
 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3159

GENERATING OPTIMAL TEST CASES USING ELITIST
GENETIC ALGORITHM

1ASHOK KUMAR BANDLA, 2C S PAVAN KUMAR, 3DR K KOTESWARA RAO, 4DR O. RAMA
DEVI, 5DR KALAIVANI K, 6KOLACHANA SWETHA, 7DR. CHANDANAPALLI SURESH BABU

1Assoc Prof, Dept. of CSE(AI&ML), Ramachandra College of Engineering, Eluru, Andhra Pradesh.
2Asst Professor, Dept.of IT, Siddhartha Academy of Higher Education (Deemed to be Univ.), Vijayawada.

3Assoc Professor, Dept.of CSE, PVP Siddhartha Institute of Technology Vijayawada, Andhra Pradesh
4Prof & HOD, Dept. of AI&DS, Lakireddy Balireddy College of Engineering, Mylavaram, Andhra Pradesh

5Assoc.Professor& HOD, Dept. of IT, Vignana Bharathi Institute of Technology, Ghatkesar, Hyderabad,
6Asst Professor Dept. of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur AP.

7 Professor, Dept. of IT, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru. Andhra Pradesh
Email: drkoteswararo83@gmail.com

ABSTRACT

 In order to reduce the number of test cases that do not significantly improve the mean of test coverage or
where the test cases are unable to isolate mistakes, this research study examines the use and efficacy of the
Elitist genetic algorithm. In this work, a genetic algorithm is used to help minimize or optimize the test
cases. The algorithm creates the initial population at random, determines the fitness value using coverage
metrics, and then uses genetic operations such as selection, cross-over, and mutation to select the offspring
in successive generations. Specific genetic modeling processes may differ from standard genetic algorithms
depending on the task. This generation process is performed until the fitness values remain unchanged for
two successive generations. Convergence or a reduced test case is reached when the data generation
remains unchanged for two iterations. The findings of study reveal that, genetic algorithms can greatly
reduce the amount of the test cases
Keywords: Elisist GA, Test Case, Optimal, NP Complete, Minimize

1. INTRODUCTION

Random testing is a black-box software

testing technique where programs are tested by
generating random, independent inputs. Among the
various software testing techniques, Random
Testing (RT) is the most fundamental strategy. It is
simple in concept, often easy to apply, can exercise
the software under test in unexpected ways, and has
demonstrated effectiveness in detecting failures.
Random number is widely used in cryptographic
applications, which is mainly used as key. Because
the security of key totally depends on the amount
and randomness of itself, and very important to
produce random numbers for cryptographic
applications. Random number generators widely
employed in commercial applications do not strictly
guarantee these requirements. However, a major
challenge for these approaches is the undetermined,
two-dimensional, and combinatorial huge input
space that they have to explore and exercise
automatically.

The time test data generation using hybrid
method that takes the advantages of both static and

dynamic method was done. Software testing
remains an extremely costly activity in the software
engineering lifecycle, and as such, its automation
continues to be of high concern. To generate tests
that cover all of the branches in a class, the class
must be instantiated, and a method call sequence
may need to be generated to put the object into a
certain state. Generating unit test suites
automatically is an important contribution towards
improving software quality, and techniques like
search-based software testing dynamic symbolic
execution can efficiently produce test suites
achieving high code coverage Model-based system
testing of applications with a GUI front-end to be
more cost-effective and efficient compared to their
traditional record-then-replay counter parts. A
modification of RT exists to improve its efficiency,
such as Adaptive Random Testing (ART) ART
used to test numerical programs, based on failure
patterns which consists of three categories: block
pattern, strip pattern, and point pattern. However,
ART is less efficient than random testing because
of the extra task of ensuring even spreading of test
cases, where the efficiency is measured in terms of

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3160

the time to generate a test case. Random generation
of test data is based on selective inputs of some
distribution. Path- oriented and structural
approaches use the program’s control flow graph
for test data generation; they select a path, and use a
technique such as symbolic execution for
generation of test data. Goal-oriented test-data
generation approaches select inputs to execute the
selected goal, such as statement, condition
coverage, decision coverage, irrespective of the
path taken. The basis for a diagnosis is a test suite,
and often the existing test suite is not optimized for
producing high-quality diagnostic reports. Hence it
is important to generate tests to improve diagnosis.
There are many available test generation techniques
Search-Based Software Testing (SBST). Global
search algorithms are Genetic Algorithms.[28]
Modern systems are highly configurable to satisfy
various needs of users For example, software
applications running on mobile phones can
configured with many features type of phone,
operating system and installed application} Each
configuration represent a different product and it
may exhibit different failures. In industrial systems,
there are typically millions of possible
configurations where possibly a small sub set of
configurations can trigger failures, the question is
how to maximize failure detection when it is not
possible to test all configurations [29]

