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ABSTRACT 

 
Microsatellites are ubiquitous short tandem repeats found in all known genomes and are known to play a 
very important role in various studies and fields including DNA fingerprinting, paternity studies, 
evolutionary studies, virulence and adaptation of certain bacteria and viruses etc. Therefore, it is of 
importance to study distribution, enrichment and polymorphism of microsatellites in the genomes of 
interest. For this, the prerequisite is the availability of a computational tool for extraction of microsatellites 
(perfect as well as imperfect) and their related information from whole genome sequences. Examination of 
available tools revealed certain lacunae in them and prompted us to develop a new tool. 
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1. INTRODUCTION  

 

Bioinformatics is a multi-disciplinary science that 

uses methods and principle from mathematics, 

computer science and statistics for analyzing 

biological data. DNA sequencing plays a key role 

in various applications in computational biology for 

data analysis like feature extraction, searching, 

disease and structural analysis. Microsatellites or 

simple sequence repeats (SSRs) are the nucleotide 

sequences arising out of tandem repeating of short 

sequence motifs of the size 1–6bp [18]. 

Microsatellites have been found in all the known 

genomes so far and are widely distributed both in 

coding and non-coding regions [1], [2]. This paper 

deals with repeated perfect and imperfect repeats 

repeating more than 10bp in number. Mutations 

occurring at microsatellite loci within or near 

certain genes have been implicated to be 

responsible for some human neurodegenerative 

diseases [18]. Furthermore, microsatellite 

instability has also been implicated in the induction 

of cancer [19]. Owing to their high mutability, it is 

thought that the microsatellites are one of the 

sources of genetic diversity [10]. Imperfect 

microsatellites are more stable than perfect 

microsatellites as they are less prone to slippage 

mutations [17] and are known to play a role in gene 

regulation [14]. A large body of microsatellite data 

from several genome sequences still remains 

unexplored. Studies pertaining to distribution, 

enrichment, mutational dynamics of microsatellites 

along with their role in gene function and 

expression are very essential to understand the 

processes that underpin the evolution and diversity 

of genomes. However, a large body of 

microsatellite data from several genome sequences 

still remains unexplored. Studies pertaining to 

distribution, enrichment, mutational dynamics of 

microsatellites along with their role in gene 

function and expression are very essential to 

understand the processes that underpin the 

evolution and diversity of genomes. 

We made a survey of existing software tools for 

identification and extraction of microsatellites from 

nucleotide sequences. these tools can be divided 

into the two groups: those which can identify only 

perfect microsatellites (e.g. SSRF [20], Poly [5], 

SSRIT [21]) and the others which can identify 

perfect as well as imperfect microsatellite (which 

can identify perfect as well as imperfect 

microsatellites (e.g. TRF [4], ATR Hunter [22], 

2004) , Sputnik [23], and IMEx [16]. Our survey 

also revealed certain ‘lacunae’ in the tools. 

Programs such as ‘mreps’ [11]  and TandemSWAN 

[7] consider only substitutions but not indels. The 

algorithms of TRF [4], ATR Hunter [22] and 
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STRING [15] have been designed to find tandem 

repeats of large-size motifs as large as 2000 bases 

and hence large numbers of microsatellites go 

unidentified by these methods. Programs like 

TRbase [6] a database for tandem repeats in disease 

genes.  Tools like TROLL [8] generates perfect and 

imperfect repeats, special programs like [9] for 

simple sequences with complex evolution, to know 

the  differential distribution of repeats [12], 

microsatellite with in gene structure [13] for the 

analysis of gene structure.  Many of these 

programs, [9] do not generate alignments between 

perfect and imperfect microsatellites. We develop 

new algorithm, which is fast, highly sensitive and 

also flexible where user can set the limit of 

imperfection (for perfect microsatellite and 

imperfect microsatellite both). The output 

comprises of a list of microsatellite, each of which 

with information content, sequences alignments 

(starting and ending point).  

