
Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

UPGRADING THE SEMANTICS OF THE RELATIONAL

MODEL FOR RICH OWL 2 ONTOLOGY LEARNING

1
BOUCHRA EL IDRISSI,

 2
SALAH

BAINA,

3
KARIM

BAINA

1PhD Student, ENSIAS, University Mohammed V Rabat, BP 713, Rabat Morocco
2Professor, ENSIAS, University Mohammed V Rabat, BP 713, Rabat Morocco
3Professor, ENSIAS, University Mohammed V Rabat, BP 713, Rabat Morocco
E-mail: 1bouchra.idrissi@um5s.net.ma, 2sbaina@ensias.ma, 3baina@ensias.ma

ABSTRACT

This paper is interested in the ontology learning from relational databases (RDB) that exploits already
approved semantics about a domain and translates them to application ontology. However, the relational
model is recognized to be less expressive and incapable to support some conceptualizations. Without an
explicit model of the domain semantics in the relational model, the automatic learning of ontology risks to
infer incorrect semantics. In this paper, we give some proof case studies and we propose a model to
upgrade the semantics of the relational model, before the ontology learning. The paper presents the
constructs of the proposed model and it shows how they are translated to constructs of OWL 2 ontology.

Keywords: Ontology Learning, Relational Database, Semantic Enrichment, OWL 2.

1. INTRODUCTION

In the domain of semantic interoperability of

enterprise applications (EA), one aspect of the role
of ontology (formal, explicit specifications of
shared conceptualizations [1]) is to provide a
precise meaning of information exchanged among
interoperated (EA). Unfortunately, ontology has
been omitted from the development life cycle of
information systems and many enterprise
applications have no ontology that describes their
business information. Moreover, the manual
development of ontology is hard, time-consuming
and error-prone.

Ontology learning field aims to overcome the
ontology acquisition bottleneck by automatically or
semi-automatically generating ontology from some
input information sources of types structured, semi-
structured or unstructured [2]. The present paper
focuses on the ontology learning from RDBs. It is
an attractive field for developing application
ontologies, on one hand due to the pervasiveness of
the relational model in industry, commercial and
open-source applications and on the other hand
because an RDB already incorporates an approved
semantics of the domain.

Application ontology is an ontology that
describes a domain application (the specific-domain
knowledge modeled in the database (for more
information about the classification of ontologies,

please see Watch et al. [3] where four types of
ontologies are defined: top-level, domain, task and
application). For clarity, we borrowed the definition
of the term ‘domain application semantics’ from
[4]: ‘information about the application domain,

which should be captured during the requirements

specification phase of database design’.

Several approaches have been proposed for
ontology learning from RDB. Some approaches
rely only on the RDB to construct ontology and the
result is an ontology that mirrors the relational
model. Other approaches proposed to enrich the
resulting ontology by investigating additional
resources like domain ontologies; lexical
vocabularies and conceptual models of the RDB
(see section 3 for more details). Our methodology
for ontology learning from RDB presented in [5] is
based on a primordial process of the semantic
enrichment of the relational model. In fact,
according to Lezoche et al. [6], ‘the main

prerequisite for achievement of interoperability of

information systems is to maximize the amount of

semantics which can be used and make it

increasingly explicit [7], and consequently, to make

the systems semantically interoperable’.

 This paper aims to present the semantics we
add to the relational database model and to present
the model that we propose for its remodeling with
more explicit semantics. At present, the upgrade of

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

the model semantics is manual, but (semi-)
automatic methods (such as data mining) will be
exploited to discover ‘candidate semantics’ and to
enrich automatically the model. In this way, the
database analyzers and/or domain experts are able
to validate all the integrated semantics (tacit,
enriched and embedded) in the proposed model,
before the ontology learning.

 The paper is structured as follows. We
introduce and we motivate in the next section, the
semantics by which we enrich the database model.
These semantics are illustrated by examples.
Section 3 gives an overview of related works. We
focus on how existing approaches have addressed
the requested semantics. Section 4 describes the
proposed model and it outlines its constructs.
Section 5 presents the implementation. Section 6
assesses the transformation of considered semantics
into ontology constructs. A conclusion, in section 7,
summarizes the whole paper and considers future
work.

.

2. REQUESTED SEMANTICS

 This section describes the semantics by which
we upgraded the RDB model. We motivate each
semantic and we give some examples for
illustration.

2.1 The Meaning of Relationships

 The relational model does not store the
meaning of relationships between relations (tables).
It only indicates that there is a link between them
through the use of foreign-keys. Our objective is to
allow the designation of each relationship (link
between two relations) by a term that gives a
meaning to it. While this seems to be unimportant
for machine processing, it is, however,
indispensable for the ontology readability and its
validation. We give particular attention to three
kinds of relationships: multiple relationships,
recursive relationship and inclusion relationship.

