
Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

892

ONE-TO-MANY REVERSIBLE MAPPING
FOR IPv6 ADDRESS GENERATION:

SIMULATION SOFTWARE DEVELOPMENT

1NASHRUL HAKIEM, 2MOHAMMAD UMAR SIDDIQI
Department of Electrical and Computer Engineering, Faculty of Engineering, IIUM

E-mail: 1hakiem@yahoo.com, 2umarsiddiqi@iium.edu.my

ABSTRACT

This paper presents the development of a one-to-many reversible mapping mechanism simulation for IPv6
address generation. The aim of this mechanism is to improve IPv6 addresses generation in terms of privacy
and security in an enterprise local area network (LAN). Each time a user accesses a network, a dynamic
IPv6 address is assigned via the DHCPv6 server. The dynamic address (one-to-many mapping) is to protect
a user from unwanted behavior analysis attempting to exploit IPv6 addresses, thus protecting user privacy.
However, the dynamic address can be uniquely linked to the user (many-to-one mapping) if the need arises.
The one-to-many reversible mapping is generated dynamically using Cipher Feedback (CFB) mode of
operation of the Advanced Encryption Standard (AES). Software simulation is developed using the
software engineering waterfall model and a Unified Modeling Language (UML) class diagram as a
notation. The results show that the mechanism simulates well for IPv6 address generation and IPv6 address
owner identification. The one-to-many mapping may be incorporated into DHCPv6 software and many-to-
one mapping may be implemented as a complement of local area network monitoring software.

Keywords: IPv6 address, Advanced Encryption Standard, Cipher Feedback, Software Engineering,
Simulation.

1. INTRODUCTION

A one-to-many reversible mapping mechanism
[1] is developed which can be embedded into the
DHCPv6 (Dynamic Host Configuration Protocol
for IPv6) [2] servers in the stateful mode. The aim
of this mechanism is to improve IPv6 address
generation in terms of privacy and security via
DHCPv6 in an enterprise local area network
(LAN).

Each time a user accesses the network, a
dynamic IPv6 address is assigned via a DHCPv6
[3] server in the stateful mode. The dynamic
address (one-to-many mapping) is to protect a user
from unwanted behavior analysis attempting to
exploit IPv6 addresses, thus protecting user
privacy. However, the dynamic address can be
uniquely linked to the user (many-to-one mapping)
if the need arises to improve network visibility, thus
protecting network security.

The requirement of a one-to-many reversible
mapping for IPv6 address generation is that it
should manage the 64-bit Interface ID part of an
IPv6 address. It is assumed that the mechanism has

to be able to manage up to 218 registered user IDs
within an enterprise local area network.

The first criterion of one-to-many reversible
mapping is that the processing speed for generating
an address and identifying an address must be
practical. Secondly, the collision probability [4] of
the Interface ID part of an IPv6 address must be
very small. The proposed mechanism should
integrate well with the existing mechanism
(DHCPv6). Eventually, the mechanism should be
able to perform validation for generating and
identifying IPv6 addresses.

In this paper, the simulation of a one-to-many
mapping for stateful IPv6 address generation and
identification proposed in [1] is developed using
waterfall model and Unified Modeling Language
(UML) class diagram as a notation.

The remainder of this paper is organized as
follows. Section 2 describes related works to this
research and Section 3 briefly reviews one-to-many
reversible mapping. Section 4 gives the simulation
development. Section 5 provides the conclusion of
this paper.

http://www.jatit.org/
mailto:hakiem@yahoo.com
mailto:umarsiddiqi@iium.edu.my

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

893

2. RELATED WORKS

2.1. IPv6 Address Generation
IPv6 has 128 bits to specify the address of a node

which is represented in hexadecimal format with
colon notation [5].

An example of an IPv6 address is shown in
Figure 1. The first 48 bits are allocated for the
network address and the following 16 bits are
allocated for a subnet prefix within the network.
The remaining 64 bits are allocated for the Interface
ID.

