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ABSTRACT

In this paper, we give some theoretical resultsttie index Wienét/, degree distancBD and the hyper-
Wiener indexWW of a grapléd, according tod;(k)(The number of pairs of vertices &f that are at
distance), and the diameter ® We accomplish this by firstly, giving another pf@f the inequality for
the planar graphs withverticesW (En) < W(Cn) < W (Pn)[6], with E, is a maximal planar graph is a
planar graph ané, is a path planar graph. Secondly, we will apply theoretical results for some graphs
with diameter equals two, as Fan planar gfapWheel planar grapW,,, maximal planar grapB, and the
butterfly planar grapl®,, and some particularly graphs with diameter grethi@n two, as the cycle planar
graplt,, and the Sunflower planar gragh.
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1. INTRODUCTION In the following we consider only the simple planar
connected graphs.
A graphG is a triple consisting of a vertex
set V(G), an edge seE(G), and a relation that The Benzenoid planar graph, is composed
associates with each edge two vertices (nof exclusivelyof hexagonal rings that are face
necessarily distinct) called its endpoints. Wbounded by six-membered cycles in the plane. Any
denotedlV (G)| = n is the vertex number af and two rings have either one commonedge (and are
we denotetE(G)| = m is the edges number &f. then said to be adjacent) or have no common
We draw a graph on paper by placing each vertexvartices[8].
a point and representing each edge by a curve
joining the locations of its endpoints (see Fig.A)
path is a simple graph whose vertices can t
ordered so that two vertices are adjacent if arg or
if they are consecutive in the list. A graghis
connected if each pair of the verticesdrbelongs
to a path. The degree of vertexin a graphgG,
written deg(v), is the number of edges incident t
v, except that each loop(the edge withe u = v)
at v counts twice, and we called distance betwee
two distinct vertices of graplz, u and v, the
smallest length of path betweenandv in G[3]. Fig.1: The benzenoid hydrocarbons planar
The diameter of;, denoted byD (G), is defined as graph
the maximum distance between any two vertices of
G, that is: The example of Benzenoid graphs isshown in Fig
D(G) = max{d(u, v): V(u,v) € V(6)2}L[2][1] .1. The Wiener and degree distance indicesof this
graph of n vertices, N hexagons andn edges
isrespectively:
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DD(G) and W (G) are closelymutually related for
certain classes of molecular graphs[3].The Zagreb
indices have been introduced more than thirtyyears
And, ago by Gutman and Trinajestic. They are defined
as:

DD(G) = 5W(G) — 3(2N + 1)? [7]. M, (G) = zue{V(G)} deg(u)?[4][5].

1
W(G) =3 (16N> + 132N + 362N + 327)

Let d;(k) be the number of pairs of
vertices ofG that areat distané&el a real number, 2
and :

THE MAIN RESULT

In this section we give some theoretic
W, (6) = Z dg (k) kA results aboW/ (G), WW (G)andDD (G).

W, (6)is called the V\I;izelner—type invariant of Theorem 1.Let Gbe a connected finite undirected

associatedto real numbér Note thatdg(0) and 9raphwithoutloops or multiple edges, with n
d,(1represent thenumber of vertices and edge€rticesmedges, andwitld () = 2, we have :
respectively[4]. The oldestand most thoroughly

examined use of a topological indexin chemistr;VV(G) =nn—1)—m+dg(3) +2ds(4) + -+
was by Wiener in the study of paraffin (D = 2)dg(D)

boilingpoints, and the topological index was called

Wiener index. TheWiener index of the gragh Proofs.

equals to the sum of distancesbetween all pairs i(G) = W1 (G)

vertices of the respective molecular graph,i.e: =ds(1) +2d(2) +3dc(3) + -
+ Dd; (D)
wEe = Y dww) AP
WOV (©) S = do(1) + dg(2) + -+ + dg (D)

(The case df=1 of thew,(G)), and we defined

the index Wiener of a vertexinthe graplG as : =m+dg(2) + - +dg(D)

(n-1)
w(u,G) = Z d(u,v) dg(2) =m— % ———— d¢(D)o
veV(G) Corollary 1.Let Gbe a Graph witmvertices,

medges

The hyper-WienerindeW W is one of the and withD(G) = 2, then:
recently conceived distance-basedgraph invariants,
used as a structure descriptor for W@G)=nn—-1)—m
predictingphysicochemical properties of organic
compounds (oftenthose significant foProofs: We use the Theorem 1, with(G) = 2.
pharmacology, agriculture, environment
protection,etc.). The hyper-Wiener index wa€orollary 2.[6] LetC,be a simple planar graph with
introduced byRandic and has been extensively
studied, it is defined as: vertices, then :

WW (G) = 5 (Wy(G) + W, (G)[4].
In  connection withcertain investigations in
mathematical chemistry, Dobryninand Kochetova, _ i _
introduced ~ firstly in  connection  with WithEnis @ maximal planar graph, amlis a path
certainchemical applications, and at the same tifRE2nar
by Gutmanwho named it the Schultz index (degr&&a@Ph-
distance), definedas:

W(Ey) s W(C) < W(R)

Proofs: We havel (C,,) < W(PB,)evident.

