
Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

298

EXTENDED PERFECT AND IMPERFECT REPEATS FINDER

USING MOLECULAR DNA SEQUENCES

1
 DR. RAJU BHUKYA,

1
 Department of Computer Science and Engineering, National Institute of Technology, Warangal, INDIA

E-mail:
1
drrajunitw@gmail.com

ABSTRACT

Microsatellites are ubiquitous short tandem repeats found in all known genomes and are known to play a
very important role in various studies and fields including DNA fingerprinting, paternity studies,
evolutionary studies, virulence and adaptation of certain bacteria and viruses etc. Therefore, it is of
importance to study distribution, enrichment and polymorphism of microsatellites in the genomes of
interest. For this, the prerequisite is the availability of a computational tool for extraction of microsatellites
(perfect as well as imperfect) and their related information from whole genome sequences. Examination of
available tools revealed certain lacunae in them and prompted us to develop a new tool.

Keywords: DNA Sequence, Microsatellites, Perfect, Imperfect, Extension of repeats.

1. INTRODUCTION

Bioinformatics is a multi-disciplinary science that

uses methods and principle from mathematics,

computer science and statistics for analyzing

biological data. DNA sequencing plays a key role

in various applications in computational biology for

data analysis like feature extraction, searching,

disease and structural analysis. Microsatellites or

simple sequence repeats (SSRs) are the nucleotide

sequences arising out of tandem repeating of short

sequence motifs of the size 1–6bp [18].

Microsatellites have been found in all the known

genomes so far and are widely distributed both in

coding and non-coding regions [1], [2]. This paper

deals with repeated perfect and imperfect repeats

repeating more than 10bp in number. Mutations

occurring at microsatellite loci within or near

certain genes have been implicated to be

responsible for some human neurodegenerative

diseases [18]. Furthermore, microsatellite

instability has also been implicated in the induction

of cancer [19]. Owing to their high mutability, it is

thought that the microsatellites are one of the

sources of genetic diversity [10]. Imperfect

microsatellites are more stable than perfect

microsatellites as they are less prone to slippage

mutations [17] and are known to play a role in gene

regulation [14]. A large body of microsatellite data

from several genome sequences still remains

unexplored. Studies pertaining to distribution,

enrichment, mutational dynamics of microsatellites

along with their role in gene function and

expression are very essential to understand the

processes that underpin the evolution and diversity

of genomes. However, a large body of

microsatellite data from several genome sequences

still remains unexplored. Studies pertaining to

distribution, enrichment, mutational dynamics of

microsatellites along with their role in gene

function and expression are very essential to

understand the processes that underpin the

evolution and diversity of genomes.

We made a survey of existing software tools for

identification and extraction of microsatellites from

nucleotide sequences. these tools can be divided

into the two groups: those which can identify only

perfect microsatellites (e.g. SSRF [20], Poly [5],

SSRIT [21]) and the others which can identify

perfect as well as imperfect microsatellite (which

can identify perfect as well as imperfect

microsatellites (e.g. TRF [4], ATR Hunter [22],

2004) , Sputnik [23], and IMEx [16]. Our survey

also revealed certain ‘lacunae’ in the tools.

Programs such as ‘mreps’ [11] and TandemSWAN

[7] consider only substitutions but not indels. The

algorithms of TRF [4], ATR Hunter [22] and

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

299

STRING [15] have been designed to find tandem

repeats of large-size motifs as large as 2000 bases

and hence large numbers of microsatellites go

unidentified by these methods. Programs like

TRbase [6] a database for tandem repeats in disease

genes. Tools like TROLL [8] generates perfect and

imperfect repeats, special programs like [9] for

simple sequences with complex evolution, to know

the differential distribution of repeats [12],

microsatellite with in gene structure [13] for the

analysis of gene structure. Many of these

programs, [9] do not generate alignments between

perfect and imperfect microsatellites. We develop

new algorithm, which is fast, highly sensitive and

also flexible where user can set the limit of

imperfection (for perfect microsatellite and

imperfect microsatellite both). The output

comprises of a list of microsatellite, each of which

with information content, sequences alignments

(starting and ending point).