Fig. 1. IPv6 Address Example

IPv6 supports different mechanisms for assigning
IP addresses to nodes [6]. This is illustrated in Table
1.

Table 1. IPv6 Address Generation Mechanism

Mechanism Advantages Disadvantages Target App. Remarks

Auto config No DHCP server
required

No control over
IPv6 address
usage

Unmanaged
network, ad
hoc net, sensor
net, etc.

RFC 4941,
January 2007 [7]

DHCPv6 Control over
IPv6 address
usage

Requires DHCP
server; planning

Managed
Enterprise net,
home net,

RFC 3315,
July 2003 [2]

CGA Verification of
address owner

Requires
asymmetric key
cryptography

Mobile
network

RFC 3972
Oct 2005 [8],
RFC 4982
Jul 2007 [9]

Multi-key
CGA

Verification of
address owner,
enhanced
mobility

Requires
asymmetric key
cryptography;
proxy server

Mobile
network

US Patent
7925027 B2, 12
April 2011 [10]

Random Unique Local
Unicast Address

Temporary
address

Local Unicast RFC 4193
October 2005
[7],[11]

2.2. Cipher Feedback

To generate a one-to-many reversible IPv6
address mapping one may use the Advanced
Encryption Standard (AES) which is resistant
against all known attacks [12]. There are some
modes of operations for encryption; one of them is
Cipher Feedback (CFB). It allows a variable size of
input and output.

2.3. Software Engineering
The simulation development uses the waterfall

model which has had a profound effect and

influence on software development prevalent today
[13]. The waterfall model is the most efficient way
for creating software that provides back-end
functionality [13]. It has the following steps:
System Requirement and Analysis; System Design;
System Implementation (coding); System Testing,
and System Operation and Maintenance [14].

The development tool uses object oriented
technology, therefore the notation uses a Unified
Modeling Language (UML) class diagram [15].
UML has become the standard tool for object
oriented modeling [13].

3. ONE-TO-MANY REVERSIBLE
MAPPING

The various aspects of the development of one-
to-many reversible mapping for IPv6 address
generation in enterprise local area networks are:

1) IPv6 address owner identification is important
for improving network visibility in order to
improve the security of the enterprise local area
network.

2) Changing the interface identifier, and the global
scope addresses generated from it, over time
makes it more difficult for eavesdroppers and
other information collectors to identify the node
when different addresses are used for different
transactions that actually correspond to the same
node [7].

Fig. 2. One-to-many Reversible Mapping

The main requirement of a generated dynamic
IPv6 address is that it should manage the 64-bit
Interface ID part of the IPv6 address. It is assumed
that there are a maximum of 218 registered user IDs
within an enterprise local area network.

2001:db8:3c4d :a474: 30a5:d703:9f64:2c0e

/0 /47 /63 /127

48-bit or more
Site Prefix

16-bit or fewer
Subnet Id

64-bit
Interface Id

addr1
addr2
addr3
addr4
addr5
addr6
addr7
addr8
addr9
addrA
addrB
addrC
…

addrX

User space
218

Address space
248

user1

user2

user3
…
…
…

userN

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

894

Thus, the objectives of one-to-many reversible
mapping in an enterprise local area network are:

1) To identify an IPv6 address owner (user) from a
particular IPv6 address in order to improve
network visibility.

2) To generate dynamic IPv6 addresses for a
particular user in order to protect user privacy.

4. RESULTS AND DISCUSSION

4.1. System Environment
The system simulation runs under Microsoft

Windows XP Professional version 2002 Service
Pack 2. The simulation was developed, compiled,
and launched using the Java™ Standard Edition
Runtime Environment version 1.6.0. The Netbeans
IDE 6.0.1 was used as the development tool.

The processor uses AMD TurionTM X2 dual-
core mobile technology RM-70 (1 MB L2 cache,
2.00 GHz, DDR2 800 MHz) CPU, supporting
AMD HyperTransport 3.0 technology with RAM 1
GB DDR2 RAM.