 Multiple Relationships are different binary
relationships defined between two separate
relations. An example is the relationships between
m_product and m_product_bom shown in Fig.1

(from the database of OpenBravo [8]). Two foreign-
keys from m_product_bom reference the table
m_product: one of them identifies the BOM (Bill of
Material) product and the other designates a product
component that is part of the BOM product.

 According to [8], the Bill of Materials defines
those products that are generated from other
products. A Bill of Material (BOM) is one or more

products or BOMs. The table m_product_bom
defines the BOM product and its product parts with
the associated quantities and information.

Figure 1: Example of Multiple Relationships.

 So, in terms of relationships, there are two
kinds: a hierarchy (a BOM is a product) and a
whole-part relationship (a BOM is an aggregation
of other products) (we use here the term of
aggregation as defined in UML [9] instead of
composition since the existence of product parts
does not depend on the BOM).

 Recursive relationship is a relationship
where the source and the target are the same table.
Fig. 2A presents an example of a recursive
relationship (from the database of OpenERP [10]).
This recursive relationship indicates a hierarchy of
categories (hasParent). In other cases of recursive
relationships, driving the sense of them may be less
obvious. Example is the case of a table employee
with two relationships, one indicating a hasSpouse

relationship and the other a hasSuperior
relationship (Fig. 2B).

Figure 2: Examples of Recursive Relationships.

 Inclusion relationships. According to Chiang
et al. [4], if two entity types (relations) A and B
have, not only the same key X, but also the same set
of data instances in their keys (there are two
inclusion dependencies, A.X«B.X and B.X« A.X).
Then, the user must specify the proper type of
inclusion relationship between them, such as A is-a

B, A is-a-kind-of B, A is-part-of B, A has B, etc (see
example in Fig. 3). In operational databases, the
primary key may be named arbitrarily or contains
the name of the table. Moreover, the values could
be generated automatically according to a sequence.
All these factors complicate the detection of such
relationship.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

Figure 3: An Example of Inclusion

Relationship of Type ‘Has’: A product has a price (from

[4]).

Generally, in the literature a one-to-one relationship
is automatically transformed into is-a (hierarchy
relation with the construct subClassOf of OWL
[14]) (see [11, 12, 13]).

2.2 Domain Names of Relations and Attributes

 The names of database tables and columns are
not always significant. They can be abbreviated or
use ambiguous terms without a clear meaning. SAP

[15] uses abbreviated names for their database
columns and tables. For instance, the table VBPA

designates partners in sales order and all its
columns are codified (Fig. 4).

 Figure 4: A Subset of the Table VBPA from

SAP [15].

2.3 Concepts Aggregated in One Relation

 We mean by an aggregated relation, a relation
that embodies more than once concept. In the flag
approach [16] for the representation of subtype
hierarchies, one single relation represents the whole
hierarchy. This approach uses a flag (called also
discriminator) attribute to determine a specific
subtype. While data mining techniques and the
estimation of data redundancy may help in
detecting the flag attributes, the discovery of
aggregated concepts necessitates the implication of
a database analyzer. An example is the table
c_bpartner in Fig. 5, which groups customers,
vendors and employees. The flag attributes are
isvendor, iscustomer and isemployee (this example
had significant names of flag attributes, but it is not
generally the case). Another example is the table
c_order that concerns purchase and sale orders.

Figure 5: An Example of Aggregated Relations in the

Table C_BPARTNER of OpenBravo.

 In the ontology, the aggregated relations should
be made explicit.

2.4 Enumerated Relation and its Domain

Values

 An enumerated relation is equivalent to
enumeration class in UML [9]. In most cases, this

type of relation has no foreign-key and store one
business information, but it is difficult to generalize
this rule. In existing approaches for ontology
learning, relations that implement an enumeration
are classified as strong (regular) relations. An
example of relation that stores such information is
the table product_uom_categ shown in Fig. 6. This
table contains the list of UOM (Unit of Measure)
categories. It contains also some audit information
and the column name represents the UOM
categories. This type of relation raises two
challenges: How to detect them and how to find the
domain values equivalent to those stored and
codified.

Figure 6: An Example of Relation of Type Enumeration

(from OpenERP Database).

2.5 Domain Values of Attributes that Denote an

Enumeration

 The objective in this case concerns the
association of explicit domain values to
correspondent attribute values in the database. An
example is the producttype column in the table
m_product that identifies the type of the product
from a predefined list: item, service, resource,
expense and online. But, the values stored in the
column are codified as (I, S, R, E, O) (see Fig.7).
Other codified domain values can be found in
docStatus column of the table c_order (of
OpenERP). It designates the possible status of an
order.

Figure 7: An Example of an Attribute with Codified

Values and Their corresponding Meaning (from

OpenBravo Database).

