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ABSTRACT 

 
 In order to reduce the number of test cases that do not significantly improve the mean of test coverage or 
where the test cases are unable to isolate mistakes, this research study examines the use and efficacy of the 
Elitist genetic algorithm. In this work, a genetic algorithm is used to help minimize or optimize the test 
cases. The algorithm creates the initial population at random, determines the fitness value using coverage 
metrics, and then uses genetic operations such as selection, cross-over, and mutation to select the offspring 
in successive generations. Specific genetic modeling processes may differ from standard genetic algorithms 
depending on the task. This generation process is performed until the fitness values remain unchanged for 
two successive generations. Convergence or a reduced test case is reached when the data generation 
remains unchanged for two iterations. The findings of study reveal that, genetic algorithms can greatly 
reduce the amount of the test cases 
Keywords:  Elisist GA, Test Case, Optimal, NP Complete, Minimize 
 
 
1. INTRODUCTION 

 
Random testing is a black-box software 

testing technique where programs are tested by 
generating random, independent inputs. Among the 
various software testing techniques, Random 
Testing (RT) is the most fundamental strategy. It is 
simple in concept, often easy to apply, can exercise 
the software under test in unexpected ways, and has 
demonstrated effectiveness in detecting failures. 
Random number is widely used in cryptographic 
applications, which is mainly used as key. Because 
the security of key totally depends on the amount 
and randomness of itself, and very important to 
produce random numbers for cryptographic 
applications. Random number generators widely 
employed in commercial applications do not strictly 
guarantee these requirements. However, a major 
challenge for these approaches is the undetermined, 
two-dimensional, and combinatorial huge input 
space that they have to explore and exercise 
automatically. 

The time test data generation using hybrid 
method that takes the advantages of both static and 

dynamic method was done. Software testing 
remains an extremely costly activity in the software 
engineering lifecycle, and as such, its automation 
continues to be of high concern. To generate tests 
that cover all of the branches in a class, the class 
must be instantiated, and a method call sequence 
may need to be generated to put the object into a 
certain state. Generating unit test suites 
automatically is an important contribution towards 
improving software quality, and techniques like 
search-based software testing dynamic symbolic 
execution can efficiently produce test suites 
achieving high code coverage Model-based system 
testing of applications with a GUI front-end to be 
more cost-effective and efficient compared to their 
traditional record-then-replay counter parts. A 
modification of RT exists to improve its efficiency, 
such as Adaptive Random Testing (ART) ART 
used to test numerical programs, based on failure 
patterns which consists of three categories: block 
pattern, strip pattern, and point pattern. However, 
ART is less efficient than random testing because 
of the extra task of ensuring even spreading of test 
cases, where the efficiency is measured in terms of 
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the time to generate a test case. Random generation 
of test data is based on selective inputs of some 
distribution. Path- oriented and structural 
approaches use the program’s control flow graph 
for test data generation; they select a path, and use a 
technique such as symbolic execution for 
generation of test data. Goal-oriented test-data 
generation approaches select inputs to execute the 
selected goal, such as statement, condition 
coverage, decision coverage, irrespective of the 
path taken. The basis for a diagnosis is a test suite, 
and often the existing test suite is not optimized for 
producing high-quality diagnostic reports. Hence it 
is important to generate tests to improve diagnosis. 
There are many available test generation techniques 
Search-Based Software Testing (SBST). Global 
search algorithms are Genetic Algorithms.[28] 
Modern systems are highly configurable to satisfy 
various needs of users For example, software 
applications running on mobile phones can 
configured with many features type of phone, 
operating system and installed application} Each 
configuration represent a different product and it 
may exhibit different failures. In industrial systems, 
there are typically millions of possible 
configurations where possibly a small sub set of 
configurations can trigger failures, the question is 
how to maximize failure detection when it is not 
possible to test all configurations [29] 

