
Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

45

PUZZLE FAST RANDOM BIT ENCRYPTION TECHNIQUE
FOR JOINT VIDEO COMPRESSION AND ENCRYPTION

1K. JOHN SINGH, 2R. MANIMEGALAI

1Assistant Professor (Senior), School of Information Technology and Engineering
VIT University, Vellore, Tamil Nadu, India

2Research Supervisor, Anna University of Technology Coimbatore
Tamil Nadu, India

E-mail: johnsinghaj@yahoo.com , mmegalai@yahoo.com

ABSTRACT

Major issues in video data transfer over the internet are security and speed. For fast transmission over the
network, the video data should be compressed before transmission. Joint compression and encryption
algorithms employ compression before encryption for secured and fast data transfer over the internet. In this
paper, a joint compression and encryption algorithm, Puzzle Fast Random Bit Encryption (PFRBE)
algorithm, is proposed. As the proposed solution employs multi-level encryption along with key encryption,
it is more secured than existing algorithms. Results obtained are compared with some popular joint
compression and encryption algorithms such as Video Encryption Algorithm (VEA) and Real-time Video
Encryption Algorithm (RVEA). Our analysis shows that the proposed solution, PFRBE, takes less CPU
time and consumes less memory when compared to existing joint compression and encryption algorithms.

Keywords: Video Encryption Algorithm (VEA), Puzzle Fast Random Bit Encryption (PFRBE), Real-time

Video Encryption Algorithm (RVEA), Bit Padding

1. INTRODUCTION

The revolution of multimedia and
hypermedia has been a driving force behind fast
and secured data transmission techniques. In
general, video data takes more time for
encryption, because of its large size. Since the
size of video data is huge in volume, it needs to be
compressed and encrypted to avoid security
threats and delay. There are two strategies for this,
namely, compression-independent encryption
algorithms and joint compression and encryption
algorithm. In compression-independent encryption
algorithms, both compression and encryption are
done independently as two different steps by
employing suitable algorithms. This strategy
consumes more time and memory. As the
computation time is increased, overall system
performance is decreased when compression-
independent encryption algorithms are applied.
But in joint compression and encryption
algorithm, both the steps, namely, compression
and encryption are integrated together as a single
step. There are two approaches for joint
compression and encryption algorithm: the first

method employs encryption after compression and
the second one does encryption before
compression. Steps involved in both the
approaches are illustrated in Fig. 1(a) and Fig.
1(b). In the first strategy, as encryption is done
after compression we get two-fold advantages,
namely, reduced data size and time. The second
strategy encrypts data without compression and
is time consuming. In general, any joint
compression and encryption algorithm will
provide two levels of security and consumes less
time when compared to compression-independent
encryption algorithms. Secure Motion Picture
Experts Group (SECMPEG) [1], Video
Encryption Algorithm (VEA) [2], Real-time
Video Encryption Algorithm (RVEA) [3], are few
examples for joint compression and encryption
algorithms. Joint compression and encryption
algorithms are faster in encrypting the video data
due to selective encryption technique when
compared to other video encryption algorithms.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

46

 Fig. 1. (a): Compression Before Encryption

Fig. 1. (b): Compression After Encryption

The rest of the paper is organized as follows:

The literature review is presented in Section 2.
The proposed solution, Puzzle Fast Random Bit
Encryption (PFRBE) algorithm is explained in
Section 3. Section 4 presents the experimental
results and Section 5 concludes the paper.

2. RELATED WORKS

Zeng et.al, have proposed a frequency
domain scrambling approach in [4] which
performs encryption after the Discrete Cosine
Transform (DCT). Compression is done only on
scrambled frames leading to low image quality.
In addition, the proposed solution in [4] tends to
consume more memory due to uncompressed
frames.

The proposed solution in [5] performs
compression and encryption with minimum
overhead using random permutation and
probabilistic encryption. It provides different
levels of secrecy for various multimedia
applications. The proposed strategy in [5]
employs Discrete Cosine Transformation (DCT)
to map smaller blocks with size 8 x 8 to bigger
blocks with size 1x64. The output from DCT is
uniformly quantized and all quantized coefficients
are arranged in zig-zag order. Finally entropy
coding is done for compression.

The joint compression and encryption
algorithm proposed in [1], SECMPEG, does
selective encryption using conventional
encryption algorithms. The Video Encryption
Algorithm (VEA) proposed in [2] encrypts all
sign bits of DCT coefficients by using XOR –
operation. VEA has the disadvantages of having

known-plaintext attack and complex key
management scheme. In known-plaintext-attack, if
both the original and encrypted videos are
available, the attacker can easily determine the
secret key. To overcome known-plaintext attack,
Shi et al., have proposed Real-time Video
Encryption Algorithm (RVEA) in [3]. The XOR
operation in VEA [2] is replaced with a
conventional encryption algorithm in RVEA [3].
RVEA is a selective encryption algorithm which
operates on the sign bits of both DCT coefficients
and motion vectors of a MPEG compressed video.
RVEA can use any secret key cryptography
algorithms to encrypt selected sign bits. The
proposed solution in [6], Multiple Huffman Table
(MHT) converts entropy coders into encryption
ciphers. The computational cost of this algorithm
is less but this is more vulnerable to chosen-
plaintext attack.

