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ABSTRACT 

 
Cascade-Correlation (CC) network is a new architecture and supervised learning algorithm for artificial 
neural networks. The learning algorithm of CC network and its network structure are described in this 
paper, the CC network with an excellent fitting ability is applied to fitting vibration characteristics of 
hydraulic turbine units according to different parts under three water heads. Compared with the BP 
network, the simulation experiments demonstrates that the CC network has a faster convergence speed and 
a higher accuracy, it is much closer to true to describe the vibration characteristics of hydraulic turbine units 
under different working conditions for their parts than its counterpart.  
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1. INTRODUCTION  
 

It is well known that vibration characteristics in 
draft tube caused by vortex rope have a great 
influence on the stability of turbine. Because of the 
complex geometry and the wide range of load 
change, the study of vibration characteristics is 
basically stuck in a static stress analysis of the 
strength, the analysis of vibration characteristics is 
still poorly understood [1, 2]. In the absence of the 
study of vibration characteristics, sometimes the 
runner is damaged and may lead to failure accident 
in many power stations. We can be sure that the 
turbine input and output characteristics is nonlinear, 
if we can accurately and comprehensively grasp the 
laws of vibration characteristics, undoubtedly it will 
have an important practical significance to 
contribute to the secure and stable running of 
hydro-generator units under different operating 
conditions [3]. The strong nonlinear characteristics 
of pressure fluctuation makes its expression and 
analysis difficult, in recent years, domestic and 
foreign experts and scholars put forward some 
theories and methods about fitting and prediction 
for vibration, including numerical analysis method, 
artificial neural network (ANN) method [4], support 
vector machine (SVM) method [5], and so on. 
However, with these methods, the generality of 
method and the complexity of parameter selection 
are challenges for their generalization capability 
and precision. For example, the ANN method has 

excellent characteristics of nonlinear approximation 
and has been widely used in many fields, but it has 
the disadvantages of inherent slowly searching rate 
and partially leading to minimum. So, how to find a 
more effective method to express the characteristics 
is becoming a burning question now.  

Instead of just adjusting the weights in a network 
of fixed topology, Cascade-Correlation [6] is a new 
architecture and supervised learning algorithm for 
artificial neural networks., it begins with a minimal 
network, then trains and generates automatically 
new hidden units once a time, creating a multilayer 
network structure. Once a new hidden unit has been 
joined into the network structure, its input weights 
are frozen. The method can learn quickly, the 
network may determine its own magnitude and 
topology. In this paper, in view of the complexity 
and particularity of hydraulic turbine units, one uses 
a novel CC neural network to establish the fitting 
model which can accurately express the nonlinear 
relationship among vibration characteristics, water 
head and unit output in upper bracket, thrust 
bearing and head cover respectively. Finally the 
comparative experiments demonstrate its 
superiority. 

 
2. CASCADE-CORRELATION NEURAL 

NETWORK 
 

As a kind of algorithm architecture, the Cascade-
Correlation proposed by Fahlman and Lebiere [6] is based on a supervised learning algorithm for 
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artificial neural networks. It mainly consists of two 
key ideas: firstly, the cascade architecture, in 
which hidden units are joined to the architecture 
every time and is not altered after they have been 
joined in. Secondly, the learning method would 
generate and then install the new hidden units. We 
would try to magnify the magnitude of the cascade 
correlation between the output and the remainder 
of the error we are trying to evaluate. 

We start on the first cycle, a single new hidden 
unit is generated and a weight connection from 
each input unit is given [7, 8]. Then the weights of 
he input are trained by altering them to maximize 
the equation C for the new hidden unit： 

C y y e ep op o
po

= − −∑∑ ( )( )               

(1) 

where y is the mean values of the outputs and 
eo  is output error, they are based on sample 
patterns. 

The second cycle gives the output of the new 
hidden unit a weight connection for each output 
unit. The entire set of connections to those from all 
input and hidden units would be trained through 
minimizing the sum squared error equation 

∑ −=
po

opop tyError
,

2)(                               

(2) 

where yop and top are  the network output for 
pattern p and the expected output for this pattern 
respectively. 

 
3. EXPERIMENTAL SETUP 

All vibration data used in the experiments model 
are from No. 5 unit of a certain hydropower [9, 
10]. The measurement points of vibration are 
located in upper bracket, thrust bearing and head 
cover respectively, which are all measured in three 
directions including vertical direction, ,+X and +Y 
axes, the type 891-2 vibration sensors are 
employed in the experiments which consist of 
three vertical vibration sensors and horizontal 
vibration sensors. The sensors arrangement in the 
axis section is shown in Figure 1. The vibration 
experiments with variable load are accomplished 
when water head is 59.2m, 68m and 75.5m, the 
guide vane opening is manual adjusted, 10 
experiments are carried out under different 
working conditions from the smallest up to the 
biggest output, the stable time of every operation 
condition lists 5 to 10 minutes, after the working 
condition stabilizes, three continuous 
measurements are conducted on the vibration data, 
and each of measurements is 30 seconds, the 
experiment results are recorded in 95% confidence 
degree double-amplitude (steady random process). 
The part results of vibration experiments with 
variable load when water head is 68m are shown in 
Table 1. 

 

Flow direction 

+X 

+Y 

 
 

Figure 1: The Sensors Arrangement In The Axis 
Section 

 
Table I: The Results Of Vibration Experiments With Variable Load When Water Head Is 68m. 