Debugging is a time-consuming task in 
software development. Although various automated 
approaches have been proposed, they are not 
effective enough. On the other hand, in manual 
debugging, developers have difficulty in choosing 
breakpoints. To address these problems and help 
developers locate faults effectively, interactive 
fault-localization framework is used which 
combines the benefits of automated approaches and 
manual debugging. Before the fault is found, the 
framework continuously recommends checking 
points based on statements' suspicions, which are 
calculated according to the execution information 
of test cases and the feedback information from the 
developer at earlier checking points. This process 
of interactive fault detection makes qualities of 
software to improve to a greater extends. The 
interactive fault analysis makes the process more or 
less effective in software testing scenario. The 
major objective of our proposed method is to 
reduce the interactive faults that exist while 
designing software [30]. The interactive fault 
basically reduces the quality of particular software. 
Hence we have designed an efficient technique 
where soft computing technique like adaptive 

genetic algorithm for optimizing the test cases that 
are being generated 
. 
2. PROBLEM STATEMENT: Scalability and 
effectiveness is an important problem that needs to 
be considered while testing and it is a critical issue 
in the software industry. Many studies on real-
world software are not so common and this is in 
part due to the huge computational time that is 
required to carry them out. The general purpose of 
random testing is to generate as many test cases as 
possible in such a way that they help uncover as 
many faults as many coverage targets as possible. 
Test cases trigger failures and do not directly 
uncover faults; from a mathematical standpoint we 
cannot consider faults as targets. Test cases are 
chosen with the constraint that at least one test case 
is chosen from each sub-domain. For example, each 
functionality of the software can be considered as a 
different sub-domain to test. During the generation 
of test cases, depending on the specifics of the 
partition strategy, had to generate and run several 
test cases to verify whether they belong to partition 
or not. An observation is showing that many 
program faults result in failures in contiguous areas 
of the input domain. ART systematically guides, or 
filters, randomly generated candidates, to take 
advantage of the likely presence of such inputs, 
which attempt to improve the failure-detection 
effectiveness of random testing. Regions of the 
input domain where the software produces outputs 
according to specification will also be contiguous. 
Therefore, given a set of previously executed test 
cases that have not revealed any failures, new test 
cases located away from these old ones are more 
likely to reveal failures. 
 
3. PROPOSED METHOD OF 

IMPLEMETATION AND SOLUTION:  
 
Software testing is huge and different field, 
replicating the different requirements that software 
artifacts must satisfy the different activities 
involved in testing and the different levels at which 
software can be checked. Arbitrary testing 
generates test inputs arbitrarily from the input space 
of the software under test. The basic feature of a 
random test generation technique is that it produces 
test inputs at arbitrary from a grammar or some 
other formal artifact explaining the input space. The 
most important purpose of the suggested method is 
to increase an effective technique for decreasing 
interactive faults based on optimal test case in 
direct random testing. For the generation of test 
cases the suggested method is employing Object 
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Behavior Dependence Model (OBDM). The 
resulting inputs are fed to the GA, SGA, EGA after 
the test case generation. In Elisist Genetic 
Algorithm the optimal inputs are produced which 
decrease the illegal inputs and equivalent inputs, 
and there by it decreases the fault proneness. The 
specified process of executed method is illustrated 
in Figure 31. The block diagram of the suggested 
method is illustrated in below, 

 
.Fig 3.1 Block diagram 

 
 Dependency Model: In sequence diagram set of 
nodes representing objects (Ob) and set of edges 
that indicate the function (F) where, F ϵ Sf 
represents the synchronous function.  Function has 
the following six attributes and has a direct 
dependency between the source and destination 
objects.  
 Fsource ϵ Ob - Source of the function 
 Fdest ϵ Ob - Destination of the function and where 
Fsource ≠ Fdest 

