
Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

25

GENBIT COMPRESS – ALGORITHM FOR REPETITIVE AND
NON-REPETITIVE DNA SEQUENCES.

P.RAJA RAJESWARI 1 Dr. ALLAM APPARAO 2

(1) Acharya Nagarjuna University,Guntur.

 (2)Vice-chancellor ,Jawaharlal Nehru Technological University, Kakinada.

ABSTRACT

The Deoxyribonucleic acid(DNA) constitutes the physical medium in which all properties of living
organisms are encoded. Molecular sequence databases(e.g.,EMBL,Genbank, DDJB, Entrez, SwissProt,
etc) currently collect hundreds of thousands of sequences of nucleotides and amino acids reaching to
thousands of gigabytes and are under continuous expansion. Need for Compression arises because
approximately 44,575,745,176 bases in 40,604,319 sequence records are there in the GenBank database
(http://www.ncbi.nlm.nih.gov/Genbank/).Efficient compression may also reveal some biological functions
and helps in phylogenic tree reconstruction etc.
 We present a compression algorithm, “GenBit Compress” for DNA sequences based on a novel algorithm
of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive
DNA sequence. our proposed algorithm achieves the best compression ratio for DNA sequences for larger
genome. As long as 8 lakh characters can be given as input. Significantly better compression results show
that GenBit Compress algorithm is the best among the remaining compression algorithms. While achieving
the best compression ratios for DNA sequences(Genome),our new GenBit Compress algorithm
significantly improves the running time of all previous DNA compression programs. We have also
identified that it is a good idea to express the performance of an algorithm as a function of the input size.
For the first time we have defined the Worst case, Average case and Best case for DNA compression using
our proposed Algorithm. Assigning binary bits for fragments of DNA sequence is also a unique concept
introduced in this algorithm for the first time in DNA compression.

Keywords: BioCompress,GenCompress,Arithmetic coding,Huffman coding,LZ,LZW,worst,Best,Average.

1. INTRODUCTION:

In modern molecular biology, the genome is
the entirety of an organism's hereditary
information. It is encoded either in DNA or, for
many types of virus, in RNA.The genome
includes both the genes and the non-coding
sequences of the DNA.(Ridley, M. (2006)
Genome).
Increasing genome sequence data of organisms
lead DNA database size two or three times bigger
annually.Thus it becomes very hard to download
and maintain data in a local system. For a four-
letter alphabet in DNA(A,C,G,T),an average
description length of 8 bits can be assigned per
fragment. Other algorithms specifically designed
for DNA sequences compression did not manage

to achieve average compression rate below 1.6
bits/base. Algorithms for Compressing DNA
sequences, such as GenCompress[1]
,Biocompress[2] and Cfact[3] are available to
compress DNA sequences. Their compression
rate is about 1.74 bits per base i.e.,78% in
compression rate[4]. Hence we present a new
compression algorithm named ”GenBit
Compress” whose compression rate is below 1.2
bits per byte(for Best case) even for larger
genome(nearly 2,00,000 characters).

1.1 EXISTINGCOMPRESSION

ALGORITHMS
Most of the compression methods used today
including DNA compression fall into two
categories.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

26

 First is statistical method, which compresses
data by replacing a more popular symbol to a
shorter code.

 Second is dictionary-based scheme, which
compresses data by replacing long sequences
by short pointer information to the same
sequences in a dictionary.
In statistical methods, arithmetic coding and

CTW are known to compress the DNA data well
[5] and Huffman coding is known to compress
not very efficiently. The Burrows-Wheeler
transform (BWT, also called block-sorting
compression),(Michael Burrows and David
Wheeler.) is an algorithm used in data
compression techniques such as bzip2. Both the
LZ77 and LZ78 algorithms work on this
principle. In GS Compress,LZ77 scheme with
reverse complement is introduced as a dictionary-
based scheme. E. Rivals et al.[6] another
compression algorithm Cfact, which searches the
longest exact matching repeat using sux tree data
structure in an entire sequence. Sadeh has
proposed lossy data compression schemes based
on approximate string matching and proved some
asymptotic properties with respect to stationary
sources. In spite of the good compression ratio,
arithmetic coding and CTW have disadvantages
such as low decompression speed.