3. PUZZLE FAST RANDOM BIT

ENCRYPTION

The steps employed in the proposed
methodology for joint compression and
encryption of video data, Puzzle Fast Random Bit
Encryption (PFRBE) method, are shown in Fig.
2. There are two phases in the proposed solution,
namely, compression process and encryption
process. Compression process is done using a
three-step procedure called Entropy Based
Random Arithmetic Puzzle Transform (EBRAPT)
method. Compressed video data is obtained by
applying three steps, namely, entropy coding,
puzzle transform technique and randomized
arithmetic coding as shown in Fig. 2. The
encryption process is done using Fast Random Bit
Encryption (FRBE) [7]. Comparatively,
encryption applied on compressed video data
takes less time and thereby leads to high
efficiency. In the second stage, the compressed
data is encrypted using the DES algorithm [8].
The key is divided into four parts and is encrypted
with a random number. Since both sender and
receiver can use the same random number
generator, key encryption solves key management
and distribution problems. Bit padding is applied
after encryption. In bit padding, a single set-bit
(‘1’) is added along with many reset-bits (‘0’) to
the data that is being encrypted. Hash function
MD5 (Message Digest) is applied to convert the
data with an arbitrary size into a fixed length hash
value. Then, the hash values generated are
encrypted using Salt algorithm [9]. It gives an

Encryption Compression

Compressed
Cipher Output

Input Data

Compression Encryption

Compressed
Cipher Output

Input Data

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

47

intermediate encrypted data which is called as
Salt. The Salt consists of a random bit which is
used to generate the key using a key derivation
function PBKDF2 (Password-Based Key
Derivation Function) [9]. Next, the key is
encrypted using a random number and PKCS7
(Public-Key Cryptography Standards) padding is
applied on the encrypted key.

Fig. 2: Puzzle Fast Random Bit Encryption (PFRBE)

Algorithm
3.1 Compression

Compression of the video is done using
our proposed method called, Entropy Based
Random Arithmetic Puzzle Transform
(EBRAPT). During video compression, it is
possible that the resolution and edges may likely

to be changed which in turn will affect the quality.
Special care should be taken to compress the data
without changing its basic qualities. In EBRAPT,
video data is compressed without changing its
resolution. The steps employed in the proposed
compression process (EBRAPT), namely, Entropy
Coding, Puzzle Transform and Randomized
Arithmetic Coding, are explained in the following
subsections.

3.1.1 Entropy coding

The first step in compressing video data
is entropy coding which is lossless compression
technique. For a given video data, entropy coding
generates variable length code called prefix code
along with prefix value of each pixel. Each pixel
value has common prefix value which helps in
decompressing the data easily. Entropy coding
generates intermediate compressed data.

3.1.2 Puzzle transform

The second step in the process of
compression is puzzle transform technique. The
intermediate compressed data, output from
entropy coding, is given as input to puzzle
transform technique. The intermediate
compressed data is split into 8x8 block segments
and then, the order of segments is changed
randomly. It is assumed that the intermediate
compressed frame is split into 526 blocks,
namely, S1, S2,……, S526 as shown in Fig. 3. After
applying puzzle transform method, we may get the
order of blocks in random order, for example,
S526, S512, S435, …….., S30. It is observed that
puzzle transform method provides better security
to an intermediate compressed data and therefore,
the attacker cannot view or access the data.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

48

Fig. 3: 8x8 –Puzzle Transform

3.1.3 Randomized arithmetic coding

The third and final step in compression is
randomized arithmetic coding. In this method,
frequently used pixel value from each blocks are
stored with fewer bits. Not so frequently used
pixel values are stored with more bits. For
example, consider that a pixel value 56 has
occurred 18 times and 112 have occurred 24
times. Then, substitute 56 with 18 and 112 with
24. Here, replace its actual pixels with new
values. This is one form of encryption. So it gives
more security to the data. Suppose, P is the pixel
and its number of occurrence is Fk. Now replace
the entire P pixel with Fk. Suppose k=1, that is the
number of occurrence is zero, then substitute all
the pixel values with 1.

