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ABSTRACT 
 

Rheumatoid arthritis (RA) is a chronic autoimmune condition that requires early diagnosis to prevent 
irreversible joint damage. While deep learning models have shown promise in automated RA detection, 
existing approaches suffer from data imbalance, suboptimal feature extraction, and poor generalizability, 
limiting their clinical applicability. This study proposes an optimized Convolutional Neural Network (CNN) 
model, incorporating image augmentation and class balancing techniques to improve RA detection accuracy 
from knee X-ray images. Unlike previous studies, which often overlook the impact of data augmentation on 
model performance, our work demonstrates its effectiveness in addressing data imbalance and enhancing 
model robustness. We trained and validated our model using the Kaggle knee X-ray dataset, applying image 
augmentation to expand training samples and oversampling to balance class distributions. The CNN was 
optimized through rigorous hyperparameter tuning. Our optimized CNN model achieved a high accuracy of 
94%, outperforming baseline deep learning models. Data augmentation and oversampling significantly 
improved model performance, proving their effectiveness in medical imaging tasks. Our findings establish a 
novel deep learning framework for RA detection, demonstrating the importance of data augmentation and 
optimization in improving diagnostic accuracy. This work contributes to the growing field of AI in medical 
imaging by offering a scalable and interpretable solution for automated RA detection 

Keywords: Rheumatoid Arthritis, knee X-ray images, statistical augmentation, deep learning, CNN. 

 
1. INTRODUCTION  
 

Rheumatoid Arthritis (RA) is a chronic disease 
that primarily affects the joints, but can also have 
widespread effects on other systems of the body. It 
is characterized by persistent inflammation, which 
leads to progressive joint destruction, pain, and 
stiffness, ultimately resulting in significant 
functional disability and a marked reduction in 
quality of life. This disease can affect all age 
peoples, although it is most commonly diagnosed 
in middle-aged persons, and affected women more 
than men. The main cause of RA is still not fully 
identified, but it is believed to involve a 
combination of genetic problems and 
environmental changes, such as infections or 
smoking, which contribute to the abnormal in the 
immune system. 

Early diagnosis and curing of this disease is very 
important. The disease has many verities of 
symptoms, like for some patients experiencing mild 
symptoms while others severe joint damage. The 
"window of opportunity" concept in RA 
management suggests that initiating treatment early 
in the disease can significantly alter its damage to 
human body, reducing the likelihood of joint 
damage and improving long-term outcomes. This 
underscores the importance of accurate and timely 
diagnosis, particularly during the early stages of the 
disease when symptoms might be nonspecific. 

However, the clinical diagnosis of RA is 
challenging task. RA's disease, with symptoms that 
can vary widely among patients, coupled with its 
similarity to other inflammatory joint diseases, 
makes early diagnosis difficult. The typical clinical 
assessment for RA includes evaluating symptoms 
such as joint pain, stiffness (especially in the 
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morning), and swelling. Serological tests, including 
the measurement of rheumatoid factor (RF) and 
anti-cyclic citrullinated peptide (anti-CCP) 
antibodies are often used to support the diagnosis. 
Elevated levels of acute-phase reactants like C-
reactive protein (CRP) and erythrocyte 
sedimentation rate (ESR) can also indicate RA. 
Additionally, imaging techniques such as X-rays, 
ultrasound, and magnetic resonance imaging (MRI) 
are used to assess joint damage and inflammation. 

The traditional approaches tried to increase the 
accuracy of RA diagnosis, but remains challenging, 
particularly in the early stages. Some symptoms 
like RF and anti-CCP are not always present in 
early stages of RA, and while imaging can reveal 
joint damage, these changes often occur later in the 
disease process. Moreover, RA symptoms can 
overlap with those of other conditions, such as 
osteoarthritis, lupus, and psoriatic arthritis, leading 
to potential misdiagnosis or delayed diagnosis. 
These challenges explore the need of more and 
different diagnostic approaches that can enhance 
early detection and provide a more accurate 
assessment of disease activity. 

In recent years, the advancements in machine 
learning (ML) and deep learning (DL) methods 
have shown improving medical diagnostics. These 
technologies provide analyzing large volumes of 
data, which is increasingly available in healthcare 
through electronic health records (EHRs), medical 
imaging, and genomic data. ML algorithms can 
identify patterns and relationships within this data 
that may not work with traditional statistical 
methods. For example, in [1,2,3] ML models can 
analyze a patient's medical history, laboratory 
results, and imaging studies to predict the 
likelihood of RA or assess the risk of disease 
progression. The DL models [4] that uses neural 
networks with multiple layers, has shown particular 
promise in image analysis, enabling the automatic 
detection of abnormalities in radiographs or MRI 
scans that may indicate early joint damage. 