2. PROPOSED ALGORITHM – GENBIT
COMPRESS

In this paper we consider the problem of
DNA compression both for repetitive and non
repetitive DNA sequences.To improve the
compression rate, a new technique named GenBit
Compress has been devised, which is much
effective with respect to compression rate. Here
an encoding scheme containing 8 possible bits has
been introduced. Since the DNA sequence
contains only A,C,G,T letters, we named each
character
as a “Base”.
The input sequence is divided in to fragments,
where each fragment = 4 characters. Thus in this
coding scheme, 256(2 power 8 = 256
)combinations can be represented. Hence every
DNA segment containing four bases is replaced
by a 8 bit binary number “00000000”. If the
consecutive fragments are same, then a specific
bit “1” is introduced as a 9th bit . If the
consecutive fragments are different, then a
specific bit “0” is introduced as a 9th bit to the 8
bit unique number.

GenBit Compress is a simple algorithm with out
Dynamic programming approach. It takes an
input of a DNA sequence of length n, and divides
into n/4 number of fragments. The left out
individual bases(fragment length<4) is assigned 4
unique “2” bits. (A=”00”,g=”01”,c=”10”,t=”11”)

The Total number of bits per byte(ℜ) is
calculated as :
ℜ = 9/4 (n - τ) + 2(τ) – 9 (ϒ)

Where n = length of the given sequence.
τ = (n mod 4), number of bases
 excluded from (n mod 4).
ϒ =Number of repetitive fragments (fragments =
4 bases{ACGT}) present in the given sequence.

Compression Rate = Number of Bits/Total
number of Bytes.

Separate analysis for the proposed algorithm is
given for all the three cases(worst case ,best case
and average case).
Worst case: In the worst case there are no
repetitive fragments and individual bases are
maximum and (τ<4)
In this algorithm , the worst-case compression
rate is the highest.(Compression Rate: 2.238)

Best Case: In this algorithm ,maximum repetitive
fragments are n/8 and τ=0. The Best-case
efficiency is proved in this GenBit algorithm
since its compression Rate = 1.125, which is the
best among other cases.

Average Case:
 The Average case efficiency of this algorithm
defines the compression rate of a typical input or
a random input which is not given by neither the
worst case nor the best-case efficiency. Number
of fragments= n/16 and τ=2 ,Compression Rate =
1.727.

2.1: ANALYSIS FOR VARIOUS CASES.

CASE 1: DNA sequence with same fragments.

Example 1:
Given DNA input sequence = aaaa aaaa
length of n = 8.

Assigned Unique bit number = “00000000 1”
The nineth bit “1” is the specific bit since the
Consecutive fragments “aaaa aaaa” match with
each other.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

27

CASE 2: DNA SEQUENCE WITH
DIFFERENT FRAGMENTS.

Example 2:

Given DNA input sequence = acgt atgc

Length of n = 8
Assigned unique bit number = “00000000 0”
The nineth bit “0” is the specific bit since the
consecutive fragments “acgt atgc” does not match
with each other.

CASE 3: DNA SEQUENCE WITH τ = 0

Example 3:
Given DNA input sequence = agct aaaa
Length of given sequence = 8.
Number of individual bases(τ) = n mod 4 = 8 mod
4 =0.

Assigned unique bit number = “001010000
000000000”.

CASE 4: DNA SEQUENCE WITH(n mod 4 ≠
0) τ ≠ 0.

Example 4:
Given DNA input sequence = agct aaaa tt

Length of input sequence = 10.
 Assigned unique bit number = “001010000
000000000 1111”
The individual bases which are excluded after
fragmentation , allocates “2” bits for “t t”
i.e.,t=”11”.

2.2: ENCODING ALGORITHM

Input: Input String(INSTRING) Containing A, T,
G and C

Output: Encoded String (OUTSTRING)

PROCEDURE ENCODE
Begin

1: Divide the given DNA sequence in to
fragments, where each fragment consists of 4
characters.