Table 1: 8x8 –Pixel Order

52 64 27 118 54 78 98 234

14 422 78 302 68 435 14 78

508 512 78 512 27 347 345 91

78 110 27 129 118 27 354 406

345 378 238 236 518 14 12 8

28 126 46 27 512 34 14 78

22 27 6 512 457 27 148 190

278 128 98 64 116 78 118 422

Table 2: 8x8 –Randomized Arithmetic Coded Pixel
Order

52 2 6 3 54 7 2 234

4 2 7 302 68 435 4 7

508 3 7 3 6 347 2 91

7 110 6 129 3 6 354 406

2 378 238 236 518 4 12 8

28 126 46 6 3 34 4 7

22 6 6 512 457 6 148 190

278 128 2 2 116 7 3 2

Table.1 shows the 8x8 pixel arrangement
for a single video frame. It should be noted that
the table has same number of occurrences for
some of the pixels. The pixel values in Table.1 are
replaced with their number of occurrence by
employing Randomized Arithmetic Coding
technique. The output, i.e. the pixel arrangement
after Randomized Arithmetic Coding is shown in
Table 2.

3.2 Encryption

As illustrated in Fig. 2, the encryption
process follows the compression process.
Encryption is divided into three phases. In the
first phase, namely, video encryption phase,
encryption is done with padding and salt
algorithm. At the end of the first phase 64-bit key
is generated using the salt algorithm namely,
PBKDF2 [9]. In the second phase, the key is
divided into four parts with 24, 16, 16 and 8 bits
and encrypted separately using random number.
In the third phase, encryption is done using
PKCS7 padding [11]. All phases are explained in
detail in the next few sub-sections.

3.2.1 Video encryption using padding and salt

The FileInputStream and
FileOutputStream are used to read and write raw
bytes of data such as DES cipher and image data.
Initially, the video data is converted in to frames
and each frame is treated as an image [12]. Then
DES encryption is applied to generate block
ciphers. These block ciphers are converted to an

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

49

arbitrary sized data using bit padding method. In
bit-padding, only a selected block of ciphers are
padded resulting block cipher with few padded bit
blocks. Normally bit padding is applied with 128
bit block cipher. In this work, bit padding with
more than 128 bits is employed. As explained
earlier additional bits are added with the key to
provide more security. After encryption, each
block of the file is stored in the buffer with size 64
bits. Then, hash method, MD5, is applied to
convert arbitrary sized data into fixed length hash
value [9]. Finally, salt method is applied to
generate the key with random bits.

3.2.2 Key encryption using random number

In general, when video data is sent over
the network both the sender and receiver will have
the same random number generator and we
assume the same in this work. The key is
encrypted using random number. The generated
key is divided into four parts as shown in Fig. 4.
Encryption of the key is done using XOR
operation to each part separately [12, 13]. Finally,
each part is decrypted and they are joined to get
the original key.

Fig. 4: Key Segment - During Encryption Using
Random Number

3.2.3 Padding using PKCS7

In the first two phases, the data and the
key are encrypted selectively. In the third phase,
the data and key are padded using PKCS7
standard yielding the final encrypted block cipher
and key cipher.

4. EXPERIMENTAL RESULTS AND

ANALYSIS

To analyze the performance of the
proposed algorithm, metrics such as execution
time, CPU utilization and memory utilization are
considered. Tables 3, 4, and 5 show that the
proposed algorithm, PFRBE, is optimized and
giving better performance in terms of execution
time, CPU utilization ratio and memory
consumption. PFRBE is faster and consume less
memory when compared to other joint
compression and encryption algorithms.

Table 3: PFRBE vs. Existing Algorithms: Comparison
Based on Execution Time

File
Name

File
size in
bytes

Execution Time in Seconds

SECMP
EG [1]

VEA
[2]

RV
EA
[3]

Zigzag
[5]

PFRBE

car.flv 2560 20 25 15 18 10
planet.flv 4798 23 27 18 20 14
flow.flv 5262 26 29 20 24 17
boat.flv 6440 31 32 24 27 21

Table 4: PFRBE vs. Existing Algorithms: Comparison

Based on CPU Utilization Ratio
File
Name

File
size in
bytes

CPU Utilization Ratio in %

SECMP
EG [1]

VEA
[2]

RV
EA
[3]

Zigzag
[5]

PFRBE

car.flv 2560 44 48 40 41 36
planet.flv 4798 45 52 44 45 39
flow.flv 5262 47 57 49 50 43
boat.flv 6440 62 63 57 58 50

Table 5: PFRBE vs. Existing Algorithms: Comparison

Based on Memory Utilization
File
Name

File
size in
bytes

Memory Utilization in Mbytes

SECMP
EG [1]

VEA
[2]

RV
EA
[3]

Zigzag
[5]

PFRBE

car.flv 2560 952 974 951 953 942
planet.flv 4798 958 979 957 962 948
flow.flv 5262 966 983 964 968 954
boat.flv 6440 974 994 971 982 963

The reduced compression time and CPU

utilization as shown in Tables 3 and 4 is due to
reduced compressed video by intermediate steps
such as cipher generation, key generation, key
encryption and video cipher generation. From
Table 5 the proposed joint compression and
encryption method, Puzzle Fast Random Bit
Encryption, consumes less memory than the
existing algorithms. This is mainly due to the
compressed video before encryption.