The application of ML and DL in RA diagnostics 
has its own challenges. One of the primary issues is 
the need for large, high-quality datasets that include 
diverse patient [5,6] and comprehensive clinical 
information. The variability in data quality and the 
presence of missing data can also affect the 
performance of these models. Moreover, while ML 
models can achieve high accuracy in controlled 
research settings, their integration into routine 
clinical practice requires careful consideration of 
issues such as interpretability, reliability, and the 
potential for bias [7,8,9,10].  

Despite these challenges, the merits of ML and 
DL in RA diagnostics are substantial. These 
technologies can assist clinicians in making more 
accurate and timely diagnoses, leading to earlier 
and more effective treatment interventions. For 
instance, ML models can help identify patients who 
are at high risk of rapid disease progression and 
may benefit from aggressive treatment strategies. 
Additionally, DL techniques can be used to analyze 
longitudinal data, tracking changes in disease 
activity over time and providing insights into the 
effectiveness of different treatment regimens. 

Many of the researchers have integrated ML and 
DL methods [11,12,13] with other emerging 
technologies, such as wearable devices and remote 
monitoring tools, offers exciting possibilities for 
personalized medicine in RA. Patients with RA 
could benefit from continuous monitoring of their 
disease activity, with real-time data being analyzed 
by ML models to provide personalized treatment 
recommendations. This approach has the potential 
to revolutionize RA management, moving from a 
reactive to a proactive model of care, where 
treatment is tailored to the individual patient's 
needs and adjusted dynamically based on real-time 
data. 

Despite advancements in deep learning, existing 
AI-based RA detection models face key 
limitations: 

1. Data Imbalance: Many RA datasets suffer from 
class imbalances, leading to biased model 
predictions. 

2. Limited Generalizability: Most deep learning 
models lack robustness when tested on diverse 
datasets. 

To address these issues, this study proposes a 
customized Convolutional Neural Network (CNN) 
model optimized with data augmentation and class 
balancing techniques. The model is trained on knee 
X-ray images from the Kaggle dataset, ensuring 
better generalizability and improved accuracy. Our 
approach enhances RA detection performance by 
reducing bias, increasing robustness, and 
improving classification reliability. 

Contribution: 

• Implemented image augmentation for Knee    
sample expansion. And to balance all classes 
with over sampling method. 

• Trained a well-optimized CNN with 
augmented data that increase performance up 
to 0.94. 
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• Proposed model consistently outperformed 
other models, showcasing the augmentation 
strategy's effectiveness. 

2. RELATED WORK 

In recent years, the use of ML and DL 
approaches for detecting and predicting RA has 
shown significant progress. Üreten Ket al. [14] 
implemented a customized Convolutional Neural 
Network (CNN) model trained on 135 samples, for 
automated RA detection using X-ray data and got 
an accuracy of 73.3%. Similarly, Li, Y. [15] 
implemented CNNs model on radiographs, first 
they did image pre-processing to enhance accuracy, 
so the accuracy increased to 67.80%.  

Moreover, the integration of EH into automated 
model has proven better performance. Like 
Scientific, L. L. [16] implemented a DL like RCNN 
model to predict RA using features extracted from 
EHR data, and got accuracy of 92.81%. This 
approach highlights the potential of utilizing large-
scale clinical data for disease prediction. Same way 
Peng, Y. et al. [17] and Wu, Q., and Dai, J. [18] 
implemented ML and advanced deep learning 
models like GoogLeNet and VGG16 and trained 
clinical data, achieving accuracies of 96.15%, 
97.12 and 91.20%, respectively. 

Rajesh, G., et al. [19] and Gandrup, J., et al [20] 
implemented an automated evaluation and early 
detection of RA using radiographs, achieving 
accuracies of 80.56% and AUC of 0.82 
respectively. In addition to CNNs and DL models 
Chen, Y. J et al. [21] implemented ML algorithms 
to predict RA disease activity using clinical data 
and biomarkers, and got an optimal accuracy of 
86.5%. Moradmand, H., and Ren, L[22] and 
Venäläinen, M. Set al [23] implemented 
transformers model with hybrid model to predict 
RA activity and biologic-free remission, achieving 
accuracies of 0.99% with hybrid model. 
Furthermore, some the researchers have worked on 
MRI samples images for RA classification and 
disease prediction with RA2-DREAM algorithm 
and got RMSE as 0.35. Likhith, R., et al. [24] 
studied various model on RA and deep learning 
models for early detection. And Alam, A., et al. 
[25] implemented DL models like CNN to classify 
RA from knee and hand MRI images, achieved an 
optimal accuracy.  