2: Generate all possible combinations of DNA
sequence (A,C,G,T).(Since the sequence contains
4 different bases, there will be 4^4 = 256
combinations).

3: Assign unique 8 bit number(“0” & “1”) to each
fragment.

4: If the consecutive fragments are same,assign a
specific bit “1” to the 8 bit unique number as a
9th bit.

5: If the consecutive fragments are different
,assign a specific bit “0” to the 8 bit unique
number as a 9th bit.

6: Repeat the steps 4 and 5 until the length of
sequence is “n- τ”.(where n = length of the given
sequence and τ = n mod 4)

7: Allocate unique “2” bit number to individual
bases if τ >0.

8: Transfer the 9 bit binary number to the output
String
 (OUTSTRING).

End

The Decryption algorithm involves the same
procedure as Encryption in the reverse form.

2.3: DECODING ALGORITHM

Input: Input String

Output: Decoded String(DECSTRING)

PROCEDURE DECODE

Begin

1: Generate all possible combinations for
{A,C,G,T}.

2: Allocate unique 8 bit number to each
combination.

3: Divide given binary code in to 9 bit segments.

4: If 9th bit is equal to “1” , the corresponding
combination is taken two times , otherwise
normal.

5: Repeat step 4, until the end of the input
sequence is reached.

6: If there are any individual bases(τ>0), the
corresponding binary code gets transformed.

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

28

(Assigned values for bases are :a=”00”,
G=”01”,c=”10”,t=”11”).

End

3: EXAMPLE AND COMPARISON

The Total number of bits per byte (ℜ)is
calculated as :

where n = length of the given sequence.
 τ= (n mod 4) , number of bases excluded
from (n mod 4).
 ϒ = Number of repetitive
fragments(fragments = 4 bases{ACGT}) present
in the given sequence.

3.1: Worst case:
Consider there is no repetitive fragments(4 bases -
{A,C,G,T}) and individual bases are
maximum.i.e.,(τ< 4).
ℜ = 9/4 (n - τ) + 2(τ) – 9 (ϒ).

 Example:
 let n=67
 τ = n mod 4
 = 3
 = 9/4(64)+2(3)-0.
Total bits(ℜ) = 150.
Compression Rate = ℜ/n
 = 150/67
 = 2.238 bits/bytes.

3.2: Best case:

 Consider there is a probability of occurance of ,a
maximum of n/8 repetitive fragments in the
given sequence. i.e., (τ = 0)
Then
Total number of Bits(ℜ) = 9/4 (n - τ) + 2(τ) – 9 (
ϒ).

 Example:
 let n=64
 τ = 0 ϒ=8.

 ℜ = 9/4(64)+2(0)-9(8)
 = 144-72
 = 72.

Compression Rate = ℜ/n.

 = 72/64 = 1.125 bits/bytes.

3.3: Average Case:

Consider τ = 2 and number of fragments = n/16.

ℜ = 9/4(64)+2(2)-9(4)
 = 144+4-36
 = 114
Compression Rate = ℜ/n
 = 114/66 = 1.727 bits/bytes.

4: METHODOLOGY OF GENBIT

COMPRESS
Assume that n is the length of the

sequence and fragments τ = n
(mod 4) .Each fragment(ACGT)is replaced with 9
bits binary code(0 or 1). For any fragment
followed by different fragment the bits assigned
are “000000000”. When there is a repetitive
segment followed by any segment then the value
of the 9th bit (specific bit) raises to “1” otherwise
“0”.Then the total number of bits required to
encode the sequence of n byte can be obtained as
follows:
ℜ=9/4(n-τ)+2(τ)–9(ϒ).

Approximately 1.125 bits per byte is required to
encode each base.

Let us consider the sequence:
GAAT TTGC AAAA AAAA GCTA ATGC
CTAG GGTT TTTG CCCC CCCC AAAA
TCAG TTGC ATAG GACG .