Perfect Repeat:

In a given sequence, a tandem repeat of a size n a

given sequence, a perfect repeat of a size n is a

subsequence which repeats continuously twice or

more in the sequence (specified by the user). DNA

molecules are subject to a variety of mutational

events. One of the less well understood is perfect

repeat duplication in which a stretch of DNA,

which we call the pattern, is converted into two or

more copies, each following the preceding one in a

contiguous fashion. For example we could have …

TCGGA … → … TCGGCGGCGGA … in which

the single occurrence of triplet CGG has been

transformed into three identical, adjacent copies. So

here, CGG is the perfect.

TACGAGTACGGCGGCGGATGCCGTAT

Figure.1. This is three consecutive occurrence of the

pattern ‘CGG’.

In a given sequence, after certain intervening

nucleotides, the repeat motif does not contain any

imperfection (i.e. k=0).

TACGAGTACGGCAGCGGATGCCGT

Figure 2. Here, nucleation sites characterized by two

identical motifs inverted by 3 nucleotides. The

intervening CAG is an iteration of CGG with c� G

operation (k=1).

Imperfect nucleotides:

In a given sequence, imperfect repeat is the

extension of the nucleation sites of the motif (with

imperfection less then ‘k’ value) as long as some

termination criteria is satisfied. The number of

imperfections between the individual repeat copy

and the perfect repeat motif is more than the limit

(denoted by ‘k’ parameter set by the user) and (ii)

the percentage of imperfection is more than the

limit set by the user (denoted by ‘p’ parameter).

The percentage imperfection is calculated as

follows:

100
actperfect tr equivalent in the bases ofnumber total

 tractobserved in the mutationspoint ofnumber
= p X

The user can set the value of ‘k’ between 0 to ‘m’

where m is the repeat motif size. Once the

termination criteria is satisfied, only those

candidate microsatellites that are more than the

minimum repeat number of that repeat size set by

the user (denoted by ‘n’ parameter) are reported.

2. METHODS

2.1 Discovering perfect repeats (Exact
Repeats):

The process to discover perfect Repeats in the

given sequence file consists of two phases:

Initially start by looking for a subsequence of

length one (mono nucleotide) and check for its

continuous repetition. If there is a repetition of

repeats, then increase the value of count for every

repeats till the same repeat is found and if the count

value is equal or greater than the user value

(denoted by the ‘n’), then write the sequences into

the file for every repeat. Follow the procedure for

the next subsequence from the character just after

the ending index. If a subsequence of length one

(mono nucleotides) does not repeat continuously

(given value by the user for mono nucleotides) up

to end of the file, then increase the length of the

subsequence (means Di nucleotides) and search for

the repetition from starting point of the file to end

of the file. Repeat the same procedure up to deca

nucleotide. Always compare the count value to the

user specified value if the count value is greater

than or equal to then write the sequence into the file

otherwise the algorithm goes for the next sequence

and so on.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

300

2.2 Discovering imperfect Repeats
(Approximate perfect repeats):

The process to discover approximate perfect repeats

(imperfect repeats) in the given sequence file.

(i) The no of imperfections between the individual

repeat copy and the perfect repeat motif is more

then, the limit (denoted by the ‘k’ parameter) then

we can write into the file for that repeat.

 (ii) The percentage of imperfection is calculated

for every repeats. If the percentage of imperfection

is less than the limit set by the user (denoted by ‘p’

parameter) then we can write into the file for that

repeat.