Tu, J. B., et al [26] proposed ML models for RA 
diagnosis using clinical and genetic data, achieving 
an AUC of 0.773. In this work they integrated 
genetic information with clinical data to enhance 
diagnostic accuracy. Similarly, Mao, Y., et al.  [27] 

Implemented custom models combined with 
genomics data for predicting RA outcomes, 
achieving a high AUC ranged from 0.941%.  

In terms of imaging, Stoel, B. C., et al. [28] 
studied an image processing-based DL model for 
RA detection using X-ray images, and worked on 
comparative study on all types of samples. Ma, Y., 
et al [29] also focused on early RA classification 
using multi-feature fusion from hand X-ray images 
like RA or not , achieving an accuracy of 0. 872%. 

Ho, C. S., et al [30] extracted different features 
for RA identification in hand radiographs, 
achieving an accuracy of 80%. In this they 
explained critical role of feature engineering in 
improving model performance with DeepDXA a 
CNN-based model. Hassanzadeh, T., et al.[31] 
applied fully automated deep learning methods for 
predicting RA disease activity using hand MRI 
images, achieving true positive and false negative 
rate. Some works have also explored the prediction 
of treatment outcomes in RA. Duquesne, J., et al 
[32] applied ML models to predict treatment 
response, using clinical and treatment data, with an 
AUROC of 0.72. Li Het al.[33] and Okino T et al. 
[34] implemented ML methods to predict biologic-
free remission and remission in RA patients treated 
with methotrexate, achieving Pearson's correlation 
0.711 and GSS progression (p = 0.004) 
respectively. The use of radiographic images has 
also been increased by researcher like Kato K et al. 
[35] proposed DL model for RA detection using 
ultrasound images, with a notable results like R 
square as 0.986. 

Despite significant advancements in AI-based 
RA detection, existing studies have notable 
limitations. Many CNN-based models, such as 
those by Üreten K et al. [14] and Li, Y. [15], suffer 
from low accuracy (73.3% and 67.8%, 
respectively) due to small, imbalanced datasets and 
lack of augmentation. While hybrid approaches 
integrating EHR and clinical data, like those by 
Scientific, L. L. [16] and Peng, Y. et al. [17], 
achieve high accuracies (92.81%–97.12%), they 
primarily rely on non-image data, limiting their 
applicability for radiographic RA diagnosis. 
Advanced models using transformers and hybrid 
techniques, such as those by Moradmand, H. and 
Ren, L. [22], report near-perfect accuracy (99%), 
but their reliance on complex architectures raises 
concerns about real-world deployment and 
generalization. Similarly, MRI- and ultrasound-
based methods (e.g., Alam, A. et al. [25] and Kato 
K et al. [35]) offer high precision but are costly and 
less accessible than X-ray-based diagnosis. 
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Additionally, many prior works fail to adequately 
address class imbalance, proper feature extraction, 
and overfitting risks, limiting their robustness. 

 
3.  METHODOLOGY 

The application involved deploying an 
optimized CNN model for identifying RA in knee 

images. The CNN model was trained using a 
refined set of parameters, as illustrated in Figure 1. 
The model can classify diseases into five distinct 
classes: normal, doubtful, mild, severe, and 
moderate. 

        

                                                           Figure 1: Implemented CNN model 

 
 

 

 

3.1   Data Augmentation 

For our approach, we utilized knee medical X-ray 
images sourced from Kaggle [31], comprising a 
dataset of 1650 samples categorized into five classes: 
normal, doubtful, mild, moderate, and severe, as 
detailed in Table 1. Notably, the original dataset 
exhibited uneven distribution among the classes. To 
mitigate the risk of overfitting, we 

 

 
 
 
 
 implemented data augmentation by employing the 
flipping method, which involved flipping the 
samples at various angles, as depicted in Figure 2. 
Subsequently, we balanced the dataset, resulting in 
an equal distribution of 514 images across all 
classes, as illustrated in Figure 3. This balancing step 
helps enhance the model's generalization 
performance. 
 

 

Table 1: Actual Knee Samples And Augmented Samples. 