 We can distinguish different roles for this
attribute type. Either it is a categorizing attribute
that designates different sub-concepts of the
concept modeled through the relation (like the
example giving in [17]); a selective attribute, where
their distinct values present a collection of multiple
choices (Fig.7); a flag attribute with codified values
and where each one indicates an aggregated
concept (Fig.5 where iscustomer has two possible

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

values ‘y’ for ‘yes’ and ‘n’ for ‘no’). So the
question is how to discover this distinction?

2.6 Composite Attribute

 Fig. 8 shows two cases for relating a
composite attribute (address) to the master relation
(employee). On the right side (Fig. 8B), the simple
attributes of address are implemented as attributes
of the master relation, and on the left side (Fig. 8A)
a relation is created to model the composite
attribute. Fahad in [18] had discussed how to map a
composite attribute from en ER model to OWL data

Figure 8 : Example of Composite Attribute as
an Externalized Table (A) or Presented as Simple

Attributes of a Table (B)
type properties. In the ER model the information
about composite attributes is explicit, but from a
database model and unless it is indicated by
database analyzers, it is impossible to discover
automatically such semantics.

2.7 Multi-Valued Attribute

 A multi-valued attribute refers to an attribute
that can have more than one value per instance.
There is no standardizing way for modeling a
multi-valued attribute in RDB. Fig.9 presents the
three basic implementations: (A) a separate table is
created for the multi-valued attribute (hobbies); (B)
values of a multi-valued attribute are combined in a
single column and separated by a character (e.g.,
comma); (C) a row is created for each value of the
multi-valued attribute and this attribute is part of
the primary-key of the relation.

Figure 9 : RDB Basic Implementations of Multi-Valued

Attribute.

 Although (A) is the recommended
implementation, this does not exclude the
possibility of implementation of (B) and (C).
Hwang et al. in [19] stated that the case (A) may
result in some efficiencies and it is suitable only
when the multi-valued attribute is an entity (when
talking at the conceptual level (ER diagram), an
entity is a relation in the RDB) and when it has
many-to-many relationship with the other entity.

Otherwise, alternative possibilities should be
adopted.

3. RELATED WORKS

 We have studied and compared in our previous
works [20, 21], some approaches for ontology
learning from RDB. Our objective in this section is
to discuss how the existing approaches addressed
the requested semantics presented in the previous
section. Recent approaches are also considered in
this study.

 Few approaches have been interested in
discovering implicit and hidden semantics of an
application domain. In [22] some absent semantics
from the input model expressed in SQL are
transferred manually from the entity relationship
model (ER model) to the produced ontology.
Examples of these semantics are composite
attributes and cardinalities. Astrova in [23, 24]
proposed a reverse engineering process that used a
database-driven HTML forms. The objective was to
overcome the limits of relational schema like bad
database design, meaningless names, de-
normalization and so on. A recent work of
Ramathilagam and Valarmathi [25] proposed an
approach where a direct mapping of RDB
components to ontology constructs is followed by
the addition of some semantic rules explored from
the ER model. Alalwan et al. [26] analyze both
database instances and schema to drive some
uncommon semantics: fragmentation of tables,
multi-valued attribute (case (A) in 2.8), and
hierarchy. Albarak and Sibley in [27] proposed a
method to detect sparse-columns (columns that
have sparse values) by computing the number of
distinct values and checking that this number’
distribution ratio is within user-specified thresholds.
They used the distinct values stored in the sparse-

column as a restriction on the range of its equivalent
data property. Their approach is interesting;
however, it does not allow distinguishing whether
these distinct values designate the values of a
selective, categorizing or flag attribute.

 The use of OWL 1 [14] as the language of the
targeted ontology has resulted in additional
inconsistencies. An example is the use of
owl:InverseFunctionalProperty in defining that a
data property presents a primary-key of a relation
(e.g., in [24]). According to [28], OWL 1 does not
allow data properties (that relate individuals to
literals) to be directly declared as inverse functional
properties. InverseFunctional characteristic applies
to object properties (that relate individuals to
individuals).

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

 As we can see, many of our requested
semantics presented in the previous section have
not yet been addressed by existing approaches (e.g.,
semantics of relationships, domain values,
aggregated concepts, and so on). The addressed
semantics are obtained either manually or through
the investigation of additional resources (like data
instances, HTML forms, ER model). However,
contrary to the knowledge of database analyzers,
the automatic discovered semantics present
‘candidate semantics’ that may be out-of-date or
incorrect, by cause of many factors such as dirty
data.

4. PROPOSED MODEL

4.1 The Choice of XML

 The semantic enrichment is generally a process
that upgrades the semantics of a model. For some
authors, semantic enrichment is generally
considered a synonym of annotating source data
with formal descriptions of concepts in a domain
ontology [29], [30]. The main aim of these
annotations is to make explicit the meaning and the
structure of the models to enable their
understanding, their exchange and their possible
transformation between collaborating actors
(human or machine) [30]. For others, especially in
the context of database schema enrichment, it is
considered a process for remodeling database
schema in a higher data model, in order to
explicitly express semantics that is implicit or
hidden [16, 31, 32].

