuel Consumption 
A more stable and optimized fuel 
consumption is observed with adaptive 
op-timization. 

These results confirm that intelligent traffic 
signaling reduces energy waste and environmental 
impact. 
 
5. INTEGRATION VIA MESSAGING 

 
The effective integration of the diverse 

components within the proposed system – including 
sensors, prediction modules, optimization 
algorithms, traffic light controllers, and potential 
third-party services – necessitates a communication 
infrastructure that is simultaneously flexible, 
scalable, and resilient. To meet these requirements, 
a Message-Oriented Middleware (MOM) 
architecture is adopted. MOM facilitates 
asynchronous data exchange between the system's 
distributed entities, eliminating the tight coupling 
and potential bottlenecks associated with direct 
point-to-point communication [41]. This decoupling 
is crucial for achieving modularity, allowing 
individual components to operate independently and 
be updated or replaced without affecting the rest of 

the system [42]. The asynchronous nature of MOM 
also enhances the system's responsiveness and 
ability to handle high volumes of real-time data, 
which is essential for adaptive traffic signal control 
[43]. Furthermore, the inherent fault tolerance of 
MOM architectures contributes to the overall system 
resilience, ensuring continued operation even in the 
event of component failures or network disruptions 
[44]. This approach simplifies the addition of new 
sensors, the integration of updated prediction or 
optimization models, and the incorporation of 
external services, thereby facilitating the system's 
evolution and long-term maintainability in the face 
of constantly changing urban traffic conditions and 
technological advancements. 

Instead of establishing direct connections between 
each component, the MOM infra-structure offers a 
centralized communication channel in the form of 
topics. System entities choose to publish data on 
certain topics or subscribe to receive it. This logic 
allows infor-mation producers (e.g., sensors) and 
consumers (e.g., the prediction server, optimization 
modules, or third-party services) to operate 
independently. Changes made to a component (e.g., 
changing data providers or adding a fault detection 
module) generally do not require major 
reconfiguration of the whole system as long as the 
messaging topics remain con-sistent. 

For Examples of Information Flows: 

Sensors → traffic_flows/axisX: Raw data on 
traffic intensity (vehicle counts, average speeds). 

Prediction → predicted_flows/axisX: Short-term 
flow estimates for axis X, based on historical, 
contextual, and real-time data. 
Optimization → 
traffic_signal_decisions/intersectionY: Instructions 
for adjusting green phase durations at intersection Y, 
determined by the optimization algorithm. 
Controller → traffic_signal_status/intersectionY: 
Confirmation that the local control-ler at the 
intersection has applied the transmitted settings, 
accompanied by a status of the current cycle's 
execution. 
Third-Party Services → display, alerts: Information 
dissemination to end-users (drivers, operators, fleet 
managers), for instance, via mobile applications or 
dynamic display panels. These services can also 
include external data providers, such as weather 
systems or event managers. 
This modular architecture makes it easy to integrate 
new components. For example, a service dedicated 
to autonomous vehicles could subscribe to relevant 
information (pre-dicted_flows, 
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traffic_signal_status) to automatically adjust routes, 
reduce travel time, and enhance safety. 

A conceptual diagram (Fig 4) illustrates the 
architecture via a messaging bus. The various blocks 
(sensors, prediction, optimization, controllers, third-
party services) com-municate through a central 
messaging bus, represented by the gray cloud, where 
data flows are organized by topics. 

 
Fig 4. Conceptual Diagram Of Integration Via A 

Messaging Bus. 
The messaging bus acts as an information hub 

between sensors, prediction modules, optimization 
algorithms, local traffic controllers, and third-party 
services. Each compo-nent can publish or subscribe 
to a set of defined topics (traffic_flows, 
predicted_flows, traffic_signal_decisions, 
traffic_signal_status, etc.), ensuring asynchronous 
and flexible communication. 

With this architecture, the system can evolve 
without disrupting the entire network. Adding a new 
sensor, replacing an optimization module with a 
more efficient one, or in-tegrating an external 
service becomes a straightforward operation limited 
to configuring topic subscriptions and publications. 

6. RESULTS AND DISCUSSION 

To validate the effectiveness of the proposed 
integrated urban traffic optimization strategy, 
extensive simulations were conducted using the 
SUMO (Simulation of Urban MObility) traffic 
microsimulation environment. These simulations 
compared the performance of the adaptive control 
system, incorporating real-time traffic flow 
prediction, dynamic signal optimization via 
Simulated Annealing, and a message-oriented 
middleware (MOM) for communication, against a 
traditional fixed-time signal control strategy. The 
fixed-time strategy employed a pre-defined signal 
plan with constant cycle lengths and green phase 
durations, typical of many existing urban traffic 
management systems. 