Perfect Repeat: 

In a given sequence, a tandem repeat of a size n a 

given sequence, a perfect repeat of a size n is a 

subsequence which repeats continuously twice or 

more in the sequence (specified by the user). DNA 

molecules are subject to a variety of mutational 

events. One of the less well understood is perfect 

repeat duplication in which a stretch of DNA, 

which we call the pattern, is converted into two or 

more copies, each following the preceding one in a 

contiguous fashion. For example we could have … 

TCGGA … → … TCGGCGGCGGA … in which 

the single occurrence of triplet CGG has been 

transformed into three identical, adjacent copies. So 

here, CGG is the perfect. 

          

TACGAGTACGGCGGCGGATGCCGTAT 

 

Figure.1. This is three consecutive occurrence of the 

pattern ‘CGG’.  

In a given sequence, after certain intervening 

nucleotides, the repeat motif does not contain any 

imperfection (i.e. k=0). 

TACGAGTACGGCAGCGGATGCCGT 

 

Figure 2. Here, nucleation sites characterized by two 

identical motifs inverted by 3 nucleotides. The 

intervening CAG is an iteration of CGG with c� G 

operation (k=1). 

Imperfect nucleotides: 

In a given sequence, imperfect repeat is the 

extension of the nucleation sites of  the  motif (with 

imperfection less  then ‘k’ value ) as long as some  

termination  criteria is satisfied. The number of 

imperfections between the individual repeat copy 

and the perfect repeat motif is more than the limit 

(denoted by ‘k’ parameter set by the user) and (ii) 

the percentage of imperfection is more than the 

limit set by the user (denoted by ‘p’ parameter). 

The percentage imperfection is calculated as 

follows: 

100
actperfect tr equivalent in the bases ofnumber  total

 tractobserved in the mutationspoint  ofnumber  
= p X

 

The user can set the value of ‘k’ between 0 to ‘m’ 

where m is the repeat motif size. Once the 

termination criteria is satisfied, only those 

candidate microsatellites that are more than the 

minimum repeat number of that repeat size set by 

the user (denoted by ‘n’ parameter) are reported. 
 

2. METHODS 

2.1   Discovering perfect repeats (Exact 
Repeats): 

The process to discover perfect Repeats in the 

given sequence file consists of two phases: 

Initially start by looking for a subsequence of 

length one (mono nucleotide) and check for its 

continuous repetition. If there is a repetition of 

repeats, then increase the value of count for every 

repeats till the same repeat is found and if the count 

value is equal or greater than the user value 

(denoted by the ‘n’), then write the sequences into 

the file for every repeat.  Follow the procedure for 

the next subsequence from the character just after 

the ending index. If a subsequence of length one 

(mono nucleotides) does not repeat continuously 

(given value by the user for mono nucleotides) up 

to end of the file, then increase the length of the 

subsequence (means Di nucleotides) and search for 

the repetition from starting point of the file to end 

of the file. Repeat the same procedure  up to deca 

nucleotide. Always compare the count value to the 

user specified value if the count value is greater 

than or equal to then write the sequence into the file 

otherwise the algorithm goes for the next sequence 

and so on. 
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2.2   Discovering imperfect Repeats 
(Approximate perfect repeats): 

The process to discover approximate perfect repeats 

(imperfect repeats) in the given sequence file.  

(i) The no of imperfections between the individual 

repeat copy and the perfect repeat motif is more 

then, the limit (denoted by the ‘k’ parameter) then 

we can write into the file for that repeat. 

 (ii) The percentage of imperfection is calculated 

for every repeats. If the percentage of imperfection 

is less than the limit set by the user (denoted by ‘p’ 

parameter) then we can write into the file for that 

repeat. 

Initially start by looking for a subsequences of 

length one (mono nucleotide) and check for its 

continuous repetition with k-mismatched (‘k’ value 

set by the user 1,2,3....). If there is a repetition of 

repeats, then look for the index till where the 

subsequences repeats itself continuously with k-

mismatched. Here we compare the count value with 

user value (specified by the user ‘n’). For finding 

imperfect repeats, use normal string matching 

algorithm. The algorithm stores starting & ending 

indices for mono-imperfect repeats in a file and 

follow the procedure for the next subsequences 

from the character just after the ending index. If a 

subsequence of length mono does not repeat 

continuously, then increase the length of the 

subsequence to di-nucleotides and search for the 

repetition of all subsequences of DNA file starting 

point to end point of the DNA file and so on.  