Debugging is a time-consuming task in
software development. Although various automated
approaches have been proposed, they are not
effective enough. On the other hand, in manual
debugging, developers have difficulty in choosing
breakpoints. To address these problems and help
developers locate faults effectively, interactive
fault-localization framework is used which
combines the benefits of automated approaches and
manual debugging. Before the fault is found, the
framework continuously recommends checking
points based on statements' suspicions, which are
calculated according to the execution information
of test cases and the feedback information from the
developer at earlier checking points. This process
of interactive fault detection makes qualities of
software to improve to a greater extends. The
interactive fault analysis makes the process more or
less effective in software testing scenario. The
major objective of our proposed method is to
reduce the interactive faults that exist while
designing software [30]. The interactive fault
basically reduces the quality of particular software.
Hence we have designed an efficient technique
where soft computing technique like adaptive

genetic algorithm for optimizing the test cases that
are being generated
.
2. PROBLEM STATEMENT: Scalability and
effectiveness is an important problem that needs to
be considered while testing and it is a critical issue
in the software industry. Many studies on real-
world software are not so common and this is in
part due to the huge computational time that is
required to carry them out. The general purpose of
random testing is to generate as many test cases as
possible in such a way that they help uncover as
many faults as many coverage targets as possible.
Test cases trigger failures and do not directly
uncover faults; from a mathematical standpoint we
cannot consider faults as targets. Test cases are
chosen with the constraint that at least one test case
is chosen from each sub-domain. For example, each
functionality of the software can be considered as a
different sub-domain to test. During the generation
of test cases, depending on the specifics of the
partition strategy, had to generate and run several
test cases to verify whether they belong to partition
or not. An observation is showing that many
program faults result in failures in contiguous areas
of the input domain. ART systematically guides, or
filters, randomly generated candidates, to take
advantage of the likely presence of such inputs,
which attempt to improve the failure-detection
effectiveness of random testing. Regions of the
input domain where the software produces outputs
according to specification will also be contiguous.
Therefore, given a set of previously executed test
cases that have not revealed any failures, new test
cases located away from these old ones are more
likely to reveal failures.

3. PROPOSED METHOD OF

IMPLEMETATION AND SOLUTION:

Software testing is huge and different field,
replicating the different requirements that software
artifacts must satisfy the different activities
involved in testing and the different levels at which
software can be checked. Arbitrary testing
generates test inputs arbitrarily from the input space
of the software under test. The basic feature of a
random test generation technique is that it produces
test inputs at arbitrary from a grammar or some
other formal artifact explaining the input space. The
most important purpose of the suggested method is
to increase an effective technique for decreasing
interactive faults based on optimal test case in
direct random testing. For the generation of test
cases the suggested method is employing Object

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3161

Behavior Dependence Model (OBDM). The
resulting inputs are fed to the GA, SGA, EGA after
the test case generation. In Elisist Genetic
Algorithm the optimal inputs are produced which
decrease the illegal inputs and equivalent inputs,
and there by it decreases the fault proneness. The
specified process of executed method is illustrated
in Figure 31. The block diagram of the suggested
method is illustrated in below,

.Fig 3.1 Block diagram

 Dependency Model: In sequence diagram set of
nodes representing objects (Ob) and set of edges
that indicate the function (F) where, F ϵ Sf
represents the synchronous function. Function has
the following six attributes and has a direct
dependency between the source and destination
objects.
 Fsource ϵ Ob - Source of the function
 Fdest ϵ Ob - Destination of the function and where
Fsource ≠ Fdest