The primary performance metric used to evaluate 
the system was the average waiting time experienced 
by vehicles at the simulated intersection. Across 
multiple simulation runs, representing a range of 

traffic conditions and incorporating stochastic 
variations in vehicle arrivals and behaviors, the 
adaptive control strategy consistently outperformed 
the fixed-time strategy. As has been demonstrated 
hereinabove, the suggested technique reduced the 
waiting time on average by 21.6%. This notable 
reduction in waiting time has a direct consequence 
of the traffic flow being more efficient and smoother, 
reducing congestion and making the overall journey 
more comfortable for the commuters [45]. The 
improvement is attributable to several significant 
factors: the accuracy of the short-term traffic flow 
predictions, which allowed the system to make 
signal timing adjustments ahead of changing 
demand; the effectiveness of the Simulated 
Annealing algorithm at finding near-optimal green 
phase durations within the operational constraints; 
and the low-latency communications afforded by the 
MOM, which allowed signal timing adjustments to 
be implemented with little delay. 

In addition to reducing waiting times, the adaptive 
control system also demonstrated promising 
environmental benefits. Because vehicles had fewer 
minutes to wait at the intersection, pollution 
emissions were significantly reduced. More 
specifically, CO2 emissions were observed to drop 
by 12.9% in the adaptive control strategy compared 
to fixed-time control. The reduction in emissions 
benefits the environment by reducing air pollution 
and is generally a component of the broader goals for 
sustainable city mobility. Also, the reduced idling 
time and smoother flow of traffic guaranteed that 
there was a 15.6% reduction in fuel consumption. 
These are environmental benefits that are directly 
associated with reducing stop-and-go traffic and 
more efficient utilization of the road [46]. 

These quantitative results are in line with and 
support results of other ongoing research into 
adaptive traffic light control. As an example, 
research by Li et al. (2023) reported concurrent 
decreases in emissions and waiting time with a deep 
reinforcement learning-based approach [13]. 
However, the combined strategy utilized in the 
present study, blending prediction, optimization, and 
an adaptive messaging model, has scalability and 
flexibility benefits over just data-based alternatives 
like reinforcement learning, which is 
computationally expensive to train and might fail to 
generalize to new situations of traffic. The results 
also align with studies quoting traffic control 
benefits of using real-time information as well as 
predictive modeling [23]. 

Aside from the quantitative results, among the core 
qualitative advantages of the under review system is 
that it is extensible and flexible, which is primarily a 
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function of using the message-oriented middleware 
(MOM). The asynchronous communication 
paradigm delivered by the MOM enables easy 
introduction of new services and components into 
the system without stopping the fundamental 
operation of the underlying system. For instance, a 
weather prediction module that contained real-time 
data on rain, visibility, and other weather conditions 
could be implemented to function smoothly by 
having it subscribe to the relevant sensor data topics 
and post its predictions on a dedicated weather topic 
[47]. The prediction module can then subscribe to 
this weather topic and incorporate the predictions 
into its predictions, further enhancing the capability 
of the system to adapt to changing conditions. This 
ability to incorporate easily new sources of 
information and react to unforeseen circumstances, 
such as heavy rainfall or a traffic accident on the 
road, significantly contributes to the system's 
robustness [24]. 

The inherent modularity of the system's design also 
makes future expansion and adjustment possible. 
The system can be readily expanded to incorporate 
information from linked vehicles (V2X 
communication) to provide very detailed 
information on vehicle locations, velocities, and 
intended routes. This would enable even better 
predictions of traffic flow and support the 
implementation of more sophisticated control 
measures, such as aligning signal timing with the 
path of individual vehicles in order to best stop and 
keep throughput low [16]. It is also possible to 

configure the system to also accept signals from fleet 
management systems so that giving priority can be 
to public transportation vehicles or to emergency 
vehicles. Extension to include information on "soft" 
mobility modes such as pedestrians and cyclists is 
also a natural extension, resulting in effective 
multimodal traffic management that takes into 
consideration the requirements of all traffic users 
[48]. 