 The choice of XML schema was not
arbitrary. The main reasons that have motivated us
to opt for XML schema are its extensibility and the
existence of open source libraries that map a RDB
schema to an XML schema.

4.2 The Model Constructs

Table 1 describes the model constructs, in
terms of classes and attributes. We noted that the
classes: Database, Table, and Reference are part of
the model proposed by DdlUtils [33]. The other
classes represent our extension. Due to the
constraint of space, the attributes that are defined
by DdlUtils are not presented. The class Foreign-

Key is also absent from the table because no
additional attribute has been defined for it.

Fig. 10 presents the model as a schema XML
in order to show the relations between its elements.
While case studies in section 6 help in
understanding the purpose of the model elements.

5. IMPLEMENTATION

 Our approach relies on the input database
and therefore requires an easy to use system that
allows the exploration and the management of the
database. For this objective, we have chosen
SQuirrel [34] and we have extended it with plugins
that fit our need.

 SQuirreL SQL Client is a graphical tool built
using Java and therefore it allows viewing the
structure of any JDBC compliant database. The
advantages of SQuirrel are multiples, including
access to several databases installed locally or on
remote machines, through a single graphical user
interface; the exploration of the database objects
and metadata; the edition of database data; and its
functionality (DB-specific or general) can be
extended through the use of plugins.

 For the objective of the paper, we have
implemented a new plugin, called DbToXML. It is
built upon the Apache library DdlUtils. Through
the DbToXML preferences tabular, the user may
configure DbToXML to generate one XML file
regrouping the translation of all the tables or to get
one XML file per table. DdlUtils uses the Apache
betwixt library [35] that maps beans to XML. At
the core of DdlUtils, there are the classes defining
the database schema. To get a description of these
database objects, the system uses the
DatabaseMetaData Java class.

6. THE TRANSFORMATION TO OWL 2

 The objective of this section is not to exhibit
the formal rules necessary for the transformation of
the database schema to OWL 2 [36] ontology. It is
out the scope of this paper, but we show the
practicability of our contribution. For each case of
the section 2, we showed the result of the XML
transformation and how it is semantically enriched.
Then, we outlined the expected result for its
transformation to OWL 2 ontology. For more
readability, we write the OWL 2 ontologies in a
compact form using the functional syntax. For the
reason of the lack of space, we do not present the
ontologies resulting from direct mapping.

6.1 Multiple Relationship

Direct mapping: The result is two object
properties having the same domain and range, and
no rule for how to assign a significant name to
them.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

Table 1: A Description of the Proposed Model. We Indicated Only the New Attributes that we have added to DDLUtils

Model. Classes With (+) are Already Existing in the DDLUtils Model. Elements with (*) indicated zero to many.

Description Attributes/Elements Description/Possible Values

C
la

s
s
e
s

Database+
Represents the

studied database
Domain name (dn)

The business name (the subject area) modeled by the

database. The default value is the name of the database.

Table+ Represents a table

Ignored
Indicates whether the table must be ignored during the

learning process. Default value is false.

Domain name (dn) A business name of the concept that the table represents.

DnType Indicates the type of the table from TableType.

Enumerated-table
Table that stores

an enumeration

Table A reference to the table that models the enumeration.

Column Indicates the column that stores the enumeration.

Value*(key, dn)

Indicates the domain values of the enumeration. Key is the

value stored and dn is the domain value. The default value

of dn is key.

 Multi-valued-table
Table that stores

an enumeration

Table
A reference to the table that models the multi-valued

attribute.

Column Indicates the multi-valued column.

Composite-

attribute- table

Table that models

composite

attributes

Table
A reference to the table within the database that presents

the composite attribute.

TransToClass

Indicates whether the table is to be translated to an OWL

class or to add the attributes as properties of the OWL class

resulting from the master table.

Column+
Represents

columns

SQLType Indicates the SQL type of the column.

Ignored
Indicates whether the column must be ignored during the

learning process. Default value is false.

Domain name (dn)
A business name of the property that the column

represents.
DnType Indicates the type of the table from ColumnType.

HasValue Indicates a specific value for the column.

IsNullable Indicates whether the column may accept null values.

Composite-column

Represents a

composite column

Name A business name of the composite column.

Column* (name) The columns that must be aggregated in one concept.

Categorizing-

column

Represents a

categorizing

column

Column A reference to the column that stores categorizing values.

Value*(key, dn)

Domain values of the categorization. The default values are

the distinct values stored. Key is the value stored and dn is

the domain value. The default value of dn is key.

Flag-column
A discriminator

column

Column A reference to the flag column from the table.