 
 Normal      

 
Doubtful Mild Moderate Severe Total 

Actual number of samples 514 477 232 221 206 1650 

Augmented samples 514 514 514 514 514 2570 
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Figure 2 Generating New Sample By Flipping  

 

Figure 3 Balanced Number Of Samples Over All Classes 
 

 
After augmenting all target classes to achieve a 

balanced distribution, all samples were resized to 
224x224 pixels in grayscale. Subsequently, pixel 
values were scaled between -1 and 1 using 
Equation (1). The X-ray samples were then divided 
into training, testing, and validation sets in a 0.75, 
0.15, and 0.10 ratio, respectively and randomly. 
This  

 
allocation resulted in 1925 samples for training, 
260 for testing, and 385 for validation. Figure 4 
visually depicts sample X-ray images. 

 

𝑆𝑐𝑎𝑙𝑒 =
∑ ூெீ


సబ

ଵଶ.ହିଵ
        (1) 
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Figure 4 Sample Knee X-Ray Images 
 

3.2   Model Implementation 

We implemented a CNN model, illustrated in 
Figure 1, comprising three convolutional and max-
pooling layers. A 3x3 convolutional filter is applied 
in each convolutional layer, with the filters set to 
16, 32, and 64, respectively. A max-pooling layer 
with a filter size of 2x2 follows each convolutional 
layer. Regularization is applied to the first Conv2D 
layer with a penalty factor of 0.01, and ReLU 
activation functions are employed in each layer. 

After three iterations of convolution and pooling, 
a fully connected layer is introduced to flatten the 
data. Subsequently, it is connected to a dense layer 
with a size of 5, allowing the model to map to one of 
the five classes. The Adam optimizer updates 
weights, and a softmax activation function is applied 
to the final dense layer. 

During training, the model employs an initial 
learning rate of 0.001, and changed dynamically 
with accuracy, loss. Cross-entropy is the loss metric, 
and accuracy is recorded after each iteration. The 
model undergoes training for 50 epochs, and both 
loss and validation loss are monitored to evaluate its 
performance. This architecture aims to effectively 
capture and classify features in the input data for 
accurate prediction across multiple classes. 

 
4. RESULT ANALYSIS 

We utilized a Kaggle knee X-ray dataset, 
augmenting it to address sample imbalances. The 
data was then trained on an optimized CNN model, 
exploring various batch sizes, learning rates, and 
epochs to identify the best hyperparameters. The 
model underwent training for 50 epochs, and 

performance metrics such as accuracy, precision, 
recall, and F1-score were evaluated. 

 

Figure 5 illustrates the training and validation loss 
and accuracy trends of the model before 
augmentation. From it is clearly observed that the 
model under fitted, and due to unbalanced data it is 
biases from Figure 13. Figure 6 the loss and accuracy 
is after adding artificial data, the results are 
improved. But after augmentation and increasing the 
model complexity the model performed well as 
shown Figure 7. Initially starting at 23.0 and 6.5 for 
loss and accuracy, respectively, the model 
demonstrated notable improvement epoch by epoch. 
Training, validation loss, and accuracy indicated a 
well-balanced model that overfit and underfit the 
data. 

 
The ROC curve, depicted in Figure 8 and 9, 

revealed that before augmentation the model is 
completely biased, and after augmentation and the 
model provided a higher true positive rate in 
balanced data than in unbalanced data, resulting in a 
final area under the curve (AUC) of 0.94. Table 2, 
presenting weighted and micro-average metrics, 
affirms the consistency and superior performance of 
the model. The model is performed consistently 
from Figure 10, 11 and 12 the precision is in between 
0.93 to 0.95, and recall is fluctuated in between 0.93 
to 0.96, and F1score is moved in between 0.93 to 
0.95, so here it is observed a small difference like 
0.02 from Figure 15. The confusion matrix in Figure 
13 and 14 indicates optimal true positive rates for 
each class and a favorable false-negative outcome. 
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𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 =
𝟐 ∗ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
        (2) 

 

 
 
 

 
Figure 5: Training And Validation Loss, Accuracy Before Augmentation 

 
 

 
 

 

Figure 6: Training And Validation Loss, Accuracy After Augmentation  
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                                        Figure 7: Loss And Accuracy Of Training And Validation For Proposed Model 

 

Figure 8: ROC Curves Of All Classes Before Augmentation 
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Figure 9: ROC Curve For Proposed Model Before And After Augmentation 

 
 

In Table 2, the accuracy, representing the actual 
and predicted label values ratio, is approximately 
0.94 for this model. This value indicates a high level 
of correctness in the model's predictions. The 
support count, which illustrates the consistency of 
the model in making predictions, demonstrates that 
the model has a sufficient number of instances to 
substantiate its performance. 