 Fname - Name of the function
 FBW ϵ Sf- Backward navigable function and where,
FBW ≠ F it is denoted as “-”.
FER - Probabilistic execution rate of a function in a
Sequence Diagram and where, 0 ≤ FER ≤ 1 and the
default value is 1.
FEER- Expected execution rate of a function in a
Sequence Diagram and where, 0 ≤ FEER ≤ 1 and the
default value is 1.We consider a branch control
structure of a source code, in which the execution
rate of a function may be affected. Consider a
function is in an alt combined fragment and only
when the condition in the fragment is satisfied. If
the function is executed within this condition
fragment, then the probability of execution rate of a
function is 0.5. Otherwise, the default value is 1.
The expected execution rate of a function is a
probability of the execution rate of a sequence
diagram. In other words, it is the probability of the
execution time for the total number of functions in
a particular class to the execution time for the total
number of functions in the whole input application.
The function in a sequence diagram is executed
only when it is activated. The default value of FEER

is also 1.Our proposed method has two stages
namely,

1. Test case generation
 Dependence Model of

Object Behavior
2. Optimal Test Case Generation

 Genetic Algorithm
(AGA)

 Steady state Genetic
Algorithm (SGA)

 Elisist Genetic
Algorithm (EGA)

Stage 1:
4.1 Test Case Generation

The suggested method produces the test
cases based on the Dependence Model of Object
Behavior. The application which we are checking,
takes as an input for object behavior dependence
model in software testing. Each application has the
number of function that is employed for the
generation of test case. The suggested DM method
principally focuses on the functions and coverage
metrics of the application that we are applied for
the test case generation. This will avoid generating
duplicate and insignificant test cases. The function
name is symbolized as a variable in our executed
method. In flowchart (Figure 4.1) the overall
process of test case generation is illustrated and
specifically made cleared below with some
examples,

 Fig 4.1 Test Case Generation

Figure.4.1 illustrates the generation process of test
case. Reflect on each function as the source
function. For each source function, a variable name
is specified, and then each function is verified to
find whether it is previously allocated for some
other task. If it has previously allocated, next
related variable name should be assigned in the test
case, or else, it is allocating as illogical. If any

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3162

function contains "if" condition, then it allocates
0.5 values in the test case or else it assigns one. For
the given function, the ratio will be worked out and
at last it symbolizes the destination function. All the
test cases are attached to the coverage metrics. Here
we assume the probability value, any function
consists “if” condition we assign 0.5 value in other
cases we assign one. Ratio value will be calculated
for the given function and finally represent the
destination function. Then add all the test case to
the coverage metrics.

The suggested method employs only the line

coverage and loop coverage from the coverage

metrics.

Line coverage:

 Line coverage is as well identified as the
statement coverage or segment coverage. Only
correct conditions are wrapped by line coverage. It
as well measures the quality of the code and makes
sure the flow of different path in that code.

Loop coverage:

This coverage metrics reports whether
each loop body is implemented zero times,
precisely once and more than once. This metrics
reports whether loop body is implemented precisely
once and more than once for do-while loops. And
as well, while-loops and for-loops perform more
than once. This data is not accounted by other
coverage metrics. For example, reflect on one
application; it has two classes with four functions
here the function names are symbolized as a
variable one. The specified process illustrated in
table.

Variable name for the functions A1, A2, B1, B2
and C1 are F1, F2, F3, F4 and F5. In the proposed

method, the test case contains source function
name, probability value, ratio value, destination
function name, line coverage and loop coverage.
Test case generation process with the
corresponding example is given below,
Test case 1: [F1, -, 0.5, 2/5=0.4, F2] + line
coverage + loop coverage
Test case 2: [F1, -, 0.5, 2/5=0.4, F1] + line
coverage + loop coverage
Test case 3: [F2, -, 1, 1/5=0.2, F5] + line coverage
+ loop coverage
We take the input function is banking application. It
contains nearly 47 classes and 108 functions. Total
number of test case generation in stage 1 is around
661. In next stage resulting test cases are fed to the
GA, adaptive genetic algorithm, PSO. Since we
will produce test cases in each time, it encloses
some resemblance on each time. The suggested
method employs the adaptive genetic algorithm in
order to decrease the fault occurrence of the test
cases.
Stage 2:
4.2 Optimal Test Case Generation: False
reduction is basically defined as the reduction of
added parameters which are not required for
processing. In the proposed method, we generate
enormous test cases in which some of those test
cases are not required for processing. Also there
may be similar test cases that are being generated at
each time interval. In order to select the concerned
test cases, we require some efficient techniques.
The next stage of the suggested method is false
reduction by means of the GA, Steady State
Genetic Algorithm (SGA) and EGA. Here in the
proposed method Messy genetic algorithm for
obtain optimized results. In this research, the
optimal inputs will be produced based on Elisist
Genetic Algorithm (E) which will decrease the
illegal inputs and equivalent inputs.