The process of finding exact compound 

tandem repeats is depicted in the Figure 3. 

3. RESULTS: 

Discovering perfect and imperfect repeats 

of proposed algorithm technique are implemented 

in Python programming language. For experiment, 

we used genome sequences for discovering perfect 

as well as imperfect repeats. The proposed 

algorithm finds the perfect repeat which is  able to 

discover up to 20 or more in size. Here the 

technique which is used is simple string matching 

algorithm for finding perfect and imperfect repeats. 

To discuss the capabilities of our code, we analyzed 

the human atrophin1 gene (BC051795) and 

compared the result obtained with those obtained 

using Tandem Repeat Finder (TRF) [4] and Sputnik 

[23] and IMEx [16]. TRF was initially tested with 

the parameters used in the earlier studies [2], [6], 

[24] which yielded very few microsatellites. Hence, 

we used the most relaxed set of parameters (Match: 

+2, Substitution:-7, Indel:  -7, min Score: 2) which 

yielded substantial number of microsatellites. This 

is because using TRF, the length of the 

microsatellite  
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Figure 3: Process for Exact Compound Tandem Repeats 
 
we used the least stringent parameters (Match: +1, 

Mismatch: -3, Min Score: -5), and for IMEx [16], 

we set the ‘p’ value of all tracts to 10%; ‘k’ value 

for each pattern size: Mono: 1, Di: 1, Tri: 1, Tetra: 

2, Penta: 2, Hexa: 3 and further restricted to report 

only those microsatellites with minimum repeat 

copy number (Mono:5, Di: 3, Tri: 2, Tetra: 2, 

Penta: 2, Hexa: 2) to match those reported by TRF 

[4] and Sputnik [23]. TRF [4] and Sputnik [23] 

identified 50 and 19 repeats respectively, whereas 

IMEx [16] identified 146 microsatellite tracts. In 

our program we take the input as same as IMEx 

[16] but the program restricted to report only those 

microsatellite with minimum repeat copy cumber 

(Mono:5, Di: 3, Tri: 2, Tetra: 2, Penta: 2, Hexa: 

2,Octa: 2, Enea: 2, Deca:2) to match those reported 

by TRF [4], Sputnik [23] and IMEx [16]. IMEx 

found 
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gives the result up to size hexa but our program 

gives the up to deca nucleotide and more. The 

result is more than the IMEx in number of patterns 

which is shown in below Table.1. 

 
Table.1:Microsatellite identified by EPI repeats in the 

human atrophin 1 gene(4382 bp). Newly found tracts 

identified as bold. 