4.2. System Requirements
The mechanism that manages the 64-bit Interface

ID part of an IPv6 address uses an address format
as shown in Figure 3. Another criterion of a
generated dynamic IPv6 address is that the network
administrator should be able to easily identify an
IPv6 address owner. However, this mechanism
should generate IPv6 addresses dynamically
(difficult to identify) for a particular user in order to
protect user privacy. The one-to-many reversible
mapping has been developed using the Advanced
Encryption Standard with a Cipher Feedback mode
of operation (CFB-AES) [1].

Fig. 3. Interface ID Format

4.3. System Analysis
4.3.1.Interface ID generation

The Interface ID generation is illustrated in
Figure 4. Further, Figure 5 illustrates the
encryptedUserId process. The one-to-many
mapping between the 18-bit user ID and the 48-bit
encrypted user ID can be represented as:

 pRP |← (1)

where the 48-bit user ID P is a concatenation of a
30-bit R (random number) and the 18-bit p (user
ID). From (1), it can be seen that same p can have a
number of P (one-to-many mapping) because of the
additional R bits. However such P are clearly
visible and thus conflicts with one of the objectives
to protect user privacy. Therefore encryption is
performed using CFB-AES which has a high
avalanche effect such that any change of a bit in P
may affect many bits of C significantly to produce a
pseudorandom effect that actually corresponds to
the same user ID p.

),(PKEC = (2)

where E denotes the encryption of P under key K
and C is the encrypted user ID which will be
embedded in the Interface ID.

Fig. 4. Interface ID Generation

Fig. 5. User ID Encryption

The details of the CFB-AES encryption (2) are as
follows:

)],([1kskk CKESPC −⊕= (3)

where k is the second block to the end block, while

checkSum ug encryptedUserId
/0 /5 /7 /55

keyIdx
/63

Site Prefix Subnet Interface Id

/0 /47 /63 /127

userId18Bit

userId48Bit = random30Bit | userId18Bit

CFBAESEncryption

encryptedUserId48Bit

key128Bitiv128Bit

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

895

the first block encryption also depends on an IV
(Initialization Vector) as follows:

)],([IVKESPC s11 ⊕= (4)

4.3.2.User ID identification
To obtain p to identify an 18-bit user ID from a

member of C which is part of the Interface ID, we
first have to perform validation first as depicted in
Figure 6. The userIdDecryption process is
illustrated in Figure 7 and can be represented as:

),(CKDP = (5)

where D denotes the decryption of C under the key
K to produce a 48-bit user ID. Subsequently, simply
eliminate the first 30 bits (R) from P.

 RPp −← (6)

Fig. 6. User ID Identification

This produces a user ID (p) from some P (many-
to-one mapping).

For the identification process, we have to obtain
P from C (5). This encrypts both the first block and
the rest of the blocks which can be seen in (7) and
(8).

)],([IVKESCP s11 ⊕= (7)

)],([1kskk CKESCP −⊕= (8)

where k is the second block to the end of the blocks
and s is the segment of unit of bits.

Fig. 7. User ID Decryption

4.4. System Design
4.4.1.Unified modeling language

Unified Modeling Language (UML) for object
oriented technology is used for this system design
[15]. Figure 8 shows the UML class diagram
structure.

Fig. 8. UML Class Diagram Structure

Both the FrameAddressGeneration and
the FrameAddressIDentification class
call the GeneratedAddress class. The
FrameAddressIdentification and the
GeneratedAddress class send messages to the
CfbAes class which is inherited from the AES
class. The details of each class are defined in
Figure 9 to Figure 12 inclusive.

Figure 9 shows the three methods of the
FrameAddressGeneration class as being:
initialization(), buttonGenerate(),
and buttonClose().

encryptedUserId48Bit

userId18Bit = removeRandom30Bit | userId48Bit

CFBAESDecryption

userId18Bit

key128Bitiv128Bit

GeneratedAddress

FrameAddressGeneration

FrameAddressIdentification

CfbAes

AES

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

896

Fig. 9. FrameAddressGeneration Class Diagram

Figure 10 given below illustrates the
FrameAddressIdentification class which
also consists of three main methods:
initialization(), buttonIdentify(),
and buttonClose().