4.2.1Genetic Algorithm: It is a stochastic
algorithm: Randomness has to be essential role in
GAs. Both selection and reproduction need random
procedures GA always considers a population of
solutions keeping in memory more than a single
solution at each iteration offers a lot of advantages

The simple form of GA
1. Start with randomly generated population
2. Calculate the fitness of each chromosome

in the population
3. Repeat the following steps until n off

springs have been created
 Select a pair of parent

chromosomes from current
population

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3163

 With probability Pc crossover the
pair at randomly chosen point to
form two offspring’s

 Mutate the two offspring’s at
each locus with probability Pm

4. Replace the current population with the
new population

5. Go to step 2
Generally, the initial population is generated
randomly then the generation is loops over an
iteration process to make the population evolve
each iteration consists of the following

1. Selection: The first step consists in
selecting individuals for reproduction.
This selection is done randomly with
probability depending on the relative
fitness of individuals

2. Reproduction: This step consists of both
recombination and mutation

3. Evaluation: Then the fitness of new
chromosome is evaluated

4. Replacement: Individuals from the old
population are killed and replaced by new
ones

Fig 4.3 GA procedure

4.2.2 Steady State Genetic Algorithm (SGA):
A Steady State Genetic Algorithm (SGA) is a
type of genetic algorithm that continuously updates
a small portion of the population instead of
replacing the entire generation at once. This
approach ensures a steady evolution of solutions,
maintaining genetic diversity while converging
efficiently.

Step 1: Initialize Population
 A population of individuals (chromosomes) is

randomly generated.
 Each chromosome represents a potential solution to

the problem, encoded as a binary string, real
numbers, or other representations.

 The population size (N) is fixed but remains
unchanged throughout the process.
Step 2: Evaluate Fitness

 Each chromosome is assessed using a fitness
function, which quantifies how well it solves the
problem.

 The fitness score determines the probability of
selection for reproduction.
Step 3: Selection of Parents

 Two individuals (parents) are selected based on
their fitness. Common selection methods include:

o Roulette Wheel Selection – Probability-based
selection favoring fitter individuals.

o Tournament Selection – A subset of the
population competes, and the best individual is
chosen.

o Rank-Based Selection – Individuals are ranked,
and selection is based on rank.
Step 4: Crossover (Recombination)

 The selected parents undergo crossover to create
offspring (one or two children).

 Common crossover techniques:
o Single-Point Crossover: A random point is

chosen, and genetic material is swapped.
o Two-Point Crossover: Two crossover points are

used.
o Uniform Crossover: Genes are randomly inherited

from each parent.
Step 5: Mutation

 A small random modification is applied to the
offspring to introduce genetic diversity.

 Mutation types:
o Bit Flip Mutation (for binary chromosomes).
o Gaussian Mutation (for real-valued encoding).

Step 6: Replacement Strategy
 Instead of replacing the entire population, SGA

replaces only a few individuals (usually the worst-
performing ones).

 The worst individuals are removed, and the
newly created offspring take their place.

 This ensures steady evolution without sudden
changes in the population.
Step 7: Repeat the Process

 Steps 2 to 6 are repeated continuously.
 Since only a small portion of the population is

replaced at a time, the algorithm maintains stability
and gradual convergence.

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3164

Step 8: Termination Criteria
The algorithm stops when:

 A predefined number of iterations is reached.
 A solution reaches an acceptable fitness level.
 No improvement is observed for several

generations.
Steady State Genetic Algorithm (SGA) ensures
continuous, gradual evolution, avoiding drastic
population changes. It is effective for dynamic
environments where maintaining genetic diversity
is essential. Its steady replacement strategy helps
in maintaining stability while progressively
improving solutions.

