
Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

28

FROM GRAPHICAL USER INTERFACE TO DOMAIN CLASS
DIAGRAM: A REVERSE ENGINEERING APPROACH

1
MOHAMMAD I. MUHAIRAT,

 2
RAFA E. AL-QUTAISH,

1
BELKACEM M. ATHAMENA

1Al Zaytoonah University of Jordan, P.O. Box: 130, Amman 11733, Jordan

2Al Ain University of Science & Technology - Abu Dhabi Campus, P.O. Box: 112612, Abu Dhabi, UAE

E-mail: drmohairat@alzaytoonah.edu.jo, rafa@ieee.org, athamena@alzaytoonah.edu.jo

ABSTRACT

The Graphical User Interfaces (GUIs) of software products are extensively used by researchers and
practitioners in Software Engineering field. For Example, they are used for testing, measuring usability, and
many other purposes. This paper describes a new reverse engineering approach to transform the GUI into
class diagram. However, the correctness of such transformation process is essential for the corrected
execution of the overall software. To assure this correctness, the interpreted Petri nets models will be
implemented on the proposed transformation processes (i.e. capturing, normalization, and translation
processes).

Keywords: Class Diagram, Graphical User Interface - GUI, Optical Character Recognition – OCR, Petri

Nets – PNs, Reverse Engineering, Software Design, UML

1. INTRODUCTION

Applying the reverse engineering approaches in

software engineering is very important and useful.
This importance and usefulness are due to the need
to go backwardly in the development process to get
missed documents especially for legacy software.
Moreover, reverse engineering aims at extracting
several types of information for existing software
and to employ them for comprehension, reuse, or
maintenance [1].

However, many research projects were

conducted to apply the reverse engineering
approaches to enable the reuse of existing process
code [2], to combine metrics and program
visualization [3], to recover design pattern
information from source code [4], to perform
testing on GUI [5], to enhance web applications [6,
7, 8], to maintain web sites [9], and to automate the
construction of sequence diagrams for dynamic
web applications [10].

In this paper the reverse engineering approach

will be used to construct the class diagram from the
Graphical User Interfaces (GUIs) of software
product. However, the class diagrams are very
important, necessary, and useful for the software
development process. Consequently, many
researchers have discussed the importance and

usefulness of the class diagrams; for example,
Agarwal and Sinha [11] find that only the class
diagram and interaction diagram are significantly
perceived as user-friendly, that is, the use of such
tools is relatively easy, comfortable and clear. In
addition, Te'eni et al. [12] affirm that fifty three
percent of the projects uses class diagrams and fifty
six percent represent business processes using one
of the appropriate diagrams (e.g., activity, sequence
and collaboration), whereas, all other diagrams are
hardly and rarely used. Furthermore, the
implementation of the class diagram is
straightforward in most modern object-oriented
programming languages, that is, each of the classes
in a class diagram maps naturally into a
programming language construct, for example, a
Java class or interface [13].

The GUIs of software products are extensively

used by researchers and practitioners in software
engineering field. For Example, they are used for
testing, measuring usability, etc.

This paper describes a new reverse engineering

approach to transform the GUI into class diagrams.
However, the correctness of such transformation
process is essential for the correctness of the
execution of the overall software. To assure this
correctness, the Petri nets models will be applied on
the transformations processes (i.e. capturing,

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

29

normalization, and translation processes).
Therefore, the transformation processes will be
implemented as flowcharts then they will be
converted to Petri nets models.

Flowcharts are semi formal tools and thus the

Petri nets modeling will be used as an effective
graphical tool. Therefore, the flowcharts are not
useful in the analysis of the processes. In this paper,
we propose a domain of transformations, that is, to
go from the semi-formal description using
flowchart models to formal description using Petri
nets models. In this way the capability to describe
the processes behavior is fully exploited, since the
processes analysis can be more properly performed
in Petri nets domain. However, Petri nets models
are widely used to represent and analyze industrial
systems [19-21]. The reasons for using the Petri
nets models are their formal semantics, graphical
nature, expressiveness, and the availability of
analysis techniques to prove their structural
properties, such as, invariance properties,
reachability, deadlock, liveness, etc.