 Fname - Name of the function 
 FBW ϵ Sf- Backward navigable function and where, 
FBW ≠ F it is denoted as “-”. 
FER - Probabilistic execution rate of a function in a 
Sequence Diagram and where, 0 ≤ FER ≤ 1 and the 
default value is 1. 
FEER- Expected execution rate of a function in a 
Sequence Diagram and where, 0 ≤ FEER ≤ 1 and the 
default value is 1.We consider a branch control 
structure of a source code, in which the execution 
rate of a function may be affected.  Consider a 
function is in an alt combined fragment and only 
when the condition in the fragment is satisfied. If 
the function is executed within this condition 
fragment, then the probability of execution rate of a 
function is 0.5. Otherwise, the default value is 1. 
The expected execution rate of a function is a 
probability of the execution rate of a sequence 
diagram. In other words, it is the probability of the 
execution time for the total number of functions in 
a particular class to the execution time for the total 
number of functions in the whole input application. 
The function in a sequence diagram is executed 
only when it is activated. The default value of FEER 

is also 1.Our proposed method has two stages 
namely, 

1. Test case generation 
 Dependence Model of 

Object Behavior  
2. Optimal Test Case Generation 

 Genetic Algorithm 
(AGA) 

 Steady state Genetic 
Algorithm (SGA) 

 Elisist Genetic 
Algorithm (EGA) 

Stage 1: 
4.1 Test Case Generation 

The suggested method produces the test 
cases based on the Dependence Model of Object 
Behavior. The application which we are checking, 
takes as an input for object behavior dependence 
model in software testing. Each application has the 
number of function that is employed for the 
generation of test case. The suggested DM method 
principally focuses on the functions and coverage 
metrics of the application that we are applied for 
the test case generation. This will avoid generating 
duplicate and insignificant test cases.  The function 
name is symbolized as a variable in our executed 
method. In flowchart (Figure 4.1) the overall 
process of test case generation is illustrated and 
specifically made cleared below with some 
examples, 

 
          Fig 4.1 Test Case Generation 
 
Figure.4.1 illustrates the generation process of test 
case. Reflect on each function as the source 
function. For each source function, a variable name 
is specified, and then each function is verified to 
find whether it is previously allocated for some 
other task. If it has previously allocated, next 
related variable name should be assigned in the test 
case, or else, it is allocating as illogical. If any 
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function contains "if" condition, then it allocates 
0.5 values in the test case or else it assigns one. For 
the given function, the ratio will be worked out and 
at last it symbolizes the destination function. All the 
test cases are attached to the coverage metrics. Here 
we assume the probability value, any function 
consists “if” condition we assign 0.5 value in other 
cases we assign one. Ratio value will be calculated 
for the given function and finally represent the 
destination function. Then add all the test case to 
the coverage metrics.  
 

 
  

The suggested method employs only the line 

coverage and loop coverage from the coverage 

metrics. 

Line coverage:  

 Line coverage is as well identified as the 
statement coverage or segment coverage. Only 
correct conditions are wrapped by line coverage. It 
as well measures the quality of the code and makes 
sure the flow of different path in that code. 

 
Loop coverage: 

This coverage metrics reports whether 
each loop body is implemented zero times, 
precisely once and more than once. This metrics 
reports whether loop body is implemented precisely 
once and more than once for do-while loops. And 
as well, while-loops and for-loops perform more 
than once. This data is not accounted by other 
coverage metrics. For example, reflect on one 
application; it has two classes with four functions 
here the function names are symbolized as a 
variable one. The specified process illustrated in 
table. 