Initially start by looking for a subsequences of

length one (mono nucleotide) and check for its

continuous repetition with k-mismatched (‘k’ value

set by the user 1,2,3....). If there is a repetition of

repeats, then look for the index till where the

subsequences repeats itself continuously with k-

mismatched. Here we compare the count value with

user value (specified by the user ‘n’). For finding

imperfect repeats, use normal string matching

algorithm. The algorithm stores starting & ending

indices for mono-imperfect repeats in a file and

follow the procedure for the next subsequences

from the character just after the ending index. If a

subsequence of length mono does not repeat

continuously, then increase the length of the

subsequence to di-nucleotides and search for the

repetition of all subsequences of DNA file starting

point to end point of the DNA file and so on.

The process of finding exact compound

tandem repeats is depicted in the Figure 3.

3. RESULTS:

Discovering perfect and imperfect repeats

of proposed algorithm technique are implemented

in Python programming language. For experiment,

we used genome sequences for discovering perfect

as well as imperfect repeats. The proposed

algorithm finds the perfect repeat which is able to

discover up to 20 or more in size. Here the

technique which is used is simple string matching

algorithm for finding perfect and imperfect repeats.

To discuss the capabilities of our code, we analyzed

the human atrophin1 gene (BC051795) and

compared the result obtained with those obtained

using Tandem Repeat Finder (TRF) [4] and Sputnik

[23] and IMEx [16]. TRF was initially tested with

the parameters used in the earlier studies [2], [6],

[24] which yielded very few microsatellites. Hence,

we used the most relaxed set of parameters (Match:

+2, Substitution:-7, Indel: -7, min Score: 2) which

yielded substantial number of microsatellites. This

is because using TRF, the length of the

microsatellite

 NO NO

YES YES

Figure 3: Process for Exact Compound Tandem Repeats

we used the least stringent parameters (Match: +1,

Mismatch: -3, Min Score: -5), and for IMEx [16],

we set the ‘p’ value of all tracts to 10%; ‘k’ value

for each pattern size: Mono: 1, Di: 1, Tri: 1, Tetra:

2, Penta: 2, Hexa: 3 and further restricted to report

only those microsatellites with minimum repeat

copy number (Mono:5, Di: 3, Tri: 2, Tetra: 2,

Penta: 2, Hexa: 2) to match those reported by TRF

[4] and Sputnik [23]. TRF [4] and Sputnik [23]

identified 50 and 19 repeats respectively, whereas

IMEx [16] identified 146 microsatellite tracts. In

our program we take the input as same as IMEx

[16] but the program restricted to report only those

microsatellite with minimum repeat copy cumber

(Mono:5, Di: 3, Tri: 2, Tetra: 2, Penta: 2, Hexa:

2,Octa: 2, Enea: 2, Deca:2) to match those reported

by TRF [4], Sputnik [23] and IMEx [16]. IMEx

found

 DNA Sequence and input parameter

m=1(motif size)

Check for perfect nucleotide

Check for

imperfect

nucleotide site

Store all tandem repeats

with start & end indices

found

 m=m+1(motif size)

Extension of the repeat on both

sides of the nucleotide

site(checking the k and p values)

End of

sequen

ce

Create alignments and

summery table

END

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

301

gives the result up to size hexa but our program

gives the up to deca nucleotide and more. The

result is more than the IMEx in number of patterns

which is shown in below Table.1.

Table.1:Microsatellite identified by EPI repeats in the

human atrophin 1 gene(4382 bp). Newly found tracts

identified as bold.