Concept* (key, dn)

Indicates the list of aggregated concepts. Each concept is

defined by a pair (key, dn), where key is the value of the

flag column that identifies the concept dn.

 Multi-valued-

column

Represents a

multi-valued

column

Column A reference to the multi-valued column from the table.

Separator The character used to separate the values in the column.

Selective-column
Represents a

selective column

Column A reference to the column that stores selective values.

Selection*(key, dn)

Equivalent domain values of selective values stored in the

column. Key is the value stored and dn is the domain value.

The default value of dn is key.

Reference

Represents a

unidirectional

relationship from

the local relation

to the target

relation

RelType
Indicates the type of the relationship from

RelationshipType.

RelName Designates the relationship with a significant term.

E
n

u
m

TableType
Enumeration (the

types of tables)
NA (Not Applied) regular, enumerated, multi-valued, composite-attribute

ColumnType
Enumeration (the

types of columns) NA
regular, multi-valued, flag, categorizing, selective,

enumerated

RelationshipType

Indicates the

types of

relationships
NA

has, is-a, part-of, fragment-of, whole-part

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

XML file with enrichment: The information
that presents the enrichment is in bold. It consists of
indicating that the column isbom is a flag column
that identifies the BOM products from the other
ones. The element relType in the element reference

signals the type of the relation between the BOM
product and product.
1 <table name=”m_product” dn=”product”>

2 <column name="isbom" dnType="flag"/>

3 <flag-column name="isbom">

4 < concept key="Y" dn="BOMProduct"/>

5 </flag-column ></table>

6 <table name="m_product_bom" dn="BOMProduct"

7 ignore="false" dnType="regular" >

8 <column name="m_product_bom_id" ignore="false"

9 dnType="regular"/>

10 <column name="m_product_id" ignore="false"

11 dnType="regular"/>

12 <column name="m_productbom_id" ignore="false"

13 dnType="regular"/>

14 <foreign-key foreignTableName="m_product"

15 name="mproduct_mproductbom">

16 <reference local-column="m_product_id" foreign-

17 column="m_product_id" relType="is-a"/>

18 </foreign-key>

19 <foreign-key foreignTableName="m_product"

20 name="mproduct_bomproduct">

21 <reference local-column="m_productbom_id" foreign-

22 column="m_product_id" relType="whole-part"/>

23 </foreign-key>

24 </table>
Translation to OWL:

 There are no built-in modeling constructs in
OWL for modeling part-whole relationships [37].
To preserve the semantics of the case study, we
have chosen to model the BOMProduct, the
BOMProductPart and the relation between them.
The is-a relation type identified between
m_product_bom and m_product, in addition to the
flag column isbom that indicates that instances of
this table having a value of isbom equal to ‘Y’ are
BOM products. All these statements guide us to
define the class BOMProduct (the dn of the table
m_product_bom) as follows:
1 Declaration(Class(:BOMProduct))

2 Declaration(Class(:Product))

3 Declaration(DataProperty(:isbom))

4 DataPropertyDomain(:isbom :Product)

5 DataPropertyRange(:isbom xsd:string)

6 SubClassOf(:BOMProduct DataHasValue(:isbom

7 "Y"^^xsd:string))

The BOMProductPart identifies for each BOM
product the list of its products parts. The
BOMProductParts has as properties the business

information stored through the table

m_product_bom. For instance, the property bomqty
that designates the quantity by which a product
participates in a BOM.

1 Declaration(Class(:BOMProductPart))

2 Declaration(DataProperty(:bomqty))

3 DataPropertyDomain(:bomqty :BOMProductPart)

4 DataPropertyRange(:bomqty xsd:positiveInteger)

5 SubClassOf(:BOMProductPart :Product)
Now we define the relations between classes:
Product, BOMProduct and BOMProductParts. Two
object properties are to be defined:
1 Declaration(ObjectProperty(:part-of-BOM Product))

2 ObjectPropertyDomain(:part-of-BOMProduct

3 :BOMProductPart)

4 ObjectPropertyRange(:part-of-BOMProduct :BOMProduct)

5 Declaration(ObjectProperty(:has-part-product))

6 ObjectPropertyDomain(:has-part-product :BOMProduct)

7 ObjectPropertyRange(:has-part-product :BOMProductPart)

8 InverseObjectProperties(:part-of-BOMProduct :has-part-

9 product)

As we can see our result is so far semantically
more rich and consistent than the result of the direct
mapping.