Fig. 10. FrameAddressIdentification Class Diagram

Fig. 11. GeneratedAddress Class Diagram

The GeneratedAddress class is the major
class of this simulation development as depicted in
Figure 11. There are several public methods which
are directly related to Interface ID generation.

Fig. 12. CfbAes Class Diagram

The CfbAes class as portrayed in Figure 12 is
an inheritance class of the AES class. It performs
encryption and decryption using the Cipher
Feedback mode of operation.

4.4.2.User interface
There are two user interfaces which are an IPv6

address generator as depicted in Figure 13 and an
IPv6 address identification interface as depicted in
Figure 14.

Fig. 13. IPv6 Address Generator User Interface

There are six combo buttons as input fields
representing the user ID in the IPv6 address
generator user interface as depicted in Figure 13.
The other two input text fields represent the number
of IPv6 address sequences and the file name
respectively. The button Generate creates a
sequence of Interface IDs along with other
parameters and stores it in a file.

Fig. 14. IPv6 Address Identification User Interface

The IPv6 Address Identification User Interface as
depicted in Figure 14 is displayed once the button
Identify Id on the IPv6 Address Generator
User Interface (Figure 13) is clicked. The IPv6
address owner message is displayed in the User
Id text field or a specific error message is
displayed if the Interface ID which has been entered
does not match with the IPv6 address generation
mechanism.

4.5. System Implementation
4.5.1.Address generation

Function writeFile() as shown in Figure 15
can be considered as the initialization function of
the GeneratedAddress class. It has three input
parameters of which is uid6Oct and n are used
within the function generateInterfaceId().
Another parameter is fileName which is used in
the function saveInterfaceId() and also
saveHammingDistance().

-initialization()
-buttonGenarete(in event)
-buttonClose(in event)

FrameAddressGeneration

-initialization()
-buttonIdentify(in event)
-buttonClose(in event)

FrameAddressIdentification

+writeFile(in uid6Oct : String, in n : Integer, in fileName : String)
+saveInterfaceId(in uid : String, in interfaceId : String, in fileName : String)
+saveHammingDistance(in interfaceId : String, in fileName : String)
+generateChecksum(in uid6Oct : String, in radix : Integer)
+hammingDistance(in bin : Integer, in nBits : Integer) : Integer
+compare2Bin(in bit1 : String, in bit2 : String) : String
+generateInterfaceId(in i : Integer, in uid6Oct : String)

GeneratedAddress

+CfbAes(in key : String, in plain : String, in iv : String)
+encrypts()
+decrypts()
+shiftRegister(in iv : String, in sBits : String) : String
+getSelectSBits(in encrypted : String) : String
+getOutStr() : String

-iv : String
-aes
-sBits : String
-key : String
-p : String
-c : String

CfbAes

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

897

Function saveInterfaceId() as depicted in
Figure 16 stores a sequence of Interface IDs in the
file along with their Hamming weight and their chi
Square for further analysis.

Fig. 15. Function writeFile() Pseudocode

Fig. 16. Function saveInterfaceId() Pseudocode

The Function saveHammingDistance() as
depicted in Figure 17 stores the Hamming distance
value of the sequence of Interface IDs. It also saves
the chi square value of the Hamming distance for
further analysis.

Function compare2Binaries() compares
between two Interface ID and this result is used as a
parameter input in the function
hammingDistance() as depicted in Figure 19.

The function hammingDistance()calculates
the difference of each bit between two Interface
IDs.