The rest of this paper is organized as follows:

Section 2 discusses the related concepts used in this
paper, that is, the optical character recognition,
class diagram, and Petri nets models. Section 3
explains - in details - the proposed approach, and
Section 4 presents a case study on the proposed
approach. Finally, Section 5 concludes the paper
and presents potential future work.

2. RELATED CONCEPTS

This section introduces a set of related concepts,

that is, the concepts which to be integrated to build
the intended reverse engineering approach.
However, the concepts of the Optical Character
recognition (OCR), class diagrams, and Petri nets
models will be discussed.

2.1 Optical Character Recognition

Optical Character Recognition (OCR)

technology has become an aid for inputting
documents quickly by and for users with vision
impairments. A complete OCR system consists of a
scanner, the recognition component, and OCR
software that interact with the other components to
store the computerized document in the computer.
The process of inputting the material into the
computer begins with the scanner taking a picture
of the printed material. Then, during the recognition
process, the picture is analyzed for layout, fonts,

text and graphics. Finally, the picture of the
document is converted into an electronic format
that can be edited with application software. OCR
systems designed specifically for users with visual
impairments have modified interfaces that can be
used with minimal assistance [14].

In general, OCR systems work as an external

device with the user's existing assistive technology.
Once the picture is in electronic format, it is
accessed for reading and/or editing through the
user's Braille, speech or magnification technology.
Since some products work better with certain
speech or Braille systems, therefore, it is important
to note its compatibility with the other products in
the user's computer system. Some products,
however, have an adaptive device built in. These
are referred to as ‘stand-alone reading machines’.
Of these, some products have the added flexibility
of working either as stand-alone or with a computer
[15].

In our proposed approach, the OCR is used to

capture the words and/or phrases which in turn
represent buttons, text boxes, labels, and any
component of a form or frame.

2.2 Class Diagrams

In software engineering, a class diagram as a

type of the Unified Modeling Language (UML) is a
static structure diagram that illustrates the structure
of software by showing the software’s classes, their
attributes, and the relationships between the classes
[16].

Class diagrams are commonly used to describe

the types of objects and their relationships in
software. The class diagrams are used to model a
class structure and contents using design elements
such as classes, packages and objects. In addition,
they describe three different perspectives when
designing a software product, that is, conceptual,
specification, and implementation. These
perspectives become evident as the diagram is
created and help solidify the design [17]. However,
Figure 1 illustrates that the classes are composed of
three items, that is, class name, class attributes, and
class operations.

Student

name: string
age: integer

getName(): string

Figure 1: The Contents of the Class

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

30

A class diagram is similar to a family tree in
which a class diagram consists of a group of classes
and interfaces reflecting important entities of the
business domain of the software being modeled and
the relationships between these classes. The classes
in the diagram represent the members of a family
tree and the relationships between the classes are
equivalent to relationships between members in a
family tree. Interestingly, classes in a class diagram
are interconnected in a hierarchical fashion, like a
set of parent classes and related child classes under
the parent classes. Similarly, a software application
is comprised of classes and a diagram depicting the
relationship between each of these classes, that is,
the class diagram [18].

2.3 Petri Nets Models: An Overview

Petri nets (PNs) model is a graphical-mathematical
tool used to represent and analyze various systems
for describing the relations between conditions and
events, especially for systems with parallel and
concurrent activities [21]. However, PNs are
currently used in many industrial branches for
planning and controlling of production flow,
system/software synthesis, etc. The graphic
representation of PNs can be understood even for
non-technical staff. It allows – for example – to
specify such behaviors as parallelism and
concurrency, choice, synchronization, memorizing,
reading or resources sharing.

The advantage of obtaining a formal PNs model
for the software resides in the possibility of use of
standard tools for the analysis of PNs, thus, PNs
properties can be quickly verified.

A graphical PNs model consists of circles, bars,
directed arcs and dots, which represent places,
transitions, arcs and tokens, respectively. Besides,
PNs model provides qualitative analysis for system
properties such as reachability, liveness,
boundedness, safeness, conservativeness, and
deadlock [19-21].