 

Variable name for the functions A1, A2, B1, B2 
and C1 are F1, F2, F3, F4 and F5. In the proposed 

method, the test case contains source function 
name, probability value, ratio value, destination 
function name, line coverage and loop coverage. 
Test case generation process with the 
corresponding example is given below, 
Test case 1: [ F1, -, 0.5, 2/5=0.4, F2] + line 
coverage + loop coverage 
Test case 2: [ F1, -, 0.5, 2/5=0.4, F1] + line 
coverage + loop coverage 
Test case 3: [ F2, -, 1, 1/5=0.2, F5] + line coverage 
+ loop coverage 
We take the input function is banking application. It 
contains nearly 47 classes and 108 functions. Total 
number of test case generation in stage 1 is around 
661. In next stage resulting test cases are fed to the 
GA, adaptive genetic algorithm, PSO. Since we 
will produce test cases in each time, it encloses 
some resemblance on each time. The suggested 
method employs the adaptive genetic algorithm in 
order to decrease the fault occurrence of the test 
cases. 
Stage 2: 
4.2 Optimal Test Case Generation: False 
reduction is basically defined as the reduction of 
added parameters which are not required for 
processing. In the proposed method, we generate 
enormous test cases in which some of those test 
cases are not required for processing. Also there 
may be similar test cases that are being generated at 
each time interval. In order to select the concerned 
test cases, we require some efficient techniques. 
The next stage of the suggested method is false 
reduction by means of the GA, Steady State 
Genetic Algorithm (SGA) and EGA. Here in the 
proposed method Messy genetic algorithm for 
obtain optimized results. In this research, the 
optimal inputs will be produced based on Elisist 
Genetic Algorithm (E) which will decrease the 
illegal inputs and equivalent inputs.  
 
4.2.1Genetic Algorithm: It is a stochastic 
algorithm: Randomness has to be essential role in 
GAs. Both selection and reproduction need random 
procedures GA always considers a population of 
solutions keeping in memory more than a single 
solution at each iteration offers a lot of advantages 

The simple form of GA 
1. Start with randomly generated population 
2. Calculate the fitness of each chromosome 

in the population 
3. Repeat the following steps until n off 

springs have been created  
 Select a pair of parent 

chromosomes from current 
population 
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 With probability Pc crossover the 
pair at randomly chosen point to 
form two offspring’s 

 Mutate the two offspring’s at 
each locus with probability Pm 

4. Replace the current population with the 
new population  

5. Go to step 2 
Generally, the initial population is generated 
randomly then the generation is loops over an 
iteration process to make the population evolve 
each iteration consists of the following 

1. Selection: The first step consists in 
selecting individuals for reproduction. 
This selection is done randomly with 
probability depending on the relative 
fitness of individuals 

2. Reproduction: This step consists of both 
recombination and mutation 

3. Evaluation:  Then the fitness of new 
chromosome is evaluated 

4. Replacement: Individuals from the old 
population are killed and replaced by new 
ones 
 

 
Fig 4.3 GA procedure 

 
4.2.2 Steady State Genetic Algorithm (SGA): 
A Steady State Genetic Algorithm (SGA) is a 
type of genetic algorithm that continuously updates 
a small portion of the population instead of 
replacing the entire generation at once. This 
approach ensures a steady evolution of solutions, 
maintaining genetic diversity while converging 
efficiently. 

Step 1: Initialize Population 
 A population of individuals (chromosomes) is 

randomly generated. 
 Each chromosome represents a potential solution to 

the problem, encoded as a binary string, real 
numbers, or other representations. 

 The population size (N) is fixed but remains 
unchanged throughout the process. 
Step 2: Evaluate Fitness 

 Each chromosome is assessed using a fitness 
function, which quantifies how well it solves the 
problem. 

 The fitness score determines the probability of 
selection for reproduction. 
Step 3: Selection of Parents 

 Two individuals (parents) are selected based on 
their fitness. Common selection methods include:  

o Roulette Wheel Selection – Probability-based 
selection favoring fitter individuals. 

o Tournament Selection – A subset of the 
population competes, and the best individual is 
chosen. 

o Rank-Based Selection – Individuals are ranked, 
and selection is based on rank. 
Step 4: Crossover (Recombination) 

 The selected parents undergo crossover to create 
offspring (one or two children). 

