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ABSTRACT 

 
Considering non-negative characteristic of the particle size distribution (PSD), based on trust-region-
reflective Newton method, two non-negative regularization methods of truncated singular value 
decomposition (TSVD) and Tikhonov (TIK) for photon correlation spectroscopy (PCS) are proposed in this 
paper. Combining two regularization parameter criterions of GCV and L-curve, two non-negative 
regularization methods are studied. The study results show that, compared with TIK, TSVD has bigger 
truncation effect, poorer smoothness and narrower distribution width of inversion PSD, in the case of noise, 
TSVD has smaller relative error and peak value error of PSD, better capacity to discriminate bimodality 
and stronger anti-noise, but at noise-free case, TSVD hasn’t obvious advantages, TIK and TSVD are 
respectively more suitable for using GCV and L-curve criterion to determine the regularization parameter. 
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1. INTRODUCTION  
 

Photon correlation spectroscopy (PCS, is also 
called dynamic light scattering) technology has 
become an effective method for measuring sub-
micron and nano-particles size[1], which obtain the 
particle size distribution (PSD) by measuring and 
inverting  the autocorrelation function (ACF) of the 
intensity fluctuations scattered by the investigated 
sample. However, inverting PSD from ACF is a 
high ill-posed problem, which has been the 
difficulty in PCS technology. Only when ACF 
measured is no noises and data calculation is no 
rounding errors, does the equation have a unique 
solution in theory. In the measurement, because of 
the presence of the noise and rounding errors, the 
existence, uniqueness and stability of solutions are 
difficult to guarantee. Therefore, in PCS 
technology, we can’t solve true PSD, and only 
obtain its approximate value. For approximate 
solution, researchers have proposed numerous 
methods such as Cumulants method [2], 
exponential sampling method [3], the Bayesian 
strategies method [4], and the neural network 
method [5]. Considers non-negativity of PSD, there 
are some other methods such as CONTIN [6] and 

NNLS [7], which have been verified to improve the 
inversion accuracy of PSD. However, these 
methods have the drawbacks of sensitivity to noise, 
difficulty in choosing a regularization parameter, 
and complications in operation, poor the capacity to 
discriminate bimodality. 

For the solving of ill-posed equation, regular-
ization is one of most powerful approaches. In PCS 
inversion, considering together the regularization 
and non-negativity should be very effective. Trust-
region-reflective Newton method [8] is a widely 
used non-negative constraint method which is 
included in the Matlab toolbox. Therefore, based on 
Trust-region-reflective Newton method, non-
negative regularization for PCS is proposed in this 
paper. The regularization are many methods such as 
Tikhonov (TIK) regularization, truncated singular 
value decomposition (TSVD) regularization, 
landweber regularization, conjugate gradient(CG) 
regularization and so on. So far, there is not an 
optimal regularization method suitable for any 
problem. Therefore, the study of different 
regularization methods is very meaningful in PCS 
inversion. In this paper, TIK and TSVD were 
compared. In regularization method, selection of 
regularization parameter is critical. The generalized 
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cross-validation (GCV) criterion [9] and L-curve 
criterion [10] are more widely used in practice. 
GCV and L-curve criterion are also compared in the 
PCS. By the comparison, we find out that 
characteristics and suitable regularization parameter 
criterion of each method, and draw a conclusion 
that TSVD has better capacity to discriminate 
bimodality and stronger anti-noise. 

2. INVERSION PRINCIPLES OF PCS 
 

For the light field of the Gaussian distribution, 
ACF of scattered light intensity is given by a 
Siegert relationship. For the polydisperse particles, 
the normalized ACF of scattered light intensity is 
expressed as  

∫
∞

ΓτΓ−Γ=τ
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)2exp()()( dGg  ∫
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=ΓΓ
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1)( dG    (1) 
where τ  is the sampling time, Γ is the decay 

width, )(ΓG  is normalized distribution function of 
the decay width. In Eq.(1), the relationship of decay 
width and the particle size is as follow, 
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where D is diffusion coefficient, q is the 
scattering wave vector, n is the refractive index of 
the solvent, 0λ  is the wavelength of the incident 
light in vacuum, θ is the scattering angle, Βk is the 
Boltzman constant, T is absolute temperature, η is 
solvent viscosity, and d  is the diameter of 
equivalent spherical particles. Eq.(1) is a high ill-
posed equation. In theory, we can invert )(ΓG  from 
measured )(τg , )(ΓG  is retrieval PSD.  