A flowchart is a common graphic formalism,

often used to represent the control structure of
programs or workflow systems. It is possible to
conveniently map flowcharts into PNs, in which
each vertex of the flowchart is replaced by a
corresponding PNs fragment [22].

3. THE PROPOSED APPROACH

The proposed reverse engineering approach for
constructing a class diagram from GUI will consist

of the following processes:
1. Capturing process: it will give us the ability to

capture all the GUI forms components and store
them in a not-normalized temporary table-.

2. Normalization process: it consists of scanning
all records in the temporary table and
normalizing it. The result will be new
normalized table.

3. Translation process: it will translate the
normalized table to class diagram.

Figure 2 shows the above three processes and the

inputs and outputs for each process. For example,
the input for the normalization process is temporary
table and its output is normalized table.

Figure 2: The Entire Transformation Process (Reverse

Engineering Process)

As seen above, the capturing process is the first

process and it will identify each component and
store its information in special table called
temporary table. This process consists of the
following two sub processes:

1. The capturing sub process; and
2. The storing sub process.

However, Figure 3 demonstrates the algorithm of

the capturing and storing sub processes.

As illustrated in Figure 3, our algorithm scans

about operation name in operation table. The
operation table will consist of all common possible
operation names that can be compared with the
captured buttons names from GUI. This table can
be modified as needed.

Translation Process

Normalization Process

Capturing Process

Graphical User Interface

Temporary Table

Normalized Table

Class Diagram

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

31

Start scanning

GUI Form

For each GUI form

Scan GUI

component

For each GUI component

if GUI component is a

form title or tab title ?

Define, store as table name

& match as "Main table"

Yes

if GUI component is a

label then space then text ?
Define & store as

attribute name

Yes

No

if GUI component is

a button ?

Define as an operation name

after scanning in operation table

Yes

end of scanning each GUI

component

end of scanning each GUI form

Define, store as table name &

match as "Secondary table"

Yes
No

No

if GUI component is a label then

space ?

add first attribute from Secondary

table to the Main table

Secondary table exist ?

Yes

No

No

Figure 3: Capturing Process

Table 1: Operations Table

Button name Operation Name

Save, Add, Submit, New,
Insert, Create

Insert

Delete, Cancel, Erase Delete

Update, Change, Modify Update

Search, Find, Explore,
Navigate, Select, Read,
print

Select

After executing the capturing sub process the

result will be stored on a temporary table which
may contain redundancy data, such as names of
records, fields and operations. However, Table 2
shows the contents of this table. Then, the

explanations of the contents of this table will be
discussed to ensure the understandability of the
table.

Table 2: Temporary Table

TNi FNi FNi+1 . . . FNm ONk ONk+1 . . . ONn

TNi+1

. . .

TNl

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

32

The symbols are used in Table 2 and defined as

the following:
TN: Table Name,
FN: Field Name,
ON: Operation Name,
i: Field index,
j: Table name index,
k: Operation Index,
l: Maximum number of table names,
m: Maximum Number of Fields, and,
n: Maximum Number of Operations,

Now, to verify capturing process, the algorithm

for the capturing process in Figure 3 will be
transformed to its equivalent PNs model. According
to the standard transformation rules, the equivalent
PNs model of the capturing process is represented
in Figure 4. Then, the reachability graph (RG) of
capturing process is shown in Figure 5. However,
from this reachability graph - Figure 5 - and from
the PNs properties [21], we can conclude that the
capturing process is bounded, safe, live, reachable
and without deadlock.