It is important to appreciate some limitations of the 
current study. Simulations were conducted on a 
simplified model of an urban intersection. The 
model does preserve the underlying dynamics of 
traffic flow, yet it is not the full complexity of a 
large-scale urban network. Future work needs to 
further advance the simulation environment to 
include many interlinked intersections as well as 
more realistic traffic, perhaps with real traffic 
patterns and data from an urban city of interest. The 
current work, on the other hand, is mostly focused 
on a single intersection. 

To further contextualize the performance of the 
proposed integrated traffic optimization strategy, 
Table 2 provides a comparative analysis against 
several representative approaches from the recent 
literature. The comparison focuses on key aspects of 
adaptive traffic signal control, including the use of 
prediction, the optimization algorithm employed, the 
communication infrastructure, scalability, 
adaptability, consideration of multi-modality, 
limitations, and the evaluation method. 

 

Feature 
Proposed Approach 

(Integrated Strategy) 
Previous Research 1  Previous Research 2  Previous Research 3  

Prediction 

Short-term traffic flow 
prediction using a 

hybrid LSTM-GNN 
model, integrating 

historical data, real-time 
sensor data, and 

contextual information. 

Varies; many 
approaches use 

prediction, including 
statistical models, 
machine learning 

(ARIMA, SVM, neural 
networks). 

Deep Reinforcement 
Learning (DRL); no 
explicit prediction 

model. Learns directly 
from state (traffic 

conditions). 

Deep 
Reinforcement 

Learning, 
implicitly learns to 

predict future 
states. 

Optimization Simulated Annealing 
(SA). 

Varies; includes fixed-
time, actuated, adaptive 
(rule-based, fuzzy logic, 

optimization-based), 
Reinforcement 

Learning. 

Multi-Agent Deep 
Reinforcement 

Learning (MADRL). 

Deep 
Reinforcement 

Learning (DRL). 

Communication 

Message-Oriented 
Middleware (MOM) 

(e.g., MQTT, Kafka) for 
asynchronous 

communication between 
system components. 

Often not explicitly 
addressed; many 

approaches assume 
centralized control or 

limited communication. 

Decentralized 
communication 
between agents 

(implicit in MADRL). 

Edge computing; 
communication 

between vehicles 
and edge servers. 

Scalability 

High; modular design 
and MOM facilitate 
scaling to multiple 
intersections and 

Varies widely; many 
approaches are limited 
to single intersections 

or small networks. 

Designed for large-
scale networks. 

Designed for 
vehicular networks, 
potentially scalable. 
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integrating new 
components. 

Adaptability 

High; adaptive to real-
time traffic conditions, 

weather, and events; can 
integrate new data 
sources (e.g., V2X) 

easily. 

Varies; adaptive 
approaches are 

designed to adapt, but 
the level of 

adaptability and the 
mechanisms used 

differ significantly. 

High; DRL agents 
learn to adapt to 

changing conditions. 

High; DRL agents 
learn to adapt to 

changing 
conditions. 

Multi-modality 

Potential for future 
integration of multi-

modal data (pedestrians, 
cyclists, public 

transport), but the 
current focus is on 
vehicular traffic. 

Generally limited; most 
approaches focus 

primarily on vehicular 
traffic. 

Primarily focused on 
vehicular traffic. 

Primarily focused 
on vehicular traffic. 

Evaluation Simulation using 
SUMO. 

Primarily surveys and 
reviews existing 
research, various 

evaluation methods. 

Simulation. Simulation. 

Table 2. Comparison Of The Proposed Integrated Strategy With Existing Adaptive Traffic Signal Control Approaches
 
 
As shown in Table 2, the proposed integrated 

strategy distinguishes itself from many previous 
approaches through its comprehensive integration of 
real-time prediction, a scalable optimization 
algorithm (Simulated Annealing), and a flexible, 
message-oriented communication infrastructure. 
While several studies have explored reinforcement 
learning for traffic signal control, these approaches 
often face challenges in terms of computational 
complexity and training data requirements. Our use 
of Simulated Annealing provides a practical balance 
between optimization performance and 
computational efficiency, making it suitable for real-
time implementation. Furthermore, the explicit 
incorporation of a message-oriented middleware 
(MOM) enhances the system's scalability and 
adaptability, features that are often lacking in 
centralized control architectures. Unlike many 
approaches that focus solely on vehicular traffic, our 
system's modular design allows for future 
integration of data from other modes of 
transportation, paving the way for multimodal traffic 
management. 