Fig. 17. Function saveHammingDistance()

Pseudocode

Fig. 18. Function compare2Binaries() Pseudocode

The function generateInterfaceId()
returns a string representing of the Interface ID.
The function as depicted in Figure 20 implements

function compare2Binaries(bin1: String,
bin2: String) → String
{
 bin : String
 l1 : long = bin64ToLong(bin1)
 l2 : long = bin64ToLong(bin2)
 bin : int2Bin (l1 ⊕ l2)
 ← bin
} // compare2Binaries

function saveHammingDistance(interfaceId:
array of String, fileName:String)
{
 compare : String
 hammingDist, hammingDistTotal : int
 hammingDistaverage : double
 length : int
 length = interfaceId.length
 n, sn, sSn : int
 phi, chiSquare, sChiSquare : double
 myFile : File(fileName)
 out = PrintWriter(FileWriter(myFile))
 out.printHeaderHD()
 for (int i = 0; i < length; i++)
 {
 for (int j = i + 1; j < length; j++)
 {
 n++;
 compare =
compare2Binaries(interfaceId[i],
interfaceId[j])
 hammingDist = hammingDistance(
compare, 64)
 hammingDistTotal += hammingDist
 out.print((i + 1) + "|" + (j + 1))
 out.print(hammingDist)
 sn = 2 * hammingDist - 62
 out.print(sn)
 phi = (double) hammingDist / 62;
 out.print(phi)
 chiSquare = (phi - 0.5) ^2
 sChiSquare += chiSquare
 out.println(chiSquare)
 sSn += sn
 }
 }
 hammingDistaverage = hammingDistTotal/n
 out.println("n = " + (n * 62) +
hammingDistTotal + sSn + sChiSquare)
 out.println("Average = " +
hammingDistaverage)
 out.close()
 }
} // saveHammingDistance

function saveInterfaceId(uid6Oct:String,
interfaceId: array of String,
fileName:String)
{
 length : int = interfaceIdBin.length
 myFile : File(fileName)
 out : PrintWriter(FileWriter(myFile))
 out.printHeader()
 n1, sumN1, sumSn, sn, i : int = 0
 phi, chiSquare, sChiSquare : double = 0
 for (i = 0; i < length; i++)
 {
 out.print(interfaceId[i])
 n1=countN1(interfaceId[i])
 sumN1 += n1
 sn = 2 * n1 - 62
 sumSn += sn
 phi = (double) n1 / 62
 chiSquare = (phi - 0.5) ^ 2
 sChiSquare += chiSquare
 out.print(n1 + "\t" + sn)
 out.println(phi+"\t"+chiSquare)
 }
 out.print(sChiSquare)
 out.close()
 }
}

function writeFile(uid6Oct: String, n:
int, fileName: String)
{
 fileNameHD : String = fileName.concat(
"HD").concat(xls);
 fileNameHeader : String = fileName.
concat(xls);
 interfaceId : array of String[n];
 for (int i = 0; i < n; i++)
 {
 interfaceId[i] = generateInterfaceId(
i, uid6Oct)
 }
 saveInterfaceId(uid6Oct, interfaceId,
fileNameHeader)
 saveHammingDistance(interfaceId,
fileNameHD)
} // writeFile

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

898

Interface ID generation diagram as described in
Figure 4.

Fig. 19. Function hammingDistance() Pseudocode

Fig. 20. Function generateInterfaceId() Pseudocode

The function generateChecksum() as
depicted in Figure 21 returns a string value. It has
two parameters which are a string and an integer
data type. This function is generated using the
Fletcher checksum which is defined in detail in [4].
This checksum is used for both the address

generation and the IPv6 address identification.

4.5.2.Address identification
The function buttonIdentify() in the

FrameAddressIdentification class as
depicted in Figure 22 identifies the IPv6 address
owner. The identification is implemented according
to the steps in the user ID identification flowchart
as described in Figure 6.

Fig. 21. Function generateChecksum() Pseudocode

4.5.3.CFB AES
The functions below are within the CfbAes

class. It is initialized by the function
setArrayP() as depicted in Figure 23 which
splits the plain text into an array. The function
encrypts() as depicted in Figure 24 instantiates
the AES class with two input parameters which are
the key and the IV (initialization vector). It
performs AES encryption and selects certain bits as
depicted in Figure 27 (function
getSelectSBits()). It then performs an XOR
between the block of plain and the selected bits.