Figure 4: PNs Model of the Capturing Process

Whereas, the symbols in Figure 4 are defined as
the following:

:1P Ready to Start,

()←FGUIP _:2 ,

()←CGUIP _:3 ,

()[]TLFTCGUIP ∨∧_:4 ,

() SLCGUIP →∧_:5 ,

()[] TXSLCGUIP →→∧_:6 ,

()BCGUIP ∧_:7 ,

++CGUIP _:8 ,

++FGUIP _:9 ,

()EXSTP ∧:10 ,

()FGUISNt _:1 ∧ ,

()CGUISNt _:2 ∧ ,

()[] MTTNSCDCt →→∧:3 ,

()[] STTNSCDCt →→∧:4 ,

() ANSCDCt →∧:5 ,

() ONOTSCt →∧:6 ,

() MTSTFAt →∧:7 ,

GUI_F: GUI Form,
GUI_C: GUI Component,
FA: First Attribute,
FT: Form Title,
MT: Main Table,
OT: Operation Table,
ST: Secondary Table,
TL: Tab Title,
B: Button,
DC: Define Component,
EX: Exist,
L: Label,
S: Space,
SC: Store Component,
SN: Scan,
TX: Text, and
AN: Attribute Name.

The second process, that is, the normalization

process which starts after finishing the capturing
process. This process will be executed using the
algorithm in Figure 6.

P1

P2

P3

P4

P5 P8 P9

t2

t6

t5

t3

t4 t1

P6

P7

w

w

w

w

P4_T

P5_T

P6_T

P4_F

P5_F

P6_F P7_F

P8_F

P9_T

P8_T

1

P10

t7

w

P10_T

End

P10_F
w

P7_T

P9_F

w

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

33

Figure 5: RG of the Capturing Process

Open temporary

table

Open normalized

table

for each "Temporary table" record

Read table

name field

Scan table name field

in normalized table

Add record to

normalized table

No

for each "Temporary table" field

Read field

Scan in

operation table

if field exist

if table name exist

Scan in

normalized table
Scan in

normalized table

Add to normalized

table as operation

Add to normalized

table as attribute

if field exist if field exist

end of each field

end of each record

finish

where

Temporary table " table name

field" = Normalized table "table

name field"

Yes

Yes No

Yes

No

Yes

No

Figure 6: Normalization Process Flowchart

m0

m1

m2

m3 m4 m5

m10 m9 m8

1 T T T F

t3 t4

F F

 t2 T F T

t1
m13 m12 m14

m15

m7 m11

m6
t5

t6

End

T

t7
F

F T

() ()
() ()
() ()
() ()
() ()
() ()
() ()
() ()
()1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

16

1514

1312

1110

98

76

54

32

10

=

==

==

==

==

==

==

==

==

m

mm

mm

mm

mm

mm

mm

mm

mm

m16

F

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

34

Again, the algorithm of the normalization
process needs to be transformed into its equivalent
PNs model. Therefore, Figure 7 shows the
equivalent PNs model of the normalization process

algorithm. Furthermore, based on the PNs
properties, Figure 8 illustrates that the PNs model
of the normalization process algorithm is bounded,
safe, live, reachable, and without deadlocks,.

Figure 7: PNs Model of the Normalized Process

However, the following are the definitions of the
symbols used in Figure 7:

:1P Ready to start,

()←RCTTP _:2 ,

()EXTNP ∧:3 ,

()←FDTTP _:4 ,

()EXFDP ∧:5 ,

()EXFDP ∧:6 ,

()EXFDP ∧:7 ,

()++FDTTP _:8 ,

()++RCTTP _:9 ,

()TTOt ∧:1 ,

()NTOt ∧:2 ,

()FDTNRt _:
3

∧ ,

()NTFDTNSNt ∧∧ _:4 ,

NTRCt →:5 ,

()FDRt ∧:6 ,

()OTSNt ∧:7 ,

()NTSNt ∧:8 ,

()NTSNt ∧:9 ,

NTATt →:10 ,

NTOPt →:11 ,

TT_Rc: Temporary Table Record,
TT_FD: Temporary Table Field,
FD: Field,
O: Open,
NT: Normalized Table,
R: Read,
RC: Record,
TN_FD: Table Name Field,
OP: Operation, and
AT: Attribute.

As a result of execution normalization process, a

new normalized table will be build without any
redundancy in tables’ names, fields’ names and
operations’ names.

The third process (translation process) is divided

into three sub processes, that is, the relationship
definition, translation to class diagram, and
translation to association sub processes. Firstly,
Figure 9 represents an algorithm for the process of
defining the relationship between records from
normalized table and as a result between classes.