S.No String Sindex Eindex Repeats Strings

1 A 509 514 6 AAAAAA

2 C 643 647 5 CCCCC

3 C 846 851 6 CCCCCC

4 C #888 892 5 CCCCC(new found)

5 G 912 916 5 GGGGG

6 C 939 943 5 CCCCC

7 G 956 961 6 GGGGGG

8 G 980 985 6 GGGGGG

9 G 993 997 5 GGGGG

10 C 1007 1012 6 CCCCCC

11 C 1059 1063 5 CCCCC

12 C 1130 1134 5 CCCCC
13 C 1155 1159 5 CCCCC

14 C 1197 1201 5 CCCCC

15 G 1208 1212 5 GGGGG

16 C 1353 1358 6 CCCCCC

17 C 1438 1442 5 CCCCC

18 C 1472 1476 5 CCCCC

19 C 1488 1492 5 CCCCC

20 C 1518 1523 6 CCCCCC

21 C 1572 1576 5 CCCCC

22 C 1776 1780 5 CCCCC

23 C 1899 1903 5 CCCCC
24 C 2157 2161 5 CCCCC

25 G 2189 2193 5 GGGGG

26 C 2458 2462 5 CCCCC

27 C 2475 2479 5 CCCCC

28 C 2496 2500 5 CCCCC

29 C 2868 2873 6 CCCCCC

30 G 2975 2979 5 GGGGG

31 G 3174 3178 5 GGGGG

32 C 3494 3498 5 CCCCC

33 C 3554 3558 5 CCCCC

34 C 3874 3878 5 CCCCC

35 C 3884 3889 6 CCCCCC
36 G 3966 3970 5 GGGGG

37 C 4082 4087 6 CCCCCC

38 C 4100 4104 5 CCCCC

39 C 4231 4235 5 CCCCC

40 A 4308 4314 7 AAAAAAA

41 A 4339 4343 5 AAAAA

42 A 4361 4382 22 AAAAAAAAAAAA

43 AG 479 484 3 AGAGAG

44 AA 509 514 3 AAAAAA

45 CC 846 851 3 CCCCCC

46 GG 956 961 3 GGGGGG
47 GG 980 985 3 GGGGGG

48 CC 1007 1012 3 CCCCCC

49 CT #1319 1324 3 CTCTCT(new found)

50 CC 1353 1358 3 CCCCCC

51 CT 1500 1505 3 CTCTCT

52 CC 1518 1523 3 CCCCCC

53 TC 1539 1544 3 TCTCTC

54 TG 1556 1561 3 TGTGTG

55 AG 2173 2178 3 AGAGAG

56 GC 2581 2588 4 GCGCGCGC

57 GC #2682 2687 3 GCGCGC(new found)

58 CC 2868 2873 3 CCCCCC
59 AG 3837 3842 3 AGAGAG

60 CC 3884 3889 3 CCCCCC

61 AG 3959 3964 3 AGAGAG

62 TC #4068 4073 3 TCTCTC(new found)

63 CC 4082 4087 3 CCCCCC

64 TG 4221 4226 3 TGTGTG

65 GC #4226 4231 3 GCGCGC(new found)

66 TA 4278 4287 5 TATATATATA

67 AA 4308 4313 3 AAAAAA

68 AA 4361 4382 11 AA by 11 times

69 GGA 35 40 2 GGAGGA

70 GAG #219 224 2 GAGGAG(new found)

71 GAA #244 249 2 GAAGAA(new found)

72 GAG 284 289 2 GAGGAG

73 GAA 296 301 2 GAAGAA

74 GAA 321 326 2 GAAGAA

75 CAG 371 376 2 CAGCAG

76 AAG 411 416 2 AAGAAG

77 CAA 449 454 2 CAACAA

78 GAG 468 473 2 GAGGAG

79 GAG 492 497 2 GAGGAG

80 AAA 509 514 2 AAAAAA
81 ATG 589 597 3 ATGATGATG

82 GCA 598 603 2 GCAGCA

83 TCT 690 695 2 TCTTCT

84 ACC 724 729 2 ACCACC

85 TCC 743 748 2 TCCTCC

86 CCC 846 851 2 CCCCCC