Function decrypts() is almost the same as
function encrypts() within the CfbAes class.
The difference is in the input during the XOR and
the input within the function shiftRegister().

Function shiftRegister() as depicted in
Figure 26 is used to shift certain bits of the
initialization vector (IV). It has two parameters as
input which are the IV or the previous phase output,
and the selected bits.

function generateChecksum(uid:String,
radix:int) → String
{
 c, s, y, z : String
 cInt, yInt, zInt : int
 sumY, sumZ, i : int
 i = 0
 while (i < uid.length())
 {
 c = uid.substring(i, i + 1)
 cInt = parseInt(c, radix)
 yInt = Constant * cInt
 sumY += yInt
 sumZ += sumY
 i++
 }
 sumY = sumY % 8
 sumZ = sumZ % 8
 y = toOctalString(sumY)
 z = toOctalString(sumZ)
 s = y + z
 ← s
}

function generateInterfaceId(i: int,
uid6Oct: String) → String
{
 randIn : int = randomInt()
 keyId8Bit : String = int2Bin(randIn)
 keyIndex2Hex : String = binToHex(
keyId8Bit)
 keyIdxInt:int=parseInt(keyId8Bit, 2)
 seq8Bit : String = int2Bin(i)
 key32Hex : String =
Key.CFB_KEY[keyIdxInt]
 iv32Hex : String = Key.CFB_IV[keyIdxInt]
 uid18Bit : String =octToBin(uid6Oct)
 String random30Bit = int2Bin(randIn, 30
)
 plain48Bit : String = random30Bit +
uid18Bit
 plain12Hex : String =
binToHex(plain48Bit,12)
 cfbAes : CfbAes(key32Hex, plain12Hex,
iv32Hex)
 cfbAes.encrypts();
 encrypted12Hex : String =
cfbAes.getOutStr()
 checkSum6Bit : String
 ug2Bit : String = "00"
 String encryptedUserId48Bit = hexToBin(
encrypted12Hex, 48);
 interfaceId : String
 checkSumOct2 : String =
generateCheckSum(encrypted12Hex +
keyIndex2Hex, 16)
 checkSum6Bit = octToBin(checkSumOct2)
 interfaceId = checkSum6Bit + ug2Bit +
encryptedUserId48Bit + keyId8Bit
 ← interfaceId;
} // generateInterfaceId

function hammingDistance(String bin, int
nBits) → int
{
 c : char
 nOne : int = 0
 for (int i = 0; i < nBits; i++)
 {
 c = bin.charAt(i)
 if (c == "1")
 {
 nOne++
 }
 }
 ← nOne
} // hammingDistance

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

899

Fig. 22. Function buttonIdentify() Pseudocode

Function getSelectSBits() which is
depicted in Figure 27 has an encrypted
parameter as a string data type. It selects certain
leftmost bits of the encrypted parameter and
discards the others.

Fig. 23. Function CFB-AES setArrayP() Pseudocode

Fig. 24. Function CFB-AES encrypts() Pseudocode

Fig. 25. Function CFB-AES decrypts() Pseudocode

Fig. 26. Function CFB-AES shiftRegister()

Pseudocode

Fig. 27. Function CFB-AES getSelectSBits()

function getSelectSBits(encrypted :
String) → String
{
 ← encrypted.substring(0, 2)
}

function shiftRegister(iv: String, sBits:
String) → String
{
 ← iv.substring(2, 32) + sBits;
}

function decrypts()
{
 cInt : int
 for (int i = 0; i < 6; i++)
 {
 aes[i] = AES(key,iv[i])
 aes[i].encrypts()
 sBits[i] = getSelectSBits(
aes[i].getOutStr())
 cInt = parseInt(p[i], 16) ⊕
parseInt(sBits[i], 16)
 c[i] = intToHex(cInt, 2)
 if (i < 5)
 {
 iv[i+1] = shiftRegister(iv[i], p[i])
 }
 }
}