3. REGULARIZATION INVERSION 
METHOD 

 
In the practical solution, Eq.(1) is discretized as 

bAx =                                       (3) 

where elements of matrix b , x and A are 
)( jj gb τ= , )( ii Gx Γ= and )2exp(, jijia τΓ−= , 

respectively. Solution of Eq.(3) can be expressed 
as the following least squares(LS) problem,  

LSxbAx ==− min2
2                    (4) 

A powerful tool for the solving of LS problem is 
the singular value decomposition (SVD). Then, 
SVD of A is as follows 
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where ),,( n21 σσσ=∑ diag , iσ are the singular 
values of A ,  U and V is left and right singular 
values vectors, respectively. 

LS solution of Eq. (3) is also expressed as  
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In Eq.(6), if b contains noises, then iσ  will be 
infinitely small, which will lead to big deviation 
of LSx . For solving of this problem, regularization 
is an effective method. 

3.1 Tikhonov Regularization (TIK) 

TIK adds the 2-norm of solution as a constraints 
condition to Eq.(3). Then, LS solution of Eq.(3) is 
approximately equal to following problem. 

｝－（｛
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2 )min xxLbAx λ+−             (7) 

where L is unit matrix, 0x is initial solution, λ is 
the regularization parameter. 

When 00＝x , based on SVD theory, TIK solution 
of Eq.(3) is can expressed as 

i
i

i
TIK vbux

ii

i

σ
><

λ+σ

σ
=∑

=

,)(
n

1
22

2

               (8) 

From Eq.(8), we can see that TIK solution of 
Eq.(3) actually adds the following filter factors to 
the original solution of Eq.(3). 

22

2

λ+σ

σ
=

i

i

if                         (9) 

In order to avoid solving of SVD and reduce the 
computation, Eq.(8) can also be expressed as 
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3.2 Truncated Singular Value Decomposition 
Regularization (TSVD) 

Principle of TSVD is to remove small singular 
value which amplifies the disturbances. Principle of 
TSVD is to remove small singular value which 
amplifies the disturbances. Based on this principle, 
after truncating small singular value, matrix A  can 
be expressed as  
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where k   is regularization parameter. 
Thus, solving of Eq.(3) is changed into solving of 

following well-posed equations  
bxAk =                         (12) 

According to Eq.(5) and Eq.(11), Solution of 
Eq.(12) is expressed as  
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From Eq.(13), we can see that filter factors of 
TSVD is   
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where λ   is threshold, which meets >σ>σ 21  
0n1 >σ>σ>λ>σ + kk  

Solution of TSVD can also be expressed as 
2
2min bxAk －                           (15) 

3.3 Selection of the Regularization Parameter  
3.3.1. L-curve criterion 

L-curve criterion computes the curvature of the 
following curve in log-log scale 

))(g),(g( 22 λλ − Axblxl  (with λ  as its 
parameter) and seek the point with maximum 
curvature, which is defined as the curve's corner. 
The curve's corner λ  corresponds to the optimal 
regularization parameter value. For discrete ill-
posed problems, because this curve almost always 
has a character-istic L-shaped appearance with a 
distinct corner separating the vertical and the 
horizontal parts of the curve. So hence its name is 
called as L-curve criterion.  

3.3.2 Generalized cross-validation (GCV) 
criterion 

Generalized cross-validation (GCV) selects the 
regularization parameter by minimizing the 
following GCV function 

2

2

2

)]([ I
reg
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bAx
G

−

−
＝                (16) 

where G is defined as regularization parameters 
, IA  is a matrix which produces the regularized 
solution regx when multiplied with b , 
i.e, bAx I=reg ,Trace represents the matrix trace. 