 
 

Beyond accuracy, precision and recall are 
valuable metrics that signify the ratio of samples 
correctly predicted to the total number of samples 
that should be predicted. In Table 2, these ratios are 
observed to be high, further reinforcing the model's 
efficacy. Precision and recall provide insights into 
the model's ability to make accurate positive 
predictions and its sensitivity to correctly identifying 
positive instances. 

 

Table 2: Precision And Recall And F1-Score Of Proposed Models 
  

 P R F1 Support 

Normal 0.94 0.95 0.95 52 

Doubtful 0.93 0.94 0.93 52 

Mild 0.95 0.95 0.96 52 

Moderate 0.93 0.93 0.93 52 

Server 0.94 0.95 0.94 52 

Acc - - 0.94 260 

M-AVG 0.94 0.95 0.95 260 

W-AVG 0.95 0.95 0.95 260 
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Figure 10: Comparison Of Precision Of All Classes 

 
 

 
Figure 11: Comparison Of Recall Of All Classes 
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                                      Figure 12: Comparison Of F1-Score Of All Classes 

 
 
  

  
Figure 13: Confusion Matrix Before Augmentation 
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Figure 14: Confusion Matrixes For All 5 Classes Of Proposed Model After Augmentation 
 

Figure 15 Precision And Recall Curves Before Augmentation 
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4.1.  Comparison of proposed model with 
existing models: 

Table 3 provides a comparative analysis of 
various deep learning and machine learning 
methodologies applied to RA diagnosis and 
prediction using diverse datasets. Several 
approaches have been employed, including CNNs, 
hybrid segmentation models, and AI-driven clinical 
decision support systems. For instance, RA-XTNet, 
a novel CNN model utilizing hand radiographs and 
thermal images, achieved an accuracy of 80.60% [7], 
whereas a standard CNN model for detecting RA 
from hand radiographs obtained 73.3% accuracy 
[14]. Similarly, deep learning methods leveraging 
MRI scans, such as consistency-based learning [15] 
and AI-based decision support systems [16], 
reported accuracy levels of 67.80% and 92.81%, 
respectively. Furthermore, radiograph-based RA 
detection using VGG and GoogleNet demonstrated 
a high accuracy of 96.15% [17], while Bayesian 
optimization for osteoporotic fracture prediction 
achieved 91.20% accuracy [18]. Additionally, 
hybrid segmentation  

 

 

models, such as RANET for RA diagnosis using 
X-ray images, reported an accuracy of 80.56% [19]. 
Other notable models include RA2-DREAM, which 
applied deep learning to assess joint damage 
progression in RA, yielding RMSEs of 35.0 [23], 
and a chronic disease-based osteoporosis risk 
prediction model that achieved an AUC of 0.773 
[26]. Advanced deep learning methods, including AI 
quantification of synovium using dynamic contrast-
enhanced MRI, exhibited AUC values as high as 
0.941 [27], while discrimination of RA from 
osteoarthritis on hand radiographs reached an 
accuracy of 87.2% [29]. A HarDNet-based model for 
bone mineral density inference from hand 
radiographs achieved 80% accuracy [30]. 
Additionally, machine learning techniques have 
been used to predict inadequate responders to 
methotrexate in RA patients, yielding an AUROC of 
0.72 [32], while multilevel modeling of joint damage 
in RA demonstrated a Pearson’s correlation of 0.711 
[33]. Automated software designed to detect joint 
space narrowing progression in RA showed 
significant results with p = 0.004 [34]. 

Table 3 Comparison Of Proposed Model With Existing Models 
 

Ref. 
No. 

Methodology Dataset Used Accuracy 
Percentage 

[7] RA-XTNet: A novel CNN model to predict RA 
from hand radiographs and thermal images. 

Hand radiographs and 
thermal images. 

80.60% 

[14] CNN model for detecting RA from hand 
radiographs. 

Hand radiographs. 73.3% 

[15] Consistency-based deep learning using extremity 
MRI scans for RA classification and prediction. 

MRI scans. 67.80% 

[16] AI-enabled clinical decision support system for 
diagnosing RA using X-ray images. 

X-ray images from RA 
patients. 

92.81% 

[17] Radiograph-based RA diagnosis via VGG, 
GoogleNET 

Radiograph images. 96.15% 

[18] Bayesian optimization for enhanced osteoporotic 
fracture prediction in postmenopausal women. 