Figure 4.4 Flowchart for the proposed steady State

genetic algorithm
The optimal result is contrasted to all the function
after getting result from the adaptive genetic
algorithm. If any function of the application not in
the optimal result then the consequent function can
be eliminated from the application. Hence that
adaptive genetic algorithm attains decrease of faults
rate based on the optimal test case. This method,
the process of AGA is selecting the optimal
flawless test cases which are suitable for the input
application. The false reduction is thus obtained
using the optimization algorithm. We obtain the
optimized result based on the fitness value that we
assign for AGA. The test cases that we give to the
optimization algorithm are processed based on the
fitness values. Test cases with high fitness value
indicate the bug free application. Hence by using
the AGA we obtain required test cases for our
proposed method
4.2.3Step-by-Step Process of Elitist GA (Genetic
Algorithm)
Elisist GA is an advanced genetic algorithm
designed for optimization problems. It follows an
evolutionary approach to find the best solutions by
mimicking natural selection. Below is a step-by-
step breakdown of how Elisist GA works:

1. Initialization
 A population of potential solutions (chromosomes)

is randomly generated.
 Each chromosome represents a possible solution,

encoded as a string (binary, real-valued, or other
formats).

 The population size is chosen based on problem
complexity.
2. Fitness Evaluation

 Each chromosome is evaluated using a fitness
 function, which determines how well it solves the

given problem.
 The fitness score influences the probability of a

chromosome being selected for reproduction.
3. Selection (Survival of the Fittest)

 The best-performing chromosomes are selected for
reproduction using techniques like:

o Roulette Wheel Selection (probability-based
selection).

o Tournament Selection (selecting the best from a
subset).

o Rank-Based Selection (assigning ranks to
solutions).

 The goal is to ensure that good solutions survive
and pass their traits to the next generation.
4. Crossover (Recombination)

 Two selected parent chromosomes exchange
genetic material to create offspring.

 Common crossover techniques include:
o Single-Point Crossover: One point is selected, and

genes are swapped.
o Multi-Point Crossover: Multiple crossover points

are chosen.
o Uniform Crossover: Each gene is inherited

randomly from either parent.
 This step introduces diversity and combines good

traits from different parents.
5. Mutation

 Small, random changes are introduced in some
chromosomes to maintain diversity.

 Mutation prevents premature convergence and
helps escape local optima.

 Mutation types include:
o Bit Flip Mutation (for binary encoding).
o Gaussian Mutation (for real-valued encoding).

6. Adaptive Optimization (Unique to Elisist GA)
 Unlike traditional GAs, Elisist GA dynamically

adjusts mutation rates and selection pressure based
on the search progress.

 This self-adaptation helps balance exploration and
exploitation.
7. New Generation Formation

 The new generation of chromosomes replaces the
old population.

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3165

 The process repeats from Step 2 (Fitness
Evaluation).
8. Termination Criteria
The algorithm stops when:

 A predefined number of generations is reached.
 A satisfactory fitness level is achieved.
 No significant improvement occurs over several

generations.
Elitist GA enhances traditional genetic algorithms
by adapting evolutionary parameters
dynamically, making it highly effective for
complex optimization problems. Its self-learning
capabilities and efficient selection mechanisms
enable faster convergence to optimal solutions.

Figure 4.5 Flowchart For The Proposed Elisist Genetic

Algorithm

5. RESULTS AND DISCUSSION

In the experiment, the researchers have
utilized the GA, Steady State Genetic Algorithm
and EGA for Optimal Test Cases in Directed
Random Testing. By observing the Table 5.1 the
fitness value for the suggested technique is verified
to be superior to the technique where
EGA,SGA,GA is applied.

Table 5.1: Fitness comparison for different
iterations using EGA, SGA and GA.

Iterations

Fitness values

EGA

SGA

GA

25 680 567 631

50 640 540 620
75 593 485 568

100 587 465 486

Table 5.2: Test Count Value After Optimization.

Iterations

Test case count

EGA

SGA

GA

25

454

465

487

50

443

450

481

75

427

451

472

100

404

442

4549
The table 5.3, 5.4 given below shows the time and
memory usage of our proposed methodology. For
each iteration the corresponding time and memory
usage are calculated and the results are tabulated.
By reducing the interactive faults here we reduce
the execution time and memory usage. When the
iteration increases, the time usage and memory
usage reduce automatically in EGA only

 Table 5.3: Time Usage For Different Iterations.

Iteration

Time usage (milliseconds)

EGA

SGA

GA

25

4366

4631

5324

50

4489

4788

5475

75

4635

4834

5578

100

4612

4892

5851

Table 5.4: Memory Usage For Different Iterations.