6.2 Recursive Relationship

 The result of the direct mapping is similar to
the previous case, where two object properties are
created but in this case the domain and the range
refer both to the same concept (employee).
XML file with enrichment: the objective is to
nominate each relationship with a significant term.
1 <table name="employee" >

2 <column name="id" …>

3 <foreign-key foreignTableName="employee" …>

4 <reference local-column="sp" foreign-

5 column="id" relType="has" relName="hasSpouse” />

6 </foreign-key>

7 <foreign-key foreignTableName="employee" …>

8 <reference local-column="sup" foreign-

9 column="id" relType="has" relName="hasSuperior" />

10 </foreign-key>

11 </table>
Translation to OWL: two object properties are
created, but each one is designated with the
relName given in the semantic enrichment phase.
1 Declaration(Class(:Employee))

2 Declaration(ObjectProperty(:hasSpouse))

3 ObjectPropertyDomain(:hasSpouse :Employee)

4 ObjectPropertyRange(:hasSpouse : Employee)

5 Declaration(ObjectProperty(:hasSuperior))
6 ObjectPropertyDomain(:hasSuperior :Employee)

7 ObjectPropertyRange(:hasSuperior :Employee)
6.3 Tables and Columns with Meaningless

Names

 This example is obvious and we can see it in
the previous examples through the dn attribute used
in order to define the classes and the properties with
meaningful names.
6.4 Aggregated Concepts

Direct mapping: in existing approaches, there is no
distinction of flag attributes that allow designating
several concepts stored in one relation. These
attributes are directly mapped to data type
properties.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

XML file with enrichment: it consists of making
explicit the concepts aggregated in the relation. The
specification of columnType is optional. However, it
allows detecting the flag columns for which the user
has omitted to add the flag-column element.
1 <table name="c_bpartner " dn="Partner ">

2 <column name="iscustomer" dnType="flag"/>

3 <column name="isvendor" dnType="flag "/>

4 <flag-column column=" iscustomer ">

5 <concept key="Y" dn="Customer"/>

6 </flag-column>

7 <flag-column column=" isvendor ">

8 <concept key="Y" dn="Vendor"/>

9 </flag-column>
 …

10 </table>

Translation to OWL: we have to create the
properties that represent the flag attributes. The
concepts created are sub-classes of the class that
represent the relation, with the restriction on the
value of the flag attributes.
1 Declaration(Class(:Partner))

2 Declaration(Class(:Customer))

3 Declaration(DataProperty(:iscustomer))

4 DataPropertyDomain(:iscustomer : Partner)

5 DataPropertyRange(:iscustomer xsd:string)

6 SubClassOf(:Customer DataHasValue(:iscustomer

 "Y"^^xsd:string))

7 The same for Vendor

6.5 Enumerated Relations
Direct mapping: we neglect the audit information
that is not business information. We focus on the
relation and the attribute that stores the enumerated
values. The direct mapping does not distinguish this
kind of relation from the others and the result is a
class that models the relation and data properties for
the attributes.
XML file with enrichment: it consists of
specifying the type of the table by adding the
attribute dnType and defining the enumerated
attribute and domain values through the element
enumerated-table.
1 <table name=" product_uom_categ "

2 dnType="enumerated" dn="ProductUOMCategory"/>

3 <column name="name" … />

…

4 </table>

5 <enumerated-table table=" product_uom_categ " >

6 <value key="V" dn="Volume"/>

7 < value key="H" dn="Height "/>

8 < value key="W" dn=" Weight "/>

9 </enumerated-table>

Translation to OWL: for more reusability, we
proposed to map this case to a new restricted data
type through DatatypeDefinition feature of OWL.
1Declaration(Datatype (:ProductUOMCategory))

2 DatatypeDefinition(:ProductUOMCategory

3 DataOneOf("Height" "Volume" "Weight"))

6.6 Enumerated Attributes
Direct mapping: in [27] the authors proposed the
use of oneOf feature of OWL.
XML file with enrichment: it consists of making
explicit the selective nature of the attribute and the
domain values of its stored and codified ones.
1 <table name="m_product " dn="Product ">

2 <column name="producttype " dnType="selective"/>

3 <selective-column column="producttype " />

4 <selection key= "E " dn= "Expense " >

5 <selection key= "I " dn= "Item" >

6 <selection key= "O " dn= "Online" >

7 <selective-column />

8 </table>

Translation to OWL: we propose to use the
DataOneOf construct. We define a new type in
order to use it when necessary, without duplicating
the declaration of OneOf or DataOneOf for other
classes.

1 Declaration(Datatype (:ProductType))

2 DatatypeDefinition(:ProductType

3 DataOneOf("Expense" "Item" "Online"))

4 Declaration(Class(:Product))

5 Declaration(DataProperty(:producttype))

6 DataPropertyDomain(:producttype : Product)

7 DataPropertyRange(:producttype :ProductType)

6.7 Composite Attributes
Direct mapping: to our knowledge, no approach
had proposed a way to drive such semantics form
the RDB. In [18], the authors proposed to map
(from the ER model) the composite attribute
(address) to a datatype property and then to map its
simple component attributes to sub-properties of the
created datatype property.
XML file with enrichment: we distinguished the
two cases (A) and (B). For (A), the enrichment
involves the assigning of the type composite-

attribute to the table Address. We qualify the
relation with the table employee to be of type has.