Genetic and clinical risk 
data. 

91.20% 

[19] Hybrid segmentation algorithm for RA diagnosis 
using X-ray images. RANET model 

X-ray images. 80.56% 

[23] Deep learning to automatically detect joint 
damage progression in RA. RA2-DREAM 
algorithm 

Radiographs from RA 
patients. 

RMSEs 35.0  

[26] Prediction of osteoporosis risk using nationwide 
chronic disease data with machine learning. 

Chronic disease database. AUC: 0.773 

[27] AI quantification of synovium in RA using 
dynamic contrast-enhanced MRI. 

 
DCE-MRI scans. 

 
AUC ranged from 

0.941% 
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[29] Deep learning discrimination of RA from 
osteoarthritis on hand radiography. 

RA or NOT 87.2% 

[30] HarDNet-based deep learning model for bone 
mineral density inference from hand radiographs. 

Hand radiographs. 80% 

[32] Machine learning to identify profiles of 
inadequate responders to methotrexate in RA. 

Clinical data on 
methotrexate-treated 
patients. 

AUROC  0.72 

[33] Multilevel modeling of joint damage in RA using 
machine learning. 

Clinical and imaging data. Pearson's 
correlation 0.711 

[34] Automated software for detecting radiographic 
joint space narrowing progression in RA. 

Radiographs and phantom 
study data. 

GSS progression 
(p = 0.004) 

* Augmented CNN model knee medical X-ray images 94% 

The table 3 presents a comparison of prescribed 
model with proposed model for the detection, 
prediction, and outcome assessment of RA using 
different datasets. From all these models vein, Li, Y 
et al [15] with a CNN model to radiographs, 
enhanced with image pre-processing techniques, and 
attained an accuracy of 67.80%. Scientific, L. Let al 
[16] further explored DL models for RA detection 
using ultrasound images, resulting in 92.81% 
accuracy. 

 
Additionally, when the model have used clinical 

data for RA prediction, like Peng, Y. et al.[17] with 
simple ML models to clinical data, provided an 
accuracy of 96.16%, while Wu, Q., and Dai, J.[18] 
with same ML algorithms to predict RA disease 
activity based on clinical data and biomarkers, 
provided an accuracy of 91.2%. And [19] with DL 
methods on radiographic images got an accuracy of 
80.56%. And [23] with an automated ML approach 
for evaluating radiographs, performed with RMSEs 
35.0. The application of DL to MRI images like [29] 
and [30] performed well with an accuracy of 87.20% 
and 80.00%. 

 
The proposed model an augmented CNN model 

specifically designed to analyze knee medical X-ray 
images, achieving a superior accuracy of 94%. This 
model outperforms several existing approaches, 
highlighting the effectiveness of combining CNN 
architecture with augmentation techniques to 
improve RA detection accuracy from X-ray images.  

5.  CONCLUSION 

The proposed CNN-based knee X-ray 
classification model demonstrated high 
effectiveness in detecting rheumatoid arthritis. To 

address class imbalance in the Kaggle dataset 
(1,650 samples), we applied data augmentation 
techniques, including image flipping, resulting in a 
well-balanced dataset with 514 images per class. 
Our customized CNN model, optimized with fine-
tuned hyperparameters, exhibited superior 
performance over 50 epochs, consistently 
outperforming other baseline models. 

The ROC curve analysis validated the 
model’s discriminative capability, achieving an 
AUC of 0.94, emphasizing its high true positive 
rate. Further, evaluation metrics reinforced the 
model’s robustness, with an average precision of 
0.95, recall of 0.94, and F1-score of 0.95. These 
findings confirm that data augmentation 
significantly enhances model performance, making 
it a valuable approach for improving AI-driven RA 
detection. 

This study demonstrates the potential of deep 
learning in medical imaging for early RA 
diagnosis. Future work will focus on expanding the 
dataset, incorporating explainable AI techniques, 
and validating the model on multi-source medical 
images to enhance clinical applicability and 
trustworthiness. 

LIMITATIONS & FUTURE WORK 

• The model was trained on a single dataset, 
which may impact its generalizability to real-world 
clinical scenarios. Future work should validate the 
model using multi-source datasets, including 
different imaging modalities such as MRI and 
ultrasound.  

• Despite achieving a high AUC of 0.94, the 
model remains a black-box system with limited 
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interpretability. The integration of Explainable AI 
(XAI) techniques, such as Grad-CAM, can enhance 
model transparency and clinical trustworthiness. 
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