87 CTC 871 876 2 CTCCTC

88 TGG 920 925 2 TGGTGG

89 GGG 956 961 2 GGGGGG

90 TCA 972 977 2 TCATCA

91 GGG 980 985 2 GGGGGG

92 AGC 1000 1005 2 AGCAGC

93 CCC 1007 1012 2 CCCCCC

94 ACT 1017 1022 2 ACTACT

95 GTG 1051 1056 2 GTGGTG

96 CAA 1063 1068 2 CAACAA

97 GCC 1070 1075 2 GCCGCC
98 GGT 1089 1094 2 GGTGGT

99 CCA 1113 1121 3 CCACCACCA

100 CAA 1178 1183 2 CAACAA

101 TCC 1274 1279 2 TCCTCC

102 CCT 1326 1331 2 CCTCCT

103 TCT #1338 1343 2 TCTTCT(new found)

104 CCC 1353 1358 2 CCCCCC

105 TAG 1382 1390 3 TAGTAGTAG

106 GCA 1395 1400 2 GCAGCA

107 CCT 1402 1407 2 CCTCCT

108 TTC 1415 1420 2 TTCTTC

109 TCC #1419 1424 2 TCCTCC(new found)
110 CAA #1492 1497 2 CAACAA(new found)

111 CCC 1518 1523 2 CCCCCC

112 CCA #1575 1580 2 CCACCA(new found)

113 CCT #1581 1586 2 CCTCCT(new found)

114 GCC 1594 1599 2 GCCGCC

115 CCA 1668 1673 2 CCACCA

116 CAC 1692 1697 2 CACCAC

117 CAG 1710 1757 16 CAG 16 times

118 CCT #1779 1787 3 CCTCCTCCT(new found)

119 CCA 1823 1828 2 CCACCA

120 CCA #1878 1883 2 CCACCA(new found)
121 CAC 2072 2077 2 CACCAC

122 CAG 2125 2130 2 CAGCAG

123 CCT 2239 2244 2 CCTCCT

124 CCA 2376 2384 3 CCACCACCA

125 GCC 2405 2410 2 GCCGCC

126 GAG 2445 2450 2 GAGGAG

127 GGT 2507 2512 2 GGTGGT

128 CAA 2549 2554 2 CAACAA

129 AAG 2631 2636 2 AAGAAG

130 TGG 2647 2652 2 TGGTGG

131 GCG 2660 2665 2 GCGGCG

132 AGC #2674 2679 2 AGCAGC(new found)

133 GAA #2688 2693 2 GAAGAA(new found)

134 AGG 2779 2784 2 AGGAGG

135 CCC 2868 2873 2 CCCCCC

136 CAG 3023 3028 2 CAGCAG

137 GCA 3326 3331 2 GCAGCA

138 GGC 3344 3349 2 GGCGGC

139 CAC 3402 3407 2 CACCAC

140 TTC 3589 3594 2 TTCTTC

141 TGC 3608 3613 2 TGCTGC

142 CAG 3655 3660 2 CAGCAG

143 TCA 3662 3667 2 TCATCA
144 CAG 3720 3728 3 CAGCAGCAG

145 AGG 3775 3780 2 AGGAGG

146 ACT 3781 3786 2 ACTACT

147 GAA 3797 3802 2 GAAGAA

148 CCC 3884 3889 2 CCCCCC

149 TGC 3926 3931 2 TGCTGC

150 GTG #4003 4008 2 GTGGTG(new found)

151 CCC 4082 4087 2 CCCCCC

152 CTC #4095 4100 2 CTCCTC(new found)

153 GCC 4121 4129 3 GCCGCCGCC

154 ATT 4152 4157 2 ATTATT
155 TAA 4270 4275 2 TAATAA

156 AAA 4308 4313 2 AAAAAA

157 AAA 4361 4381 7 AAA 7 times

158 AAGA #297 304 2 AAGAAAGA(new found)

159 CTCC #550 557 2 CTCCCTCC(new found)

160 GCCC #714 721 2 GCCCGCCC(new found)