For the case (B), the enrichment includes the
definition of an element of type composite-column

with the set of columns (from the table) that forms
this element.
 <!--Case (A) -->

1 <table name="employee" >

2 <column name="id" primaryKey="yes" >

3 <foreign-key foreignTableName="address " …>

4 <reference local-column="add_id" foreign-

5 column="id" relType="has" />

6 </foreign-key>

7 </table>

8<table name="address " dn="Address"

9 dnType="composite-attribute">

10 <column name="street" … />

11 <column name="city" />

12 </table>

 <!—End Case (A) -->

 <!--Case (B) -->

13 <table name="employee" >

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

14 <column name="id" primaryKey="yes" >

15 <column name="street" … />

16 <column name="city" />

17 <composite-column name="Address"/>

18 <column name="street"/>

19 <column name="city"/>

20 <composite-column/>

21 </table>

 <!—End Case (B) -->

Translation to OWL: for both cases (A) and (B),
we propose to map the composite attribute to a
class. In this way, the class of composite attribute
can be reused when necessary.

1 Declaration(Class(:Employee))

2 Declaration(Class(:Address))

3 Declaration(DataProperty(:hasCity))

4 Declaration(DataProperty(:hasStreet))

5 Declaration(ObjectProperty(:hasAddress))

6 ObjectPropertyDomain(:hasAddress :Employee)

7 ObjectPropertyRange(:hasAddress :Address)

8 DataPropertyDomain(:hasStreet :Address)

9 DataPropertyRange(:hasStreet xsd:string)

10 DataPropertyDomain(:hasCity :Address)

11 DataPropertyRange(:hasCity xsd:string)

7 CONCLUSION

 The role of ontology is to model a domain in
an unambiguous way. In this context, it is evident
that the meaning of concepts and the relations
between them should be clear and well designed.
However, driving ontology directly from an RDB is
far from capturing accurate semantics of the domain
application. In fact, the relational model is less
expressive and does not support some
conceptualizations.

 Our approach proposed the enrichment of the
RDB model before processing on ontology learning.
It has many advantages, including: (i) it takes into
consideration some uncommonly studied semantics;
(ii) it gives the possibility to preserve the additional
semantics when the database schema is changed.
Indeed, reported changed XML file of the database
and the old one containing additional semantics can
be merged.

 However, an intensive manual work is required
in our approach at the enrichment phase. So, we
have to think about how to provide a tool for
collaboration, and how to automatically add some
‘candidate semantics’ (from the proposed meta-data
of the XML schema) in the XML file. Moreover, as
future work, we are working on extending our
model to treat complex check and unique
constraints. Some experimentation will be published
in order to measure the benefit of our approach
compared to existing ones.

REFERENCES:

[1] T. Gruber et al., “A translation approach to
portable ontology specifications,” Knowledge
acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[2] A. Gómez-Pérez, D. Manzano-Macho et al., “A
survey of ontology learning methods and
techniques,” OntoWeb Deliverable D, vol. 1, p.
5, 2003.

 [3] H. Wache, T. Voegele, U. Visser, H.
Stuckenschmidt, G. Schuster, H. Neumann, and
S. Hübner, “Ontology-based integration of
information-a survey of existing approaches,” in
IJCAI-01 workshop: ontologies and information
sharing, vol. 2001. Citeseer, 2001, pp. 108–117.

[4] R. H. Chiang, T. M. Barron, and V. C. Storey,
“Reverse engineering of relational databases:
Extraction of an eer model from a relational
database,” Data & Knowledge Engineering, vol.
12, no. 2, pp. 107–142, 1994.

[5] B. El Idrissi, S. Baïna, and K. Baïna, “A
methodology to prepare real-world and large
databases to ontology learning,” in Enterprise
Interoperability VI. Springer, 2014, pp. 175–
185.

[6] M. Lezoche, H. Panetto, A. Aubry et al.,
“Conceptualisation approach for cooperative
information systems interoperability,” in 13th
International Conference on Enterprise
Information Systems, ICEIS 2011, 2011, pp.
101–110.

[7] L. Obrst, “Ontologies for semantically
interoperable systems,” in Proceedings of the
twelfth international conference on Information
and knowledge management. ACM, 2003, pp.
366–369.

[8] Openbravo. http://wiki.openbravo.com/wiki.
[9] UML. http://www.uml.org/.
[10] OpenERP. https://www.odoo.com.
[11] A. Jaleel, S. Islam, A. Rehmat, A. Farooq, and

A. Shafiq, “Ontology construction from
relational database,” International Journal of
Multidisciplinary Sciences and Engineering, vol.
2, no. 8, November 2011.