Figure 8: RG of the Normalized Process

() ()
() ()
() ()
() ()
() ()
() ()
() ()
() ()
() ()1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

1716

1514

1312

1110

98

76

54

32

10

==

==

==

==

==

==

==

==

==

mm

mm

mm

mm

mm

mm

mm

mm

mm

m12 m10

m3 m2 m1 m0

m9

m8

m4 m5

m7 m6

t3 t2 t1 F

t6 t7 T t9 F

 F t8 F t10

 T t11

m11 m13 m15

m14

m16 m17

t4 t5 F

T F

T

T

T

P1 t1 w t2

P2

t3 w t4

P3

P3_T

w P3_F t5

P4
P5

w

w

P7

P6

w
w

P8 P9 w t6

t8

t9

t10

t11

t7 w

P5_T P7_T

P6_T

P8_T P9_T

P5_F

P6_F

P7_F

P8_F End

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

35

Figure 9: Relationship Definition Flowchart

After executing the algorithm in Figure 9, the

result will be stored in a relationship table, as in
Table 3.

Table 3: Relationship table

TN TN RF

In Table 3, TN represents a Table Name and RF
represents a Relationship Field.).

Figures 10 and 11 represent the equivalent PNs

model and the reachabilty graph of the relationship
definition sub process, respectively, From these
figures (Figures 10 and 11), we can conclude that
this sub process is also bounded, safe, live,
reachable, and without deadlock.

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

36

Figure 10: PNs Model of the Relationship Process

The following presents the symbols’ definitions
for Figure 10:

:1P Ready to start,

()()←iRCP :2 ,

()()←+1:3 iRCP ,

() ()1__:4 += iRCFNiRCFNP ,

()()+++1:5 iRCP ,

()()++iRCP :6 ,

()NTOt ∧:1 ,

()FDTNRt _:2 ∧ ,

()FNRt ∧=3 ,

()FDTNRt _:4 ∧ ,

()FNRt ∧:5 ,

() RTFNFDTNWt →∧∧ _:6 ,

FN_RC: Field Name Record,
W: Write, and,
RT: Relationship Table.

Secondly, the algorithm of the translation to class

diagram sub process is shown in Figure 12. Its

equivalent PNs model and the reachability graph
are illustrated in Figures 13 and 14, respectively.

Finally, the algorithm of the translation to

association sub processes is presented in Figure 15,
its PNs in Figure 16, and the reachability graph of
the PNs in Figure 17. However, the outputs of
Figures 12 and 15 will be saved in a meta-data
table, from which we will generate the class
diagram.

Figure 11: RG of the Relationship Process

Figure 12: PNs Model of the Translation to Class
Diagram Process

Figure 13: Translation to Class Diagram Process
Flowchart

P1

P2

w w

P3

w t1 t2 t3 t4 End

P3_T

() ()
() ()
() ()
() ()
() ()1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1

0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1

98

76

54

32

10

==

==

==

==

==

mm

mm

mm

mm

mm

 t3 t4 t5

m0

m1

m2 m3 m4 m5

m9

m8 m7 m6

 t2

t1

T

End

w

P1

P2

w

P3

w

P4

w

P5

P6

t6

t1

t2

t3

t4

t5

P4_F

P4_T

P5_T

P5_F

End

P6_T

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

37

For Figure 13, the following are the definitions
of the used symbols:

:1P Ready to start,

()←RCP :2 ,

()++RCP :3 ,

()NTOt ∧:1 ,

() ()CNSVFDTNRt ∧→∧ _:2 ,

() ()CNATSVATRt ∧∧→∧:3 ,

()CNOPSVROt ∧∧→:4 ,

CN: Class Name, and
RO: Read Operation.

Figure 14: RG of the Translation to Class Diagram
Process

Figure 15: Translation to Associations Process
Flowchart

Figure 16: PNs Model of the Translation to Association
Process

Figure 16 contains a set of symbols which are
defined as the following:

:1P Ready to start,

()←RCP :2 ,

()++RCP :3 ,

()RTOt ∧:1 ,

()RFjTNiTNRt ∧∧∧)()(:2 ,

() ASRFSVt →∧:3 ,

RT: Relationship Table, and
AS: Association.