Iteration
Memory usage (bits)

EGA

SGA

GA

25

3597136

3687104

3788436

50

3112288

3528428

3646828

75

2984680

3152221

3398761

100

2299412

2885821

3257892

6. CONCLUSION AND FUTURE WORK
In this work, the authors have proposed a

method for reducing interactive faults based on
optimal test cases in directed random testing. The
implemented method is used to optimal test cases
using Elitist Genetic Algorithm. Here, EGA

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3166

generates the optimal result which reduces the
prohibited inputs. In order to reduce the faults, the
proposed method uses the coverage metrics. The
result shows that our proposed method removes the
ambiguity of randomly generated test cases and
produces the optimal results than SGA and GA. In
future, researchers can adopt test case distribution
metrics as test case selection criteria for obtaining
high coverage test cases quickly and can use some
other metaheuristic search tools to produce flawless
test cases like Hybrid and Parallel Genetic
Algorithm can be compared with variants of
Particle Swarm Optimization.

REFERENCES
[1]. Vahid Garousi, “A Genetic Algorithm-Based

Stress TestRequirements Generator Tooland Its
Empirical Evaluation”, IEEE transactions on
software engineering, vol. 36, no. 6, December
2010

[2]. Reza MeimandiParizi, Abdul Azim Abdul
Ghani, Rusli Abdullah, and RodziahAtan, “On
the Applicability of Random Testing for
Aspect-Oriented Programs”, International
Journal of Software Engineering and its
Applications Vol. 3, No. 4, October, 2009.

[3]. Bo Yu, Zeliang Pang, “Generating Test Data
Based on Improved Uniform Design Strategy”,
International Conference on Solid State
Devices and Materials Science,
vol.25,pp.1245-1252, 2012.

[4]. Lin Padgham, Zhiyong Zhang, John
Thangarajah, and Tim Miller, “Model-Based
Test Oracle Generation for Automated Unit
Testing of Agent Systems”, IEEE Transactions
On Software Engineering,vol.39,no.9,1230-
1244,2013.

[5]. Bestoun S. Ahmed, Mouayad A. Sahib, and
Moayad Y. Potrus, “Generating combinatorial
test cases using Simplified Swarm
Optimization (SSO) algorithm for automated
GUI functional testing”, International Journal
an Engineering Science and
Technology,vol.17, pp.218-226,2014.

[6]. Leandro L. Minku, Dirk Sudholt, and XinYa,
“Improved Evolutionary Algorithm Design for
the Project Scheduling Problem Based on
Runtime Analysis”, IEEE Transactions On
Software Engineering, vol.40,no.1,pp.83-102,
2014.

[7]. JunpengLv, Hai Hu, Kai-Yuan Cai, and
TsongYueh Chen, “Adaptive and Random
Partition Software testing”, IEEE Transactions
On Systems Man And Cybernetics: Systems,
vol.44, no.12, pp.1649-1664, 2014.

[8]. Phil McMinn, Mark Harman, KiranLakhotia,
Youssef Hassoun, and Joachim Wegener,
“Input Domain Reduction through Irrelevant
Variable Removal and Its Effect on Local,
Global, and Hybrid Search-Based Structural
Test Data Generation, IEEE Transactions On
Software Engineering, vol.38,no.2,pp.453-477,
2012.

[9]. Tao Yuan, Xi Liu and Way Kuo, "Planning
Simple Step-Stress Accelerated Life Tests
Using Bayesian Methods", IEEE Transactions
on Reliability, Volume: 61,Pp: 254 - 263,
March 2012.

[10]. Wu, J."Stress testing software to determine
fault tolerance for hardware failure and
anomalies", AUTOTESTCON, 2012 IEEE,
Sept. 2012.

[11]. Jianhui Jiang and Jipeng Huang, "System
Modules Interaction Based Stress Testing
model",IEEE transaction on application
software,March 2011

[12]. Daning Hu, J.Leon Zhao and Zhimin Hua,
"Banking Event Modeling and Simulation in
Scenario-Oriented Stress
Testing",springer,Volume 108,pp 379-389,
2012

[13]. EduardasBareisa, Vacius Jusas, Kestutis
Motiejunas and Rimantas Seinauskas “the
non-scan delay test enrichment based on
random generated long test sequences”, issn
1392 – 124x information technology and
control, Vol. 39, No. 4, 2010.