161 CCAC #725 732 2 CCACCCAC(new found)

162 CCCA #1010 1017 2 CCCACCCA(new found)

163 GTGG 1086 1093 2 GTGGGTGG

164 ACCT 1099 1106 2 ACCTACCT

165 TCCC 1483 1490 2 TCCCTCCC

166 TCCC 1633 1640 2 TCCCTCCC
167 CCCA 1663 1670 2 CCCACCCA

168 CCCA 1798 1805 2 CCCACCCA

169 CTCC #1849 1856 2 CTCCCTCC(new found)

170 CCTC 2235 2242 2 CCTCCCTC

171 CAGT 2531 2538 2 CAGTCAGT

172 AACA 2550 2557 2 AACAAACA(new found)

173 GCGC 2581 2588 2 GCGCGCGC

174 AGCG 2677 2684 2 AGCGAGCG

175 CCAT 2954 2961 2 CCATCCAT

176 GCAC 3680 3687 2 GCACGCAC

177 CTGC 3765 3772 2 CTGCCTGC(new found)

178 GGGA #3968 3979 3 GGGA 3 times (new found)

179 GACA #3978 3985 2 GACAGACA(new found)

180 TATA 4278 4285 2 TATATATA

181 CCAA #4319 4326 2 CCAACCAA(new found)

182 AACC 4327 4334 2 AACCAACC

183 CAAA 4334 4341 2 CAAACAAA

184 AAAA 4361 4380 5 AAAA 5 times

185 GGGCC 338 347 2 GGGCCGGGCC

186 CCTGG #1200 1209 2 CCTGGCCTGG(new)

 87 TCCCA #1543 1552 2 TCCCATCCCA(new)

188 CCCCT 2012 2021 2 CCCCTCCCCT

189 CCACC 2206 2215 2 CCACCCCACC
190 TCATG 2927 2936 2 TCATGTCATG

191 AGCTG 3692 3701 2 AGCTGAGCTG

192 CCCCT #4128 4137 2 CCCCTCCCCT(new)

193 AAAAA 4361 4380 4 AAAAA 4 times

194 TGACTC 677 688 2 TGACTCTGACTC

195 CCCCTC 883 894 2 CCCCTCCCCCTC

196 TCCTCT #1422 1433 2 TCCTCT(new found)

197 CATCAC 1683 1694 2 CATCACCATCAC

198 CAGCAA 1698 1709 2 CAGCAACAGCAA

199 CAGCAG 1710 1757 8 CAGCAG 8 times

200 CTCTTC 1955 1966 2 CTCTTCCTCTTC
201 CTCTTC 1970 1981 2 CTCTTCCTCTTC

202 GAGCGC 2697 2708 2 GAGCGCGAGCGC

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

302

203 GAGCGC 2727 2738 2 GAGCGCGAGCGC

204 GCACCT 3428 3439 2 GCACCTGCACCT

205 AAGGCC 3987 3998 2 AAGGCCAAGGCC

206 AACCAA 4321 4332 2 AACCAAAACCAA

207 AAAAAA 4361 4378 3 AAAAA 3 times

208 CCCTTTC 3212 3225 2 CCCTTTCCCCTTTC
209 TGCCCCT 4247 4260 2 TGCCCCTTGCCCCT

210 AAAAAAA 4361 4381 3 AAAAAA 3 times

211 CTTCCCAG 1442 1457 2 CTTCCCAGCTTCCCAG

212 AAAAAAAA 4361 4376 2 AAAAAAAAAAAAAAAA

213 CAGCAGCAG 1710 1754 5 CAGCAGCAG 5 times

214 AAAAAAAAA 4361 4378 2 9 As 2 times

215 AAAAAAAAAA 4361 4380 2 10 As 2 times

As we can see from the result, our program reports

many more tracts which are missed by the other

three program (TFR [4], Sputnik [23], IMEx [16]).