_ We use the precedent theorem to proof
bD(®) Z (deg(u) + deg(v))d(u,v) W(E,) < W(C,)as follow: We have

Thisname was eventually accepted by most autho .(G)szn(g _fl) B"g"'_d%gﬁ) + _det;é‘}) toot |
The degreedistance attracted much attention aftert ) G(_ ), ror Ef) _” Emlsl € maxima
was discovered. Ithas been demonstrated tHAENW (Cn)is minimal for all other planar graph

(wv)eV(G)
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and withD(G) = 2, we have :
The Precedent result is for the wiener
index and crochetedthe planar graphs, we give in
the corollary 4 a result, similarlyfor an index deg DD(G) = Z w(u, G) deg(u)
distance and for the Trees. w&V 6

Remark 1.[6] Let T,be a Tree witluwvertices, then proofs:

W(Sn) s W(T) < W(F) DD(G) = Z (deg(u) + deg(v))d(u, v)

. . . {uv}cv(G)
withS,is the star tree, anglis a path tree.

;’rhaer());em 2 Let Gbe a connected finite undirected _ 5 Z (deg(u)
without loops or multiple edges, with n vertices, lrmd vev(e)
medges
' +d d(u,
and withD(G) > 2, we have : eg(v) d(u, v))
1 5 1
ww(e) = §(3n(n — 1D —4m+3°-3)ds(3) =5 z deg(v) d(u, v)
+...+(D2 +D—6)dG(D)) veV(G)
uev(G)

Proofs: WW () = 2 (W3(G) + W (6))

1
we havel/ (G) = W;(G), then we will needed to : + 3 Z deg(w) d(u,v)
vev(G)
W@ = ) dg (K e
o1 We have :

z deg(v) d(u,v)

we apply the previous proof, with vevi6)
uev(G)

and we put = 2n(n — 1) — 3m, we get to: - Z deg(w) d(w, v)
veEV(G)
W,(G) = m+d(2)2* +d;(3)3% + - uev(G)
+ dg(D)D?
=t+ (32 —d;(3) + -+ (D2 —4)d; (D)o Then;

Corollary 3.Let Gbe a Graph witlmvertices, DD(G) = Z deg(u) d(u,v)
medges
and withD(G) = 2, then : uev(G)

= zueV(G) w(u, G)deg(u)o

veVv(G)

3
ww(e) = En(n —-1)—-2m
Corollary 4.Let Gbe a Graph witmvertices,

Proofs: we use the theorem 2, with(G) = 2 medges
and withD(G) = 2, then :
Theorem 3.Let Gbe a connected finite undirected
graph DD(G) = 4(n—1)m — M,(G)
without loops or multiple edges, with n vertices,
medges,
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Proofs. we use theorem 3 we have :

DD(G) = Z w(u, G)deg(u)
u€ev(G)

w(u, G) = d(u, V)
VeV (G)

we haveD(G) = 2then:

w(u,G) = d(u,v) + d(u,v)

veV(G) veEV(G)
d(u,v)=1 d(u,v)=2

d(u,v) = deg(u)

veV(G)
d(u,v)=1

n= dlu,v) +n, +1

veV(G)

d(u,v)=1

withn,is the number of vertexwith d(u, v) =
2then :

w(u,G) = deg(u) + 2((n — 1) — deg(w))

DD(G) = Z (deg(w) + 2((n— 1)

u€ev(G)

— deg(u)))deg(u)

=2(n—-1) Z deg(u) — Z deg(u) deg(u)

veV(G)

=4(n—-1)m— M,(G)o

uev(G)

Theorem 4.[7] If T, is a tree om vertices , then:

DD(T,) = 4W(T,) — n(n — 1)

Corollary 5.Let T,,be a Tree witmvertices, then:

DD(S,) < DD(T,) < DD(P,)

withS,is the star tree,anB),is a path tree.

Proofs: We use the Remark 1 and the Theorem 4.

3. APPLICATION

1. Application about graphs of diameter two

In this section we will
Corollaries of the

apply

graph W, (see the Fig. 2), maximal planar graph

E,and thebutterfly planar graph,(see the Fig. 3).
We will startwith the calculation of their the firs

Zagreb index.

Lemma L1.E,s a Fan planar

graphW,is a
Wheelplanar graphk,is a maximal planner graph

andByisa butterfly planar graph with the number of

verticesnand the number of edges m we have:
G, m M, (G,) n
E, 2n—3 n*+7n—18 n=3
W, 2n—2 n*+7n-8 n=3
E, 3n—6 2n% + 12n n=4
— 44
— 4 4 >
B, 2n—4 §n2+§—10 n=6

Proof: evident.