4. ANALYSIS OF SIMULATION DATA 
 
The solving of Eq.(10) and Eq.(15) are achieved 

by trust-region-reflective Newton method. In 
Eq.(10) and Eq.(15), two criterions of regularization 
parameter are respectively used, and form four 
methods such as TIK+L-curve, TIK+GCV, TSVD+ 
L-curve and TSVD+ GCV. In order to verify the 
validity of non-negative TIK and TSVD based on 
trust-region-reflective Newton method and study 
their characteristic in the PCS inversion, using four 
methods, noise-free and noisy ACFs of unimodal 
and bimodal distributions particles were inverted. 
Their inversion results are shown in Figs.1~6, 
Inversion data of PSD are shown in Tables1~4. In 
the Tables1~4, the relative error is defined as 

22
error  relative theorytheory xxx −=     (17) 

In the study, noise-free and noisy ACFs with 
noise level of 0.005 and 0.01 respectively were 
acquired by the simulation. The simulation initial 
PSD is Johnson’s SB distribution [11]. 

In the simulations, the unimodal distributions 
particles share parameters of Johnson’s SB ρ =0, 
β =1.1, αmax =600nm and αmin =250nm, the bimodal 
distributions particles utilized the sum of two 
Johnson’s SB functions of equal intensity quotients, 
sharing parameters 1ρ =3.8, 1β =2.1, 2ρ =-2.4, 

2β =2.0, αmax =700nm and αmin=100nm. Simulation 
experiment conditions are as follows, the

wavelength is 632.8nm, the refractive index of 
scattering medium(water) 1.331,scattering angle 
90°, absolute temperature 25℃, Botlzman constant 
1.3807×10-23 J·K-1,the viscosity coefficient of  
water 0.89×10-3 N·S·K-1. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
306 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabel.1  Inverted Data Of Unimodal Particles For TIK In The Different Criterion 

noise 
levels 

  L-curve  GCV 
peak 

value/nm 
peak value 

error % 
relative 

error 
peak 

value/nm 
peak value 

error % 
relative 

error 
0 400 5 0.1213 400 5 0.1213 

0.005 410 2.5 0.2087 410 2.5 0.2087  
0.001 410 2.5 0.6209 410 2.5 0.3209 

Tabel.2  Inverted Data Of  Unimodal Particles For TSVD In The Different Criterion 

noise 
levels 

  L-curve  GCV 
peak 

value/nm 
peak value 

error % 
relative 
 error 

peak 
value/nm 

peak value 
error % 

relative 
error 

0 400 5 0.1246 400 5 0.1813 
0.005 410 2.5 0.2034 410 2.5 0.2034 
0.01 410 2.5 0.1784 410 2.5 0.2882 

 (a)                (b)               

Figure.1: Inverted PSD Of Unimodal Particles With Free-Noise (A) TIK (B) TSVD 

 (b)                (a)               

Figure.2: Inverted PSD Of Unimodal Particles At Noise Levels 0.005 (A) TIK (B) TSVD 
 

    

 (b)                (a)               

Figure.3: Inverted PSD Of Unimodal Particles At Noise Levels 0.01 (A) TIK (B) TSVD 
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Tabel.3   Inverted data of bimodal particles for TIK in the different criterion 

noise 
levels 

  L-curve  GCV  
peak 

value/nm 
peak value 

error % 
relative 
error 

peak 
value/nm 

peak value 
error % 

relative 
error 

0 160.8，553.6 3.94, 3.48 0.4777 160.8，553.6 3.94, 3.48 0.4777 
0.005  － － 0.6239  160.8，540.3 3.94, 5.80 0.4378   
0.01 － － 0.7138 － － 0.6249  