 Common crossover techniques:  
o Single-Point Crossover: A random point is 

chosen, and genetic material is swapped. 
o Two-Point Crossover: Two crossover points are 

used. 
o Uniform Crossover: Genes are randomly inherited 

from each parent. 
Step 5: Mutation 

 A small random modification is applied to the 
offspring to introduce genetic diversity. 

 Mutation types:  
o Bit Flip Mutation (for binary chromosomes). 
o Gaussian Mutation (for real-valued encoding). 

Step 6: Replacement Strategy 
 Instead of replacing the entire population, SGA 

replaces only a few individuals (usually the worst-
performing ones). 

 The worst individuals are removed, and the 
newly created offspring take their place. 

 This ensures steady evolution without sudden 
changes in the population. 
Step 7: Repeat the Process 

 Steps 2 to 6 are repeated continuously. 
 Since only a small portion of the population is 

replaced at a time, the algorithm maintains stability 
and gradual convergence. 
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Step 8: Termination Criteria 
The algorithm stops when: 

 A predefined number of iterations is reached. 
 A solution reaches an acceptable fitness level. 
 No improvement is observed for several 

generations. 
Steady State Genetic Algorithm (SGA) ensures 
continuous, gradual evolution, avoiding drastic 
population changes. It is effective for dynamic 
environments where maintaining genetic diversity 
is essential. Its steady replacement strategy helps 
in maintaining stability while progressively 
improving solutions. 

 

 
Figure 4.4 Flowchart for the proposed steady State 

genetic algorithm 
The optimal result is contrasted to all the function 
after getting result from the adaptive genetic 
algorithm. If any function of the application not in 
the optimal result then the consequent function can 
be eliminated from the application. Hence that 
adaptive genetic algorithm attains decrease of faults 
rate based on the optimal test case. This method, 
the process of AGA is selecting the optimal 
flawless test cases which are suitable for the input 
application. The false reduction is thus obtained 
using the optimization algorithm. We obtain the 
optimized result based on the fitness value that we 
assign for AGA. The test cases that we give to the 
optimization algorithm are processed based on the 
fitness values. Test cases with high fitness value 
indicate the bug free application. Hence by using 
the AGA we obtain required test cases for our 
proposed method  
4.2.3Step-by-Step Process of Elitist GA (Genetic 
Algorithm) 
Elisist GA is an advanced genetic algorithm 
designed for optimization problems. It follows an 
evolutionary approach to find the best solutions by 
mimicking natural selection. Below is a step-by-
step breakdown of how Elisist GA works: 

1. Initialization 
 A population of potential solutions (chromosomes) 

is randomly generated. 
 Each chromosome represents a possible solution, 

encoded as a string (binary, real-valued, or other 
formats). 

 The population size is chosen based on problem 
complexity. 
2. Fitness Evaluation 

 Each chromosome is evaluated using a fitness  
 function, which determines how well it solves the 

given problem. 
 The fitness score influences the probability of a 

chromosome being selected for reproduction. 
3. Selection (Survival of the Fittest) 

 The best-performing chromosomes are selected for 
reproduction using techniques like:  

o Roulette Wheel Selection (probability-based 
selection). 

o Tournament Selection (selecting the best from a 
subset). 

o Rank-Based Selection (assigning ranks to 
solutions). 

 The goal is to ensure that good solutions survive 
and pass their traits to the next generation. 
4. Crossover (Recombination) 

 Two selected parent chromosomes exchange 
genetic material to create offspring. 

 Common crossover techniques include:  
o Single-Point Crossover: One point is selected, and 

genes are swapped. 
o Multi-Point Crossover: Multiple crossover points 

are chosen. 
o Uniform Crossover: Each gene is inherited 

randomly from either parent. 
 This step introduces diversity and combines good 

traits from different parents. 
5. Mutation 

 Small, random changes are introduced in some 
chromosomes to maintain diversity. 

 Mutation prevents premature convergence and 
helps escape local optima. 

 Mutation types include:  
o Bit Flip Mutation (for binary encoding). 
o Gaussian Mutation (for real-valued encoding). 