function encrypts()
{
 int cInt;
 for (int i = 0; i < 6; i++)
 {
 aes[i] = AES(key,iv[i])
 aes[i].encrypts()
 sBits[i] = getSelectSBits(
aes[i].getOutStr())
 cInt = parseInt(p[i], 16) ⊕
parseInt(sBits[i], 16)
 c[i] = intToHex(cInt, 2)
 if (i < 5)
 {
 iv[i+1] = shiftRegister(iv[i], c[i])
 }
 }
}

function setArrayP(plain: String)
{
 for (int i = 0; i < 6; i++)
 {
 this.p[i] = plain.substring(2 * i, 2
* i + 2);
 }
}

function buttonIdentify (ActionEvent evt)
{
 interfaceId = textInterfaceId.getText()
 userId : String
 length : int = interfaceId.length()
 isInterfaceId : boolean = true
 if (length > 16)
 {
 interfaceId = "Interface Id's length
must be <= 16 HEXAdecimal."
 isInterfaceId = false
 }
 else if (!g.isHex(interfaceId))
 {
 interfaceId = "Interface Id must be in
HEXAdecimal."
 isInterfaceId = false
 }
 isUG = isUGunction(interfaceId)
 intefaceIdOct6 : String = interfaceId
 if (isInterfaceId)
 {
 if (isUG)
 {
 key2Hex : String =
interfaceId.substring(14, 16);
 checkSum8Bin : String =
Common.hexsToBin(checkSumHex, 8);
 checkSum2Oct : String =
Common.binToOct(checkSum8Bin.substring(
0, 6), 2);
 encrypted12Hex : String =
cfbAes.getOutStr();
 encrypted16Oct : String = hexToOct(
encrypted12Hex, 16);
 generatedCheckSumOct2 : String =
g.generateCheckSum (encryptedUserId12Hex
+ key2Hex, 16);
 if (checkSum2Oct.equalsIgnoreCase(
generatedCheckSumOct2))
 {
 intefaceIdOct6 = plainUserId6Oct
 }
 else
 {
 intefaceIdOct6 = "Checksum does
not match."
 }
 }
 else
 {
 intefaceIdOct6 = "Interface Id is
not Universal nor Group."
 }
 }
 userId = intefaceIdOct6
 jLabelUserId.setText(userId)
 jLabelRandom.setText(plainRandom30Bit)
}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

900

Pseudocode

Function getOutStr() as depicted in Figure
28 concatenates the array of ciphertext. It returns a
string parameter representing ciphertext.

Fig. 28. Function CFB-AES getOutStr() Pseudocode

4.6. System Testing
The last step before system operation and

maintenance during the waterfall model in the
software engineering methodology is system
testing. Black box testing was used which mainly
refers to functional testing [16].

User interface testing checks the functionality of
each component which should work properly
including the combo boxes, the input text fields,
and the buttons.

Button Generate in Figure 29 calls function
writeFile() in the GeneratedAddress
class. It generates a sequence of Interface IDs as
part of the IPv6 address based on user identity. It
then stores them in the file along with other
supplementary parameters for further analysis.

Fig. 29. IPv6 Address Generation Frame

Button Identify Id in Figure 29 enables the
address identification frame as depicted in Figure
30. This frame has a text field for the Interface ID
input. The button Identify within this frame
calls the function buttonIdentify() as
depicted in Figure 22. The Interface ID owner or an
error message is displayed in the user ID text field.
Firstly, it checks the Interface ID format, then it
checks the ug bits, and finally it compares the
checksum value.

Fig. 30. IPv6 Address Identification Frame

5. CONCLUSION

The simulation of a one-to-many reversible
mapping for IPv6 address generation and
identification has been developed using the
waterfall model in the software engineering
methodology. It shows that IPv6 address generation
and identification can be well simulated and the
data saved to a file for further analysis. The IPv6
address generation may be incorporated into
DHCPv6 and the IPv6 address owner identification
may be implemented as a complement of local area
network monitoring software.