It is important to mention that Sputnik does not

report the mononucleotides and after that the penta

nucleotides(i.e. hexa nucleotide and more) and

IMEx also not report the some of the repeats size

mononucleotide to hexa nucleotides and it does not

report after the hexa nucleotides to deca nucleotide

and more. The IMEx tool dosent reports some of

the repeats which is starting from mono to hexa

nucleotide repeats which is reported by the

proposed algorithm. Our program reports all the

possible repeats from mono nucleotides to deca

nucleotide. Using our algorithm we can show

repeats up to 25, up to 50, up to 75 and up to 100.

For 25 it generates 221 repeats, for 50 it generates

221 and so on. We also run the program on four

whole genome sequences Plasmodium falciparum

chromosome IV (NC_004318.1), yeast

chromosome IV (NC_001136.8), Mycobacterium

tuberculosis H37Rv genome (NC_000962.2) and

E.coli K12 genome (NC_000913.2). TRF uses the

probabilistic algorithm which includes a ‘detection

step’ to identify the candidate repeats and an

‘analysis’ step that uses different statistical criteria

to filter the candidate repeats. Sputnik uses a

recursive algorithm and the performance depends

on the recursion depth of the program. Hence,

Sputnik’s execution time seems to be dependent on

the sequence composition. IMEx uses the simple

string-matching algorithm that scans the entire

sequence using sliding window approach and

reports the results in a single run. Hence, the

processing time of IMEx is dependent on the length

of the DNA sequence and not on the number of

microsatellites. Our program uses the simple string

matching algorithm and report the results in a

single run. Hence processing time is not dependent

on the DNA sequence file, it depends upon the size

of the motif. The program has been designed

keeping in view of the limitations we encountered

with the other available tools. Using the proposed

program the user can search perfect microsatellite

and also imperfect microsatellite, generate

alignments, set the imperfection percentage

threshold of the entire tract of each repeat size,

search the repeats of a particular size. From the

result, we generate more number of repeats as

shown in above Table.1.

Table 2:Comparison of execution times(in seconds) of

TRF, Sputnik, IMEx, and proposed program
 TRF Suptnik IMEx EPI

 Sequences Repeats Time Repeats Time Repeats Time Repeats Time

Plasmodium 25601 69.8 10810 89.1 54232 2.9 111695 5.69

Chr4(1204Kb)

Yeast Chr4 7308 4.4 2831 287.2 39759 4.0 54768 7.35

(1531 Kb)

MTB H37Rv 16439 25.5 9412 17.7 111113 11.6 131290 21.03

(4411Kb)

E.coli K12 12043 8.8 5387 8.5 105392 12.3 129229 22.09

(4639 Kb)

TRF: Match: þ2 Subs: 8 Indel: 8 Min. Score: 20 pM: 0.80 pI: 0.10

Max.Period:6.Sputnik: Match: þ2 Mismatch: 6 Min. Score: 8.

IMEx: ‘k’ value: Mono: 1, Di: 1, Tri: 1, Tetra: 2, Penta: 2, Hexa: 3; ‘p’

value:10% for all repeat sizes; repeat length: 10 bases or more XXXX: ‘k’

value: Mono: 1, Di: 1, Tri: 1, Tetra: 2, Penta: 2, Hexa: 3; ‘p’ value:10%

for all repeat sizes; ‘n’ value : Mono: 5, Di: 3, Tri: 2, Tetra: 2, Penta: 2,

Hexa: 3 repeat length: 10 bases or more.

The above comparison shows that our program

reports more number of repeats than the mentioned

three tools (TRF, Sputnik, and IMEx). So we can

say that our program is more efficient, more

accurate and flexible than the other ones.

4. CONCLUSION:

In this paper we have presented a new

algorithm for finding perfect and imperfect

microsatellite repeats in DNA sequences. In this

first we have found all perfect repeats in DNA

sequences and then also we have to find imperfect.

And then we have stored them in to a text file. for

finding tandem repeats is wide ranging and non-

standardized. One has to be careful in

understanding the tools’ inherent constraints to

select the right tool for the right purpose. It is hence

important to be able to compare the repeat search

tools and understand their behavior and inherent

limitations.