[12] M. R. C. Louhdi, H. Behja, and S. O. El
Alaoui, “Transformation rules for building owl
ontologies from relational databases,” Computer

 Science, 2013.
[13] N. Cullot, R. Ghawi, and K. Yétongnon,

“Db2owl: A tool for automatic database-to-
ontology mapping,” in Proceedings of the 15th
Italian Symposium on Advanced Database
Systems (SEBD 2007), Torre Canne di Fasano
(BR), Italy, 2007, pp. 491–494.

[14] W3C. (2004, February) Owl web ontology
language. http://www.w3.org/TR/owl-features/.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

[15] SAP. http://www.sap.com/.
[16] U. Hohenstein and V. Plesser, “Semantic

enrichment: A first step to provide database
interoperability,” in Workshop Föderierte
Datenbanken, Magdeburg. Citeseer, 1996, pp.
3–17.

 [17] F. Cerbah, “Learning highly structured
semantic repositories from relational databases,”
The Semantic Web: Research and Applications,

 pp.777–781, 2008.
[18] M. Fahad, “Er2owl: Generating owl ontology

from er diagram,” Intelligent Information
Processing IV, pp. 28–37, 2008.

[19] M. I. Hwang, J. D. Becker, and J. W. Lin,
“Representing multivalued attributes in database
design,” IACIS 2001.

[20] B. El Idrissi, S. Baïna, and K. Baïna,
“Automatic generation of ontology from data
models: A practical evaluation of existing
approaches,” in RCIS, 2013 IEEE, pp. 1–12.

[21] B. El Idrissi, S. Baïna, and K. Baïna,
“Ontology learning from data models: Advance
and the requirement for a database preparation
and enrichment process,” in ISKO-Maghreb,
2013 IEEE, pp. 1–8.

[22] H. Santoso, S. Haw, and Z. Abdul-Mehdi,
“Ontology extraction from relational database:
Concept hierarchy as background knowledge,”

 Knowledge-Based Systems, vol. 24, no. 3, pp.
457–464, 2011.

[23] I. Astrova, “Reverse engineering of relational
databases to ontologies,” in The Semantic Web:
Research and Applications, ser. Lecture Notes in

 Computer Science, Springer Berlin Heidelberg,
2004, vol. 3053, pp. 327–341.

[24] I. Astrova, N. Korda, and A. Kalja, “Rule-
based transformation of sql relational databases
to owl ontologies,” in Proceedings of the 2nd
MTSR. Citeseer, 2007.

[25] C. Ramathilagam and M. L. Valarmathi, “A
framework for owl dl based ontology
construction from relational database using
mapping and semantic rules,” International
Journal of Computer Applications, vol. 76, no.
17, pp. 31–37, August 2013, published by
Foundation of Computer Science, New York,
USA.

[26] N. Alalwan, H. Zedan, and F. Siewe,
“Generating owl ontology for database
integration,” in Advances in Semantic
Processing, 2009. SEMAPRO’09, IEEE, 2009,
pp. 22–31.

[27] K. Albarrak and E. Sibley, “An extensible
framework for generating ontology models from
data models, int’l transactions on sys,” Science

 and Apps.(ITSSA), vol. 6, no. 2/3, pp. 97–112,
2010.

[28] T. Halpin, “Ontological modeling: Part 13,”
Business Rules Journal, vol. 14, no. 3, March
2013.

[29] C. Diamantini and N. Boudjlida, “About
semantic enrichment of strategic data models as
part of enterprise models,” in Business Process

 Management Workshops. Springer, 2006, pp.
348–359.

[30] N. Boudjlida, H. Panetto, S. Baïna, C.
Diamantini, J. Krogstie, Y. Lin, J. Sarraipa, N.
Zouggar, A. Hahn, M. Delgado, M.-A. Abian,
and M.-J. Nunez, “DTG4.2: Experimental
Semantic Enrichment of Enterprise Models for
Interoperability and its Practical Impact,” May
2007, 118 pages http://www.interop-vlab.eu
Deliverable of the INTEROP Network of
Excellence Européen.

[31] M. Castellanos, F. Saltor, and M. Garcia-
Solaco, “A canonical model for the
interoperability among object-oriented and
relational databases.” in IWDOM, 1992, pp.
309–314.

[32] M. A. Maatuk, A. Ali, and N. Rossiter,
“Semantic enrichment: The first phase of
relational database migration,” in Innovations
and Advances in Computer Sciences and
Engineering. Springer, 2010, pp. 373–378.

[33] DdlUtils. https://db.apache.org/ddlutils/.
[34] SQuirrel. http://squirrel-sql.sourceforge.net/.
[35] Commons-betwixt. http://commons.apache.org
[36] W3C. (2012, December) Owl 2 web ontology

language document overview (second edition).
http://www.w3.org/TR/owl2-overview/.

[37] ——. (2005, Aug) Simple part-whole relations
in owl ontologies. http://www.w3.org/.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

 Figure 10: XML Schema of the Proposed Model.