Figure 17: RG of the Translation to Association Process

4. CASE STUDY: ORDERING SYSTEM

An example represented here – the ordering
system – is to describe the process of ordering and
maintaining information about customers and
items. To execute each process, the users have to
interact with specific forms; these forms are
represented in figures 18, 19 and 20. However,
these forms will be used as input to the capturing
process of our proposed approach; see Figure 3 for
more details about the capturing process.

Figure 18: Order frame

Figure 19: Item frame

() ()
() ()
()1,0,0,0,0

0,1,0,0,0,,0,0,1,0,0

0,0,0,1,0,,0,0,0,0,1

4

32

10

=

==

==

m

mm

mm

m0 m1

m2 m3 m4

t1

T t2
 End t3

P1

P2

w

P3

w t1 t2 t3 End

P3_T

() ()
() ()
() ()1,0,0,0,0,0,0,1,0,0,0,0

0,0,1,0,0,0,0,0,0,1,0,0

0,0,0,0,1,0,0,0,0,0,0,1

54

32

10

==

==

==

mm

mm

mm

m0 m1 m2

m3 m4 m5

t1 t2

T t3
 End t4

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

38

Figure 20: Customer frame

After applying the capturing process algorithm,
as in Figure 3 above, the result will be stored in a
temporary table, as in Table 4.

As seen in Table 4, the result in the temporary

table is not normalized and contains Order, Item,
and Customer as Tables’ Names (TN), also it
contains ordereID and orderDate as Fields’ Name
(FN), and insert and update as Operations’ Names
(ON), see table 2 above for the places and
definitions of the TN, FN, and ON.

Next, Table 5 shows the results after executing

the normalization process (as in Figure 6), that is,
excluding the data redundancy in Table 4, the result
will be stored in a table named normalized table,
that is, without any kind of data redundancy.

Table 4: Temporary Table

Order ordered orderDate insert Update Delete itemId customerId
Item itemId itemName itemPrice itemQty Insert

Customer customerId customerName customerAddress customerTelephone

Item
item
Id

item
Name

item
Price

item
Qty

Item
ExpiredDate

item
QtyOnHand

Insert update delete select

Customer
customer

Id
customer
Name

customer
Address

Customer
Telephone

customer
Email

insert update delete select

Table 5: Normalized Table

Order ordered orderDate Insert update Delete itemId customerId

Item
item
Id

item
Name

item
Price

item
Qty

item
ExpiredDate

item
QtyOnHand

insert update delete select

Customer
customer

Id
customer
Name

customer
Address

customer
Telephone

customer
Email

insert update delete select

By applying the relationship definition process

algorithm – as in Figure 9 – we will determine if
there is any relationship between the records from
the normalized table. The result of the relationship
definition process is stored in Table 6 below.
Therefore, we find that there are relationships
between the Order and Item tables, and between the
Order and Customer tables.

Table 6: Relationship Table

Order Item itemId
Order Customer customerId

Finally, in order to produce the class diagram and

draw the relationships between these classes, the
translation process to class diagram algorithm and
the translation process to association algorithm are
applied. Figure 21 presents the produced class
diagram based on the GUIs of the ordering system,
that is, depends on Figures 18, 19, and 20.

Figure 21: The Produced Class Diagram

Order

orderId
orderDate

insert()
update()
delete()

Item

itemId
itemName
itemPrice
itemQty
itemExpiredDate
itemQtyOnHand

insert()
update()
delete()
select()

Customer

customerId
customerName
customerAddress
customerTelephone
customerEmail

insert()
update()
delete()
select()

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

39

5. CONCLUSION AND FUTURE WORK

The Graphical User Interfaces (GUIs) of
software products are extensively used by
researchers and practitioners in Software
Engineering field. For Example, they are used for
testing, measuring usability, etc. This paper
described a new reverse engineering approach to
transform the GUI into class diagrams. This reverse
engineering approach will help the practitioners to
produce the class diagram backwardly from the
GUI to save time to work with the legacy software
products.