Part P(MW) 18.2 39.5 59.2 81 101 119.5 140 161.4 180.5 198 

Upper bracket 
 

Vertical 1.070 5.483 0.683 0.598 0.465 0.466 0.501 0.497 0.542 0.519 
Horizontal X 7.742 7.628 7.873 7.658 7.358 7.596 7.116 7.358 7.258 6.749 
Horizontal Y 7.753 8.437 8.115 7.621 7.037 6.948 6.878 6.957 6.834 6.645 

Thrust bearing 
Vertical 4.168 12.435 3.976 3.454 1.428 1.33 1.514 1.329 1.521 1.895 
Horizontal X 7.789 13.118 9.593 8.648 0.237 0.208 0.242 0.427 0.519 1.543 
Horizontal Y 2.52 4.489 1.811 2.067 0.391 0.361 0.451 0.623 0.99 2.388 

Head  
cover 

Vertical 11.152 44.337 7.418 7.732 3.523 3.441 3.507 3.664 4.213 5.713 
Horizontal X 58.833 51.031 37.188 27.507 2.099 1.899 1.897 3.392 3.28 3.657 
Horizontal Y 3.848 7.162 3.548 4.073 1.905 1.706 1.791 2.601 3.145 5.319 

 
In this paper, the operating data measured with 

variable load are analyzed when water head is 
59.2m, 68m and 75.5m. The model of vibration 
characteristics f = (H, N) is established based on the 
CC, where H is running head (m), N is the hydraulic 

unit output (MW), the function value of f is the 
amplitude of pressure pulsation in draft tube. The 
flowchart of the CC neural network learning is 
given in Figure 2, after adaptive learning based on 
the CC with the sum square error (SSE) goal, a new 
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CC network is constructed and the weights are 
trained automatically. The training results in 5 
hidden neurons being added to the actual network, 
Figure 3 demonstrates the training error curve 
obtained. In order to verify this method, the 
performance of BP neural network is compared to 
the CC neural network model in the vibration 
experiments of turbine units. The BP network is 
trained using fast back-propagation method, with 
training parameters being set as follows: a learning 
rate is 0.02, and Momentum constant is 0.9. The 
weights and biases are initialized randomly[11]. 
The training results based on BP and CC neural 
network are shown in Table 2. 
 

 

Set up initiate CC 
architecture 

Randomize output 
neuron weights 

Compute gradient of 
output  

Adjust output 
weights 

Termination 
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Termination 
 

Start 

Connect hidden unit 
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Figure 2: Construction Of CC Neural Network 
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Figure 3: The Training Process Of CC Network 

 

 
 

From Table 2, the CC network is only adjusted 
five times, it has a fast convergence speed and the 
network structure acquired has a high fitting 
precision, the result shows that the CC network is 
prior to the BP network. The fitting curves are 
plotted between the actual vibration values of the 
upper bracket under three water heads and the 
fitting values based on the CC network and BP 
network, which are shown in Figure 4, they may be 
used to test the fitting effect. 

 
Table 2: The Comparison Of Training Results Between 

Bp And Cc 

Method Epoch SSE Network structure 

BP 5000 0.7725% [2，4，1] 
CC 5 0.3056% [2, 1, 1, 1, 1, 1] 

 
From Table 2, the CC network is only adjusted 

five times, it has a fast convergence speed and the 
network structure acquired has a high fitting 
precision, the result shows that the CC network is 
prior to the BP network. The fitting curves are 
plotted between the actual vibration values of the 
upper bracket under three water heads and the 
fitting values based on the CC network and BP 
network, which are shown in Figure 4, they may be 
used to test the fitting effect. 

It is clear that the BP network has good fitting 
effect for the data with larger vibration values under 
the water heads H=59.2m and H=75m, but for the 
data with small vibration values under the water 
head H=68m, the fitting effect is not very good. 
However, for the three water heads, the CC network 
has very good fitting ability for the vibration values 
of upper bracket. Figure 5 summarizes 
corresponding mean relative error with the three 
parts under the three different water heads for both 
the CC network and the BP network, compared 
with the BP network, the CC network’s error is 
smaller and has more stable fitting ability. Figure6 
shows all global fitting curved surfaces based on 
the CC network with the three parts under the three 
different water heads. The experiment results show 
all global fitting curved surfaces based on the CC 
network with the three parts under the three 
different water heads, they provide useful and 
essential references for optimal design of 
hydroelectric power stations and operation effect of 
turbine units. 
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Figure 4: The Test The Fitting Effect Using CC And BP Network Respectively 
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Figure 5: Mean Relative Errors With The Three Parts Under Three Different Water Heads For Both The CC And 
The BP Network 

    

 
Figure 6: Fitting Curved Surface With Three Parts When H=59.2m, H=68m And H=75m 
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4. CONCLUSIONS 
 

CC network is a new architecture and supervised 
learning algorithm for artificial neural networks. 
The definition of CC algorithm and structure of the 
network are described, based on the operating data 
of a certain hydropower the fitting model of 
vibration characteristics is established using the CC 
network, than the application of BP and CC 
networks are compared. The results show that CC 
network can avoid the limitations of slow 
convergence due to step changes in target problems 
and issues caused by the BP neural network, and 
avoid the difficulty of hidden layer nodes are to be 
determined, the speed of convergence based on the 
CC network is quick and can achieve the higher 
accuracy. It is conclusion that the CC network is 
prior to the BP network, the method can provide 
useful and essential references in this field. One of 
the future works is to study the classification 
problem of pressure fluctuation in draft tube based 
on the CC network. 
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