REFERENCES:

[1] N. Hakiem, A. U. Priantoro, M. U. Siddiqi, and
T. H. Hasan, "Generation of IPv6 Addresses
Based on One-to-Many Reversible Mapping
Using AES," in Recent Progress in Data
Engineering and Internet Technology, Lecture
Notes in Electrical Engineering. vol. 157, F. L.
Gaol, Ed., ed Heidelberg: Springer-Verlag
Berlin, 2012, pp. 183-189.

[2] RFC 3315, Dynamic Host Configuration
Protocol for IPv6 (DHCPv6), Standards Track,
IETF, Network Working Group, 2003

[3] N. Hakiem, et al., "Implementation of IPv6
address generation mechanism for enterprise
wireless local area network in open source
DHCPv6," in 2010 International Conference
on Computer and Communication Engineering
(ICCCE), Kuala Lumpur, Malaysia, 2010, pp.
1-5.

[4] N. Hakiem, M. U. Siddiqi, and S. P. W. Jarot,
"Collision probability of one-to-many
reversible mapping for IPv6 address
generation," in Computer and Communication
Engineering (ICCCE), 2012 International
Conference on, Kuala Lumpur Malaysia, 2012,
pp. 599-602.

function getOutStr() → String
{
 out : String
 for (int i = 0; i < 6; i++)
 {
 out += this.c[i]
 }
 ← out
}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

901

[5] RFC 4291, IP Version 6 Addressing
Architecture, Standards Track, IETF, Network
Working Group, 2006

[6] N. Hakiem, M. U. Siddiqi, and S. P. W. Jarot,
"Secure IPv6 Address Generation," in Topics
in Coding, Cryptography and Information
Security, M. U. Siddiqi, et al., Eds., First ed
Kuala Lumpur Malaysia: IIUM Press, 2011,
pp. 183-189.

[7] RFC 4941, Privacy Extensions for Stateless
Address Autoconfiguration in IPv6, Standards
Track, IETF, Network Working Group, 2007

[8] RFC 3972, Cryptographically Generated
Addresses (CGA), Standards Track, IETF,
Network Working Group, 2005

[9] RFC 4982, Support for Multiple Hash
Algorithms in Cryptographically Generated
Addresses (CGAs), Standards Track, IETF,
Network Working Group, 2007

[10] J. Kempf and C. B. Gentry, "Secure address
proxying using multi-key cryptographically
generated addresses," US Patent US 7925027
B2, 12 April 2011, 2011.

[11] RFC 4193, Unique Local IPv6 Unicast
Addresses, Standards Track, IETF, Network
Working Group, 2005

[12] W. Stallings, Cryptography and Network
Security, Principles and Practices, 4 ed.:
Pearson Prentice Hall, 2006.

[13] N. B. Ruparelia, "Software development
lifecycle models," SIGSOFT Softw. Eng. Notes,
vol. 35, pp. 8-13, 2010.

[14] W. W. Royce, "Managing the Development of
Large Software Systems," in IEEE WESCON,
1970, pp. 1-9.

[15] G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language User Guide, 6th
printing ed. Massachusetts: Addison Wesley,
2000.

[16] J. Pan, Software Testing: Carnegie Mellon
University, 1999.

http://www.jatit.org/

	1NASHRUL HAKIEM, 2MOHAMMAD UMAR SIDDIQI
	1) IPv6 address owner identification is important for improving network visibility in order to improve the security of the enterprise local area network.
	2) Changing the interface identifier, and the global scope addresses generated from it, over time makes it more difficult for eavesdroppers and other information collectors to identify the node when different addresses are used for different transactions t�
	1) To identify an IPv6 address owner (user) from a particular IPv6 address in order to improve network visibility.
	2) To generate dynamic IPv6 addresses for a particular user in order to protect user privacy.