However, the correctness of such transformation

process is essential for the correct execution of the
overall software. To assure this correctness, the
Petri nets models were implemented on the
transformations processes (i.e. capturing,
normalization, and translation processes). By
implementing the PNs we have assured that the
three processes, that is, capturing, normalization,
and translation processes are safe and live.

As a future work, the proposed approach in this

paper could be used to define all types of
relationship between classes, multiplicity and to
construct another UML diagrams, such as use case
diagram, from the GUI of any software product.

REFRENCES:

[1].H. El Bouhissi, M. Malki, and D. Bouchiha, A
Reverse Engineering Approach for the Web
Service Modeling Ontology Specifications, in
Proceedings of the 2

nd
 International Conference

on Sensor Technologies and Applications

(SENSORCOMM’08), Cap Esterel, France,
August 25-31, 2008, pp. 819-823.

[2].H. Tran, U. Zdun, and S. Dustdar, View-Based
Reverse Engineering Approach for Enhancing
Model Interoperability and Reusability in
Process-Driven SOAs, in Proceedings of the
International Conference on Software Reuse

(ICSR’08), Beijing, China, May 25-29, 2008,
pp.233-244

[3].S. Demeyer, S. Ducasse, and M. Lanza, A
Hybrid Reverse Engineering Approach
Combining Metrics and Program Visualization,
in Proceedings of the 6th Working Conference on
Reverse Engineering (WCRE’99), Atlanta, GA ,
USA, October 6-8, 1999, pp. 175-186.

[4].A. Alnusair, and T. Zhao, Towards a Model-
Driven Approach for Reverse Engineering

Design Patterns, the 2
nd
 Workshop on

Transforming and Weaving Ontologies and

MDE (TWOMDE'09), Denver, Colorado, USA,
October 4-9, 2009.

[5].A. Memon, I. Banerjee, and A. Nagarajan, GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing, in Proceedings of the 10th
Working Conference on Reverse Engineering

(WCRE’03), Victoria, BC, Canada, November
13-16, 2003, pp. 260-269.

[6].S. Weijun, L. Shixian, and L. Xianming, An
Approach for Reverse Engineering of Web
Applications, in Proceedings of the International
Symposium on Information Science and

Engineering (ISISE’08), Shanghai, China,
December 20-22, 2008, pp. 98-102.

[7].G. A. Di Lucca, A. R. Fasolino, F. Pace, P.
Tramontana, and U. De Carlini, WARE: a Tool
for the Reverse Engineering of Web
Aapplications, in Proceedings of the 1

st

International Conference on Web Information

Systems Engineering (ICWEISE’00), Hong
Kong, China, June 19-21, 2000, pp. 241-250.

[8].J. Pu, H. Yang, B. Xu, L. Xu, and W. C. Chu,
Combining MDE and UML to Reverse Engineer
Web-Based Legacy Systems, in Proceedings of
the 32

nd
 Annual IEEE International Computer on

Software and Applications (COMPSAC’08),

Turku, Finland, July 28 - August 1, 2008, pp.
718-725.

[9].S. Chung and Y. Lee, Reverse Software
Engineering with UML for Web Site
Maintenance, in Proceedings of the 1

st

International Conference on Web Information

Systems Engineering (ICWEISE’00), Hong
Kong, China, June 19-21, 2000, pp. 157-
161.

[10]. M. H. Alalfi, J. R. Cordy, and T. R. Dean,
Automated Reverse Engineering of UML
Sequence Diagrams for Dynamic Web
Applications, in Proceedings of the International
Conference on Software Testing, Verification

and Validation (ICSTW’09), Denver, CO, USA,
April 1-4, 2009, pp. 287-294.

[11]. R. Agarwal, and A. P. Sinha, “Object-Oriented
Modeling with UML: A Study of Developers’
Perceptions”, Communication of the ACM,
Vol.46, No.9, 2003, pp.248-256.