Un—1 Un U2 Us vy Us Us

Wheel graph

Fan graph
Fig.2. The Wheel planar graph W,,and Fan
planar graph F,

Un—1

Theorem 5.F,is a Fan planar graph (see the Fig.

2)with the number of verticesand the number
edgeswe have :

of

W (E,) n?-3n+3 n>3
DD(E,) 7n? — 27n n>3
+ 30
Www (F,) ;nZ B %n n>3
+ 6

Proof: We will just apply the precedent corollaries,

and
using the Lemma 1.

Theorem 6.W, is a Wheel planar graph (see the

Fig.2) with the number of verticesand the number

ofedgesnwe have :

precedent section for some Graphs with diameter

equalstwo, as Fan planar gragh Wheel planar

e
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W W) n*—3n+2 n=5 2. Application about some particular graphs
DD(W,) 7n? — 23n n=>4 with

+16 diameter greater than two

ww W,) 3., 7 n=3 . .

o o In the section we will see the graptisf

D(G) = 2,as the Sunflower planar graghand the
Proof: We will just apply the precedent corollaries,cycle planargraplf,, We start with the Sunflower.
and

using the Lemma 1.

‘.
U1 Sunflower graph Sn Cycle graph Cn

U Fig.4.The Sunflower planar graphS,and the

i Bilwaen Cycleplanar graph C,
Fig.3. TheMaximal planar graph E,, and The sunflower planar graphS,is a graph
Butterfly planar graph B, withalways has a odd number verticasd a

number ofedgesn = 2(n — 1). The central vertex

—nt i
Theorem 7.E,is a Maximal planar graph (see thé’ohaS adegreedeg(vo) ==, the odd index

Fig.3) with the number of verticesand the number Verticesv,, vs, ..., v,_;have a degredeg(v,;41) =

ofedgems we have : S5and theeven index vertices,,v,, ..., v,have a
degredeg(v,;) = 2.
W (E,) n2—4n+6 n>3 Lemma 2. Snis a Sunflower planar grag” = 11 ,
DD(E,) 10n2 — 48n n=4 with the number of vertice” and the number of
+ 68 edges
WW(Ey,) Enz _ 1_5n 112 n=4 m (m =201 = 1)) we have :
2 2
N _ 7%
g;gof. We will just apply the precedent corollaries, — 73 if i is even and |
using the Lemma 1. 0
Theorem 8.B,is a Butterfly planar graph (see _ = ) E,; E o
theFig. 3) of the number of verticeand the W(¥:,2n) = 2 2 ifi=0
number ofedgesiwe have : . =
W (By) n® —3n+ 4 n>3 777 ifiis odd angti0
DD(B,) 20 , 76 n>6 And,
3 3
+ 26 ds (1) 2n—2
wwe,) |3, 19 n>6 ds, (2) 1, .9
> n > n+16 8n +n 3
ds, (3) 1, .7
Proof: We will just apply the precedent corollaries, 2t T en + 4
and ds, (4) 1, 3 11
using the Lemma 1. gV oty

Proof: evident.
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Theorem 9.5,is a Sunflower planar graph > 4.
11,with the number of verticesand the number of

edgesmwe have :

13
W (Sn) En2—8n+7
21 115
DD(Sn) 77’12—77’14'47
WW(s,) |25, 176 151
g ~ g "t g

CONCLUSION

We have mentioned here some theoretical
results about the Wiener indéX, degree distance
index DDand The hyper-Wiener indeWWof a
simple planar connected graphs, relating to the
d;(k), and the diameter @f. We have finished our
work by giving some examples of graphs with
deferments diameter, as the Fan planar ggph
Wheel planar grapil;,, maximal planar grap#,,,
the butterfly planar grapB,,the cycle planar graph

Proof: We have just applied the Theorems 1, 2 and’,and the Sunflower planar gragh.

3

and using the Lemma 2.

Lemma 3.C,is a Cycle planar graph > 2, with
the number of verticesand the number of edges
m (m = n)we have :

1 5 .
an,Lfleven

W('U,:, Cn) =

And,

1, 1 dd
4n 4,lflo

n,ifnise enandst<§

de, (i) = Z , if nis even andi =§

n, li
Proof: evident.

. . -1
nisevenand <i <=

2

Theorem 10.C,is a Cycle planar graph > 2, with
the number of verticesand the number of edges

we have :
W(C,) 1, If n even
gn
1n3 B ln If n odd
8 8
DD(C,) 1n3 If n even
2
1n3 B ln If n odd
2 2
ww(c,) n*(n+2)(n+1) | Ifneven
48
n(n+3)(n?—1) | Ifnodd
48
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Proof: We have just applied the Theorems 1, 2 and
3,and using the Lemma 3.
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