Tabel.4  Inverted  Data Of Bimodal Particles For TSVD In The Different Criterion 

noise 
levels 

  L-curve  GCV  
peak 

value/nm 
peak value 

error % 
relative 
error 

peak 
value/nm 

peak value 
error % 

relative 
error 

0 167.4,  553.6 0,  3.48 0.2681     167.4,533.6 0, 6.97 0.2808 

0.005 160.8,  560.3 3.94, 2.31 0.3417     167.4,546.9 0, 4.65 0.2696 

0.01 167.4,  533.6 0, 6.97 0.3402   154.1,553.6 7.94, 3.48 0.5130 
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Figure.4: Inverted PSD Of Bimodal Particles With Free-Noise (A) TIK (B) TSVD 

Figure.6: Inverted PSD Of Bimodal Particles At Noise Levels 0.01 (A) TIK (B) TSVD 
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Figure.5: Inverted PSD of bimodal Particles at noise levels 0.005 (a) TIK (b) TSVD 
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From theirs inversion results of the Figs 1~6 and 
Tables1~4, when non-negative constraints of TIK 
and TSVD were achieved by Trust-region-reflective 
Newton method, we can find out the following 
phenomenon and draw some conclusions. 

1) For the unimodal distributions particles, 
inversion results of TIK and TSVD are the 
unimodal PSD. For the bimodal distributions 
particles, inversion results of TSVD are the bimodal 
PSD, at noise level 0~0.005, TIK +GCV can obtain 
the bimodal PSD, at noise level 0.01, PSD of TIK 
+GCV hasn’t apparent bimodal characteristics. 
Therefore, at noise level 0~0.01, TSVD can use for 
inversion of the unimodal and bimodal distributions 
particles, while TIK can use for inversion of  the 
unimodal distributions particles and bimodal 
distributions particles with noise level of less than 
0.005. 

2) The inversion results of TIK and TSVD may 
emerge fluctuations. Inversion PSD of TIK is 
relatively smoother, while that of TSVD fluctuates 
more serious. This is because different filter 
window for truncating singular value is respectively 
used in TIK and TSVD. Different filter window has 
different truncation effects, which leads to 
fluctuations of inversion PSD. Steeper the window 
function is, more outstanding truncation effect is. 
Taking inversion of unimodal distribution particles 
with noise level 0.005 as an example, filter 
windows of TIK and TSVD are shown in Fig.7. The 
singular value of TSVD was truncated by the 
rectangular window function in filtering process. 
Rectangular window function is steeper, its 
truncation effect is outstanding and fluctuations 
phenomenon of inversion PSD is more severe. 
Compared with TSVD, filtering window of TIK is 
smoother, its truncation effect is weaker, and its 
inversion PSD is relatively smoother. 

3) For a unimodal distributions particles 
inversion, peak value error of two methods is the 
same. However, from inversion relative error point 
of view, at free-noise case, relative error of TIK is 

smaller, at the noise case, compared with TIK, 
relative error of TSVD is significantly lower and is 
lower than that of TIK up to 0.4425; For the 
bimodal distribution particles inversion, compared 
with TIK, at all noises cases, relative errors of 
TSVD were lower and is lower than that of TIK up 
to 0.3736. From the peak value error the point of 
view, at noise-free case, peak value error of TSVD 
+ GCV is 6.97%, it was significantly higher than 
that of TIK. However, at all noise cases, compared 
with TIK, peak value error of TSVD is smaller and 
most reduce the peak error 3.94%. From the 
capacity to discriminate bimodality the point of 
view, capacity to discriminate bimodality of TSVD 
is stronger than TIK, at noise level 0.01, inversion 
results of TSVD still has apparent bimodal 
characteristics, while inversion results of TIK 
hasn’t apparent bimodal characteristics. From the 
peak width the point of view, in all noise cases, 
inverted PSD of TIK is wider than that of TSVD. 

In summary, we can draw the following 
conclusions: in the noise cases, TSVD has smaller 
relative error and peak value error, better capacity 
to discriminate bimodality, a stronger anti-noise, 
narrower peak width, but at noise-free cases, TSVD 
haven’t obvious advantage than TIK.  