Future research will focus on several primary 
areas. First, the use of vehicle-to-everything (V2X) 
communication data will be investigated. This will 
involve developing algorithms that can effectively 
leverage the plentiful information provided by 
connected vehicles to further enhance traffic flow 
forecasts and enable more accurate control 
algorithms. Second, the coordination of traffic 
signals across a series of intersections will be 
considered. This will involve developing distributed 
optimization algorithms that can optimize signal 

times across a whole network or corridor, taking into 
account interactions between adjacent intersections. 
Third, more advanced machine learning techniques, 
such as deep reinforcement learning, will be 
explored for traffic flow prediction and signal 
control. Computationally expensive, these 
techniques have the potential to further improve the 
performance and flexibility of the system. Finally, 
the system will be continued to be improved with 
regard to incorporating considerations on the other 
means of transport like pedestrians, cycling, and 
mass transport towards making it a fully multimodal 
and integrated urban traffic management system. 
The overcoming of these challenges will pave the 
way towards the realization of intelligent and 
sustainable traffic management solutions in practical 
urban settings. 

7. CONCLUSION AND PERSPECTIVES 

 
This study has demonstrated the great potential of 

an integrated solution for optimizing traffic flow 
within cities, combining real-time traffic flow 
estimation, adaptive traffic light control, and a 
distributed, message-based communication system. 
By employing realistic simulations on the basis of 
the SUMO traffic simulator, it has been proven that 
this integrated system is able to achieve significant 
reductions in average waiting time of vehicles, 
pollutant emissions, and fuel consumption compared 
to traditional fixed-time signal control strategies. All 
these developments are a direct result of the dynamic 
response of the system under changing traffic 
conditions through leveraging the precision of short-
term traffic prediction, optimization power of the 
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Simulated Annealing algorithm, and low-latency 
messaging offered by the message-oriented 
middleware. 

The greatest contribution of this research is the 
synergistic integration of these three basic 
constituents – prediction, optimization, and 
communication – into a holistic and adaptable 
system. Unlike most existing approaches that focus 
on one or two of them, the system in this work 
presents a complete solution that addresses the 
multi-dimensional challenges of urban traffic 
management. The modularity facilitated by the 
message-oriented middleware is particularly 
important because it enables the flexible addition of 
new data sources, algorithms, and services, ensuring 
the long-term scalability and adaptability of the 
system. 

The broader implications of this study extend 
beyond the specific findings realized in the 
simulation study. The demonstrated improvements 
in traffic flow efficiency, reduced emissions, and 
improved adaptability have significant potential to 
impact the quality of urban life. Through the relief 
of congestion, this solution can shorten journey 
times, provide improved air quality, reduced fuel 
usage, and a more sustainable and green transport 
network. Besides, the ideas and methods presented 
in this book can be applied to numerous other urban 
traffic control scenarios, allowing for the 
development of more intelligent, adaptive, and 
resilient transportation systems. 

To the future, there exist several promising 
research directions worthy of investigation. 
Probably the most significant opportunity is the 
merging of data from connected and autonomous 
vehicles (CAVs) via vehicle-to-everything (V2X) 
communication. CAVs can potentially provide very 
fine-scale, real-time information on vehicle 
positions, velocities, and intended routes, enabling 
even more precise traffic flow forecasting and more 
sophisticated control strategies to be implemented, 
such as coupling signal timings to the path of 
specific vehicles. Another key area of future 
research is extending the system to manage traffic at 
multiple connected intersections. The development 
of distributed optimization algorithms that are able 
to coordinate signal timings across an entire corridor 
or network, taking into account the complex 
interactions between adjacent intersections, is a 
challenging but critical step towards network-wide 
traffic optimization. Finally, the incorporation of 
considerations for non-motorized and emerging 
modes of transportation, such as bicycles, electric 
scooters, and autonomous shuttles, is required in 
order to cater to the evolving demands of multimodal 

urban mobility. This involves the development of 
more integrated models and optimization algorithms 
that can deal with the different needs and 
requirements of all road users, enhancing safety, 
efficiency, and equity in the overall transport 
network. 

In conclusion, this research provides a solid 
foundation for the development of next generation 
intelligent traffic management systems. By 
embracing the power of data-driven prediction, 
adaptive control, and robust communication, we can 
move towards a future where urban traffic flows 
more smoothly, safely, and sustainably, contributing 
to more livable and vibrant cities. 
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