Table 6: Compression efficiency of PFRBE algorithm

File
Name

File
size
in

bytes

Encrypted
File Size
in bytes

Compression
(%)

PSNR

car.flv 2560
1664 65

35.00
0

planet.flv 4798
3358 70

30.01
2

flow.flv 5262
3525 67

33.01
0

boat.flv 6440
4656 72

27.70
1

24 16 16 8

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

50

Table 6 shows the results of compression
ratio and Peak Signal to Noise Ratio (PSNR) for
various files using the proposed solution. The
high compression ratio indicates better
performance of the proposed solution.

5. CONCLUSION

When confidential video data is sent over

the network, two key factors to be considered are
security and speed. The joint compression and
encryption algorithms address the above two
factors; they provide additional security when
compared to other video encryption algorithms
and consume less resource during encryption
process [14]. In this paper, a joint compression
and encryption algorithm, namely, Puzzle Fast
Random Bit Encryption (PFRBE) method is
proposed for fast and secured video transfer. Our
observation shows that if the key is encrypted
along with video data, it is not possible to break
the key easily. Results obtained clearly indicate
that the proposed method has the advantage of
increased security and speed over the existing
algorithms. The proposed method considers the
compression and encryption of video data.
Extending this approach to audio data and
combined video-audio data is an interesting
problem.

REFERENCES:

[1] Meyer J, Gadegast F., “Security

Mechanisms for Multimedia Data with the
example MPEG-1 video”, Project
Description of SECMPEG, Technical
University of Berlin, 1995.

[2] Shi C, Bhargava B, “A Fast MPEG Video
Encryption Algorithm”, In Proceedings of
6th ACM International Conference on
Multimedia, pp. 81-88, 1998.

 [3] Shi C, Wang SY, Bhargava B., “MPEG
Video Encryption in Real-time Using Secret
Key Cryptography”, In Proceedings of
International Conference on Parallel and
Distributed Processing Techniques and
Applications, pp. 2822-2828, June 1999.

[4] Zeng W, Lei S., “Efficient Frequency
Domain Selective Scrambling of Digital
Video”, IEEE Transactions on Multimedia,
pp. 118-129, 2003; 5(1).

 [5] Tang L., “Methods for Encrypting and
Decrypting MPEG Video Data Efficiently”,
In Proceedings of ACM International

Conference on Multimedia, pp. 219-229,
November 1996.

[6] Wu C-P, Kuo C-CJ., “Design of Integrated
Multimedia Compression and Encryption
Systems”, IEEE Transactions on
Multimedia, pp. 829-839, October 2005;
7(5).

[7] K. John Singh and R. Manimegalai, “Fast
Random Bit Encryption Technique for
Video Data”, European Journal of Scientific
Research, Vol.64, No. 3, pp 437-445,
November 2011.

[8] Dominik Engel and Andreas Uhl, “Secret
Wavelet Packet Decompositions for JPEG
2000 Lightweight Encryption”, In
Proceedings of IEEE International
Conference on Acoustics, Speech and Signal
Processing, vol. 5, pp. 465-468, May 2006.

[9] A. S. Tosun and W. Feng, “A Lightweight
Mechanism for Securing Multi-layer Video
Streams”, In Proceedings of IEEE
International Conference on Information
Technology: Coding and Computing, pp.
157-161, April 2001.

[10] Timothy E. Lindquist, Mohamed Diarra and
Bruce R. Millard, “A Java Cryptography
Service Provider Implementing One-Time
Pad”, In Proceedings of IEEE International
Conference on System Sciences, pp. 1-6,
January 2004.

[11] Anil Kr. Yekkala, Narendranath Udupa,
Nagaraju Bussa and C.E. Veni Madhavan,
“Lightweight Encryption for Images”, In
Proceedings of IEEE International
Conference on Consumer Electronics, pp. 1-
2, January 2007.

[12] Susie Wee and John Apostolopoulos,
“Secure Scalable Streaming and Secure
Transcoding with JPEG2000”, In
Proceedings of IEEE International
Conference on Image Processing, vol. 1, pp.
205–208, September 2003.

[13] Simon Fong, “On Improving the
Lightweight Video Encryption Algorithms
for Real-time Video Transmission”, In
Proceedings of IEEE third International on
Communications and Networking, pp.1287-
1293, August 2008.

[14] K. John Singh and R. Manimegalai, “A
Survey on Joint Compression and
Encryption Techniques for Video Data”,
Journal of Computer Science, Vol. 8, No. 5,
pp 731-736, February 2012.