[14]. Bo Zhou, Hiroyuki Okamura and Tadashi
Dohi, “Enhancing Performance of Random
Testing Through Markov Chain Monte Carlo
Methods”, IEEE transactions on computers,
journal of latex class files, vol. 6, no. 1,
January 2011.

[15]. Ah-Rim-Hom “Measuring Behavioral
Dependency for Improving Change Proneness
Prediction in UML Based Model” The Journal
of Systems and Software 83 (2010) 222–234

[16]. ZhiQuan Zhou, ArnaldoSinaga and Willy
Susilo “On the Fault-Detection Capabilities of
Adaptive Random Test Case Prioritization:
Case Studies with Large Test Suites”, Hawaii
International Conference on System Sciences,
pp.5584-5593, 2012.

[17]. Kempka, Joseph, Phil McMinn, and Dirk
Sudholt. “A theoretical runtime and empirical
analysis of different alternating variable
searches for search-based testing.” Proceeding
of conference on Genetic and evolutionary
computation conference. ACM, 2013.

[18]. Juan Pablo Galeotti, Gordon Fraser and

 Journal of Theoretical and Applied Information Technology
30th April 2025. Vol.103. No.8

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3167

Andrea Arcuri, “Improving Search-based Test
Suite Generation with Dynamic Symbolic
Execution”, In proceeding of IEEE
International Symposium on Software
Reliability Engineering (ISSRE) , pp.360-369,
2013.

[19]. McMinn, Phil. "An identification of
program factors that impact crossover
performance in evolutionary test input
generation for the branch coverage of C
programs." Information and Software
Technology, pp.153-172, 2013.

[20]. Fraser, Gordon, Andrea Arcuri, and Phil
McMinn. "A Memetic Algorithm for Whole
Test Suite Generation." Journal of Systems and
Software, pp.1-36, 2014.

[21]. Joao Dionisio, Tiago Mota, Iola Pinto,
Manfred Niehus, “Real Time Random Number
Generator Testing”, Conference on Electronics,
Telecommunications and Computers.vol.17,
pp.534-541, 2014.

[22]. XiamuNiu,Yongting Wang, Di Wu “A
Method to Generate Random Number for
Cryptographic Application” In proceeding of
International Conference on Intelligent
Information Hiding and Multimedia Signal
Processing, pp.235-238. 2014.

[23]. Ali Darvish Carl K. Chang “Black-box
Test Data Generation for GUI Testing” In
proceeding of IEEE International Conference
on Quality Software, PP.133-138, 2014.

[24]. PoonamMalpani and ParasBassi
“Analytical & Empirical Analysis of External
Sorting Algorithms”, International Conference
on Data Mining and Intelligent
Computing,pp.1-6, 2014.

[25]. I PutuEdySuardiyana Putra and
PetrusMursanto, “Centroids Based Adaptive
Random Testing for Object Oriented
Program”, in proceeding of IEEE International
Conference on Advanced Computer Science
and Information Systems,pp.39-45,2013.

[26]. Thomas Arts, Alex Gerdes and Magnus
Kronqvist, “Requirements on automatically
generated random test cases”, In Proceedings
of IEEE Federated Conference on Computer
Science and Information Systems, PP.1347-
1354,2013.

[27]. S. Rajasekaran, G. A. Vijayslakshmi Pai
“Neural Networks, Fuzzy Logic and Genetic
Algorithms “PHI 2003 ISBN 971-81-203-
2186-1

[28]. Rao, K. Koteswara, and G. S. V. P. Raju.
"Developing optimal directed random testing
technique to reduce interactive faults-

systematic literature and design
methodology." Indian Journal of Science and
Technology 8.8 (2015): 715.

[29]. Praveen, S., et al. "The efficient way to
detect and stall fake articles in public media
using the block chain technique: Proof of
trustworthiness." International Journal on
Emerging Technologies 11.3 (2020): 158-163.

[30]. Kumar, J. Ratna, K. Koteswara Rao, and
D. Ganesh. "Empirical investigations to find
illegal and its equivalent test cases using
RANDOM-DELPHI." International Journal of
Software Engineering and Its Applications 9.11
(2015): 107-116.