REFRENCES:

[1] Anwar,T. and Khan ,A.U. (2006) SSRscanner: a

program for reporting distribution and exact

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

303

location of simple sequence repeats

Bioinformation,1, 89–91.

[2] Archak,S. et al. (2007) InSatDb: a microsatellite

database of fully sequenced insect

genomes.Nucleic Acids Res., 35, D36–D39.

[3] Ross, Charles L., et al. "Rapid divergence of

microsatellite abundance among species of

Drosophila." Molecular Biology and Evolution

20.7 (2003): 1143-1157.

[4] Benson,G. (1999) Tandem repeats finder: a

program to analyze DNA sequences. Nucleic

Acids Res., 27, 573–580.

[5] Bizzaro,J.W. and Marx,K.A. (2003) Poly: a

quantitative analysis tool for simple sequence

repeat (SSR) tracts in DNA. BMC

Bioinformatics, 4, 22.

[6] Boby,T. et al. (2005) TRbase: a database

relating tandem repeats to disease genes in the

human genome. Bioinformatics, 21, 811–816

[7] Boeva,V. et al. (2006) Short fuzzy tandem

repeats in genomic sequences, identification,

and possible role in regulation of gene

expression. Bioinformatics, 22, 676–684.

[8] Castelo,A. et al. (2002) TROLL – Tandem repeat

ocurrence locator. Bioinformatics, 18, 634–636.

[9] Ellegren,H. (2004) Microsatellites: simple

sequences with complex evolution. Nat. Rev.

Genet., 5, 435–445.

[10] Kashi,Y. and King,D.G. (2006) Simple

sequence repeats as advantageous mutators in

evolution. Trends Genet., 22, 253–259.

[11] Kolpakov,R. et al. (2003) mreps: efficient and

flexible detection of tandem repeats in DNA

sequences. Nucleic Acid Res., 31, 3672–3678.

[12] Katti,M.V. et al. (2001) Differential distribution

of simple sequence repeats in eukaryotic

genome sequences. Mol. Biol. Evol., 18, 1161–

1167.

[13] Li,Y.C. et al. (2004) Microsatellites within

genes: structure, function, and evolution. Mol.

Biol. Evol., 21, 991–1007.

[14] Meloni,R. et al. (1998) A tetranucleotide

polymorphic microsatellite, located in the first

intron of the tyrosine hydroxylase gene, acts as

a transcription regulatory element in vitro.

Hum. Mol. Genet., 7, 423–428.

[15] Parisi,V. et al. (2003) STRING: finding tandem

repeats in DNA sequences. Bioinformatics, 19,

1733–1738.

[16] Suresh B. et al. (2007) IMEx: Imperfect

Microsatellite Extractor Bioinformatics, 1181–

1187.

[17] Sturzeneker,R. et al. (1998) Polarity of

mutation in tumor-associated microsatellite

instability. Hum. Genet., 1 0 2, 231–235.

[18] Tautz,D. and Schlotterer,C. (1994) Simple

sequences. Curr. Opin. Genet. Dev., 4, 832–

 837.

[19] Thibodeau, Stephen N., G. Bren, and D.

 Schaid. "Microsatellite instability in cancer of

 the proximal colon." Science 260.5109

 (1993): 816-819.

[20] Sreenu VB, et al . MICAS: a fully automated

 web server for microsatellite extraction and

 analysis from prokaryote and viral genomic

 sequences. Appl. Bioinformatics 2003;2:165-

 168.

[21] Temnykh S, et al . Computational and

 experimental analysis of microsatellites in

 rice (Oryza sativa L.): frequency, length

 variation, transposon associations, and genetic

 marker potential. Genome Res. 2001;11:1441-

 1452.

[22] Wexler Y, et al . RECOMB 2004. 2004.

 Finding approximate tandem repeats in

 genomic sequences.

[23] AbajianC.Sputnik.

 http://espressosoftware.com/pages/sputnik.jsp.