4) By comparing L-curve and GCV 
regularization parameter criterion in the inversion 
of TIK and TSVD, we can be seen that, for the 
unimodal distribution particles, peak value error of 
TIK +GCV and TIK +L-curve is same, but at the 
noise level 0.01, relative error of GCV criterion is 
significantly lower than that of L-curve, for the 
bimodal distribution particles, when the noise level 
is greater than or equal to 0.005, inversion result of 
L-curve criterion can not discriminate two peaks, 
while GCV criterion can clearly distinguish two 
peaks at the noise level lower than 0.01, at the noise 
level 0.01, inversion PSD of GCV criterion still has 
weak characteristic of two peaks. Therefore, the 
GCV criterion is more suitable to determine the 
regularization parameter for TIK in PCS inversion; 
when inverting PSD by TSVD, GCV and L-curve 
criterion can get more accurate inversion results, 
however, compared with GCV criterion, peak value 
error of L-curve criterion is smaller, maximum peak 
value error of TSVD+L-curve is less than 6.97%, 
while that of TSVD + GCV is 7.94%, moreover, 
relative error of TSVD + GCV is generally higher, 
at noise level 0.01, its capacity to discriminate two 
peaks is relatively poorer. Therefore, L-curve 
criterion is more suitable to determine the 
regularization parameter for TSVD in PCS 
inversion. 
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Figure.7: Filter Window Function Of TIK And TSVD 
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5. EXPERIMENTAL RESULTS 
 
ACF of scattered light intensity was obtained 

through PCS experiment setup of our research 
group[12].The materials tested were standard 
polystyrene latex spheres suspended in purified 
water. They are unimodal particle with average 
diameters 100nm and bimodal distributions particle 
with average diameters 60 nm and 200 nm , For the 
latter, the relative proportion of two samples was 
approximately 1:1. All measurements were made at 

scattering angle of 90° and temperture 298 2 K.  
Using TIK+L-curve, TIK+GCV, TSVD+L-curve 

and TSVD+GCV, respectively, the above measured 
ACF data were inverted. The inversion PSDs and 
data are shown in Figs.8 ~9 and Table 5. 

As can be noted from Figs.8~9 and Table5, 
inversion PSD of TIK and TSVD are both 
consistent with their true PSD. However, compared 
with TIK, the peak value of TSVD is more close to 
the true value, its peak width is also narrower. It 
shows that TSVD has good noise immunity. But 
inversion PSD smoothness of TSVD is worse. In 
terms of regularization parameters criterion, 
inversion results of TIK + GCV and TSVD + L-
curve more close to true distribution. Therefore, 
from the analysis of the measured data, we can 
draw the conclusion consistent with simulation data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 5  Inversion Peak Value Of Experimental Unimodal And Bimodal Particles  

Particles 
(nm) 

 TIK  TSVD 

L-curve GCV L-curve GCV 

100 98 98 100 100 

60，200 — 54, 202.5 63, 198 54,202.5 
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Figure.8: Inversion PSD Of 100nm Particles (A) TIK (B) TSVD 

Figure.9: Inversion PSD Of 60nm And 200nm Particles (A) TIK (B) TSVD 
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6. CONCLUSION 
 
For inversion problem of PCS, based on trust-

region-reflective Newton method, at regularization 
parameter criterion of GCV and L-curve, two non-
negative constraints regularizations with TIK and 
TSVD were proposed and compared in this paper. 
By the study of simulation and experiment data of 
unimodal and bimodal distributions particles, we 
can be drawn the following conclusions. Firstly, 
compared with TIK, truncation error of TSVD is 
bigger, smoothness and peak width of its inversion 
PSD is poorer and narrower, respectively. Secondly, 
in the case of noise, inversion PSD of TSVD has 
smaller relative error, smaller peak value error, 
better capacity to discriminate bimodality and 
stronger anti-noise, but noise-free case, TSVD 
hasn’t obvious advantages. Thirdly, for PCS 
inversion, TIK and TSVD are respectively more 
suitable for using GCV and L-curve criterion to 
determine the regularization parameter. These 
conclusions can be treated as a reference for the 
application of regularization method in PCS 
inversion.  
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