6. Adaptive Optimization (Unique to Elisist GA) 
 Unlike traditional GAs, Elisist GA dynamically 

adjusts mutation rates and selection pressure based 
on the search progress. 

 This self-adaptation helps balance exploration and 
exploitation. 
7. New Generation Formation 

 The new generation of chromosomes replaces the 
old population. 
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 The process repeats from Step 2 (Fitness 
Evaluation). 
8. Termination Criteria 
The algorithm stops when: 

 A predefined number of generations is reached. 
 A satisfactory fitness level is achieved. 
 No significant improvement occurs over several 

generations. 
Elitist GA enhances traditional genetic algorithms 
by adapting evolutionary parameters 
dynamically, making it highly effective for 
complex optimization problems. Its self-learning 
capabilities and efficient selection mechanisms 
enable faster convergence to optimal solutions. 

 
Figure 4.5 Flowchart For The Proposed Elisist Genetic 

Algorithm 

 
5. RESULTS AND DISCUSSION 

In the experiment, the researchers have 
utilized the GA, Steady State Genetic Algorithm 
and EGA for Optimal Test Cases in Directed 
Random Testing. By observing the Table 5.1 the 
fitness value for the suggested technique is verified 
to be superior to the technique where 
EGA,SGA,GA is applied. 

Table 5.1: Fitness comparison for different 
iterations using EGA, SGA and GA. 

 
 
 

Iterations 

 
Fitness values 

 
EGA 

 
SGA 

 
GA 

25 680 567 631 

50 640 540 620 
75 593 485 568 

100 587 465 486 
 

Table 5.2: Test Count Value After Optimization. 
 
Iterations 

Test case count 
 

EGA 
 

SGA 
 

GA 
 

25 
 

454 
 

465 
 

487 
 

50 
 

443 
 

450 
 

481 
 

75 
 

427 
 

451 
 

472 
 

100 
 

404 
 

442 
 

4549 
The table 5.3, 5.4 given below shows the time and 
memory usage of our proposed methodology. For 
each iteration the corresponding time and memory 
usage are calculated and the results are tabulated. 
By reducing the interactive faults here we reduce 
the execution time and memory usage. When the 
iteration increases, the time usage and memory 
usage reduce automatically in EGA only     
        
     Table 5.3: Time Usage For Different Iterations. 

 
Iteration 

Time usage (milliseconds) 
 

EGA 
 

SGA 
 

GA 
 

25 
 

4366 
 

4631 
 

5324 
 

50 
 

4489 
 

4788 
 

5475 
 

75 
 

4635 
 

4834 
 

5578 
 

100 
 

4612 
 

4892 
 

5851 
 

Table 5.4: Memory Usage For Different Iterations. 
 

Iteration 
Memory usage (bits) 
 

EGA 
 

SGA 
 

GA 
 

25 
 

3597136 
 

3687104 
 

3788436 
 

50 
 

3112288 
 

3528428 
 

3646828 
 

75 
 

2984680 
 

3152221 
 

3398761 
 

100 
 

2299412 
 

2885821 
 

3257892 

    
 

6. CONCLUSION AND FUTURE WORK 
In this work, the authors have proposed a 

method for reducing interactive faults based on 
optimal test cases in directed random testing. The 
implemented method is used to optimal test cases 
using Elitist Genetic Algorithm. Here, EGA 
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generates the optimal result which reduces the 
prohibited inputs. In order to reduce the faults, the 
proposed method uses the coverage metrics. The 
result shows that our proposed method removes the 
ambiguity of randomly generated test cases and 
produces the optimal results than SGA and GA. In 
future, researchers can adopt test case distribution 
metrics as test case selection criteria for obtaining 
high coverage test cases quickly and can use some 
other metaheuristic search tools to produce flawless 
test cases like Hybrid and Parallel Genetic 
Algorithm can be compared with variants of 
Particle Swarm Optimization. 
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