[12]. D. Te'eni, R. Gelbard, and M. Sade, Increasing
the Benefit of Analysis: The Case of Systems
that Support Communication, in Proceedings of
the 11

th
 International Conference of the

Association Information and Management

(AIM’06), June 8-9, 2006, pp. 13-27.

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

40

[13]. J. M. P. Cachopo, Development of Rich
Domain Models with Atomic Actions, PhD
Thesis, Universidade Técnica de Lisboa, Lisboa,
Portugal, 2007.

[14]. H. Bunke, and P. S. P. Wang, Handbook of
Character Recognition and Document Image

Analysis, World Scientific Publishing Company,
Hackensack, NJ, USA, 1997.

[15]. B. Kumar, Optical Pattern Recognition,
Prentice-Hall, USA, 2003.

[16]. Russell Miles, Kim Hamilton, Learning UML
2.0, 1st edition, O'Reilly Media, USA, 2006.

[17]. G. Booch, R. A. Maksimchuk, M. W. Engel, B.
J. Young, J. Conallen, K. A. Houston, Object-
Oriented Analysis and Design with Applications,
3rd edition, Addison-Wesley Professional,
London, UK, 2007.

[18]. M. Chitnis, P. Tiwari, and L. Ananthamurthy,
The UML Class Diagram: Part 1, online:
http://www.developer.com/article.php/220679,
visited on Dec. 5, 2010.

[19]. R. David, and H. Alla, Discrete, Continuous,
and Hybrid Petri nets, Springer-Verlag, Berlin
Heidelberg, Germany, 2005.

[20]. T. Murata, Petri nets: Properties, Analysis and
Applications, Proceedings of the IEEE, Vol. 77,
No. 4, 1989, pp. 541-580.

[21]. R. David and H. Alla, Petri nets for modeling
of dynamics systems-A survey, Automatica, vol.
30, no. 2, pp. 175–202, 1994.

[22]. S. Achasova, O. Bandman, and V. Markova,
Parallel Substitution Algorithm, Theory and

Application, World Scientific, USA, 1994.

AUTHOR PROFILES:

Dr. Mohammed I. Muhairat received the M.Sc.

degree in Computer Engineering
from Kharkov State Technical
University of Radio Electronics,
Ukraine in 1997, and the Ph.D.
degree in computer engineering
from Kharkov National University
of Radio Electronics, Ukraine in
2002. Currently, he is the
Department Chair and Assistant

Professor of Software Engineering in Department
of Software Engineering, Al Zaytoonah University
of Jordan. His research interests are in Software
Engineering field, such as, Requirements
Specification, Software Architecture, Software
Development Process, Reverse Engineering, and
Formal Methods. He has more than 20 published
articles in International Journals and Conferences.

Dr. Rafa E. Al-Qutaish received the B.Sc. in
Computer Science and M.Sc.
degrees in Software Engineering
in 1993 and 1998, respectively.
Also, he received the Ph.D. degree
in Software Engineering from the
School of Higher Technology
(ÉTS), University of Québec,
Canada in 2007. Currently, he is
an Assistant Professor of Software
Engineering at Al Ain University

of Science and Technology in Abu Dhabi, UAE.
His current research interests are in Software
Measurement, Software Product Quality, Software
Engineering Standardization, Reverse Engineering,
Software Comprehension and Maintenance, and
Compiler Construction. So far, he has more than 34
published articles in International Journals and
Conferences. Dr. Al-Qutaish is a senior member of
the IEEE & IEEE-CS, and also a senior member of
the IACSIT in Singapore.

Dr. Belkacem M. Athamena was born in Algeria.

He received the M.Sc. and Ph.D.
degrees in Computer Engineering
and System/Software Modeling &
Analysis from Annaba University
in collaboration with UCL
University, Belgium, in 1994 and
2004, respectively. He is currently
an Associate Professor at the

Department of Software Engineering, Al Zaytoonah
University of Jordan. His research interests include
System/Software Modeling and Analysis, Fuzzy
Logic, Neural Networks, Petri Nets, UML, VVT,
Formal Methods, Fault Diagnosis. He has published
over 40 papers, chapters in books, and conferences.