SequenceLength = 64.
Bytes to store in a text file = 64 bytes.
Windows XP zip size = 163 bytes.
Biocompress = 14 bytes.
GenBit Compress algorithm = 9 bytes.

Thus our proposed algorithm GenBit compress
has the following advantages:
i) Compression ratio of 1.125 bits per base
compared to 1.76 bits per base for the other
algorithms.
ii) Because the method doesn’t use dynamic
programming technique which was used by other
methods e.g., BioCompress, GenCompress etc, it
is simple and takes less execution time.

ℜ=9/4(n-τ)+2(τ)–9(ϒ)

Journal of Theoretical and Applied Information Technology

© 2005 - 2010 JATIT. All rights reserved.

www.jatit.org

29

5: CONCLUSION

A simple DNA compression algorithm
which is completely new in its design is proposed
to compress DNA sequences which are repetitive
as well as non repetitive in nature. DNA sequence
analysis i.e. single and multiple alignments are
areas of active research in bioinformatics. If the
sequence is compressed using GenBit Compress
algorithm, it will be easier to compress large
bytes of DNA sequences with the compression
ratio of 1.125 bits per base which will be very
useful in sequence comparisons and Multiple
sequence Alignment analysis.
The simplicity and flexibility of GenBit
Compress algorithm could make it an invaluable
tool for DNA compression in clinical research.

6: LIMITATIONS

Summative evaluation of learning
outcomes such as testing the real biological
sequences on this alogrithm, performance with
the tools, or the transfer of knowledge to similar
tasks could not be performed.

7: FUTURE WORK

(1)The compression algorithm can be
improved by incorporating dynamic programming
technique to the GenBit Compress algorithm.

(2)Developing a java based tool for
GenBit compress algorithm.

ACKNOWLEDGEMENTS

Authors are thankful for the support
rendered by C.K.Krishna and V.K .Kumar during
its development phase.

REFERENCES

 [1] Chen,X.,Kwong,S.,and Li,M.,A compression
algorithm for DNA sequences and its
applications in genome comparison,Genome
Informatics ,10:52 –61,1999.

[2] Grumbach,S.and Tahi,F.,A new challenge for

compression algorithms:genetic sequences,
Information Processing & Management
30:875 –886,1994.

[3] Rivals, E., Delahaye, J. P., Dauchet, M., and

Delgrange, O.,A guaranteed compression
scheme for repetitive DNA sequences,LIFL
Lille I University, technical report IT-
285,1995.

[4] Matsumoto,T.,Sadakane,K.,and Imai, H.,
Biological sequence compression algorithms,
Genome Informatics 11:43 –52,2000.

[5] Matsumoto, T., Sadakane, K., and

Imai,H.,Biological sequence compression
algorithms,Genome Informatics 11:43 –
52,2000.

[6] Rivals, _E., Delahaye, J.-P., Dauchet, M., and

Delgrange, O., A Guaranteed Compression
Scheme for Repetitive DNA Sequences, LIFL
Lille I University, technical report IT-285,
1995.

P.Raja Rajeswari
received her post
graduate degree in
Computer Applications
in 1999 and M.Tech[IT]
in 2003. She is working
as Assistant
 Professor in DMSSVH
college of Engineering
,Machilipatnam since
2000 to till date.She is

pursuing her Ph.D from Acharya Nagarjuna
University in Computer Science under the
guidance of Dr. Allam Appa Rao. Her research
interests includes Bioinformatics, compression
techniques, design and analysis of
Algorithms,development of software tools.

Dr. Allam Appa
Rao has received
PhD in Computer
Engineering from
Andhra University,

Visakhapatnam,
Andhra Pradesh,
India.He has worked
as the Professor in

Bioinformatics & Computational Biology,
Department of Computer Science and Systems
Engineering &Principal, Andhra University
College of Engineering (AUTONOMOUS).
Currently he is Vice Chancellor to Jawaharlal
NehruTechnological University, Kakinada. His
research interest includes Bioinformatics,
Software Engineering and Network Security. He
is a member of professional societies like IEEE,
ACM and a life member of CSI and ISTE.
www.allamapparao.net.