S.No     String      Sindex     Eindex         Repeats        Strings       

     
1 A 509 514 6        AAAAAA 

2 C 643 647 5                           CCCCC 

3 C 846 851 6        CCCCCC 

4 C #888 892 5       CCCCC(new found) 

5 G 912 916 5      GGGGG 

6 C 939 943 5       CCCCC 

7 G 956 961 6       GGGGGG 

8 G 980 985 6     GGGGGG 

9 G 993 997 5      GGGGG 

10 C 1007 1012 6     CCCCCC 

11 C 1059 1063 5        CCCCC 

12 C 1130 1134 5        CCCCC 
13 C 1155 1159 5                           CCCCC 

14 C 1197 1201 5      CCCCC 

15 G 1208 1212 5                           GGGGG 

16 C 1353 1358 6      CCCCCC 

17 C 1438 1442 5     CCCCC 

18 C 1472 1476 5                           CCCCC 

19 C 1488 1492 5       CCCCC 

20 C 1518 1523 6       CCCCCC 

21 C 1572 1576 5      CCCCC 

22 C 1776 1780 5                           CCCCC 

23 C 1899 1903 5       CCCCC 
24 C 2157 2161 5                           CCCCC 

25 G 2189 2193 5      GGGGG 

26 C 2458 2462 5                           CCCCC 

27 C 2475 2479 5                           CCCCC 

28 C 2496 2500 5       CCCCC 

29 C 2868 2873 6       CCCCCC 

30 G 2975 2979 5                           GGGGG 

31 G 3174 3178 5       GGGGG 

32 C 3494 3498 5        CCCCC 

33 C 3554 3558 5        CCCCC 

34 C 3874 3878 5        CCCCC 

35 C 3884 3889 6        CCCCCC 
36 G 3966 3970 5     GGGGG 

37 C 4082 4087 6                           CCCCCC 

38 C 4100 4104 5        CCCCC 

39 C 4231 4235 5                           CCCCC 

40 A        4308 4314 7                           AAAAAAA 

41 A 4339 4343 5                           AAAAA 

42 A 4361 4382 22      AAAAAAAAAAAA   

43 AG 479 484 3 AGAGAG 

44 AA 509 514 3 AAAAAA 

45 CC 846 851 3 CCCCCC 

46 GG 956 961 3 GGGGGG 
47 GG 980 985 3 GGGGGG 

48 CC 1007 1012 3 CCCCCC 

49 CT #1319 1324 3      CTCTCT(new found) 

50 CC 1353 1358 3 CCCCCC 

51 CT 1500 1505 3 CTCTCT 

52 CC 1518 1523 3 CCCCCC 

53 TC 1539 1544 3 TCTCTC 

54 TG 1556 1561 3 TGTGTG 

55 AG 2173 2178 3 AGAGAG 

56 GC 2581 2588 4 GCGCGCGC 

57 GC #2682 2687 3     GCGCGC(new found) 

58 CC 2868 2873 3 CCCCCC 
59 AG 3837 3842 3 AGAGAG 

60 CC 3884 3889 3 CCCCCC 

61 AG 3959 3964 3 AGAGAG 

62 TC #4068 4073 3       TCTCTC(new found) 

63 CC 4082 4087 3 CCCCCC 

64 TG 4221 4226 3 TGTGTG 

65 GC #4226 4231 3      GCGCGC(new found) 

66 TA 4278 4287 5           TATATATATA 

67 AA 4308 4313 3 AAAAAA 

68 AA 4361 4382                     11         AA by 11 times 

69 GGA 35 40 2 GGAGGA 

70 GAG #219 224 2    GAGGAG(new found) 

71 GAA #244 249 2    GAAGAA(new found) 

72 GAG 284 289 2 GAGGAG 

73 GAA 296 301 2 GAAGAA 

74 GAA 321 326 2 GAAGAA 

75 CAG 371 376 2 CAGCAG 

76 AAG 411 416 2 AAGAAG 

77 CAA 449 454 2 CAACAA 

78 GAG 468 473 2 GAGGAG 

79 GAG 492 497 2 GAGGAG 

80 AAA 509 514 2 AAAAAA 
81 ATG 589 597 3                   ATGATGATG 

82 GCA 598 603 2 GCAGCA 

83 TCT 690 695 2 TCTTCT 

84 ACC 724 729 2 ACCACC 

85 TCC 743 748 2 TCCTCC 

86 CCC 846 851 2 CCCCCC 

87 CTC 871 876 2 CTCCTC 

88 TGG 920 925 2 TGGTGG 

89 GGG 956 961 2 GGGGGG 

90 TCA 972 977 2 TCATCA 

91 GGG 980 985 2 GGGGGG 

92 AGC 1000 1005 2 AGCAGC 

93 CCC 1007 1012 2 CCCCCC 

94 ACT 1017 1022 2 ACTACT 

95 GTG 1051 1056 2 GTGGTG 

96 CAA 1063 1068 2 CAACAA 

97 GCC 1070 1075 2 GCCGCC 
98 GGT 1089 1094 2 GGTGGT 

99 CCA 1113 1121 3                  CCACCACCA 

100 CAA 1178 1183 2 CAACAA 

101 TCC 1274 1279 2 TCCTCC 

102 CCT 1326 1331 2 CCTCCT 

103 TCT #1338 1343 2     TCTTCT(new found) 

104 CCC 1353 1358 2 CCCCCC 

105 TAG 1382 1390 3                  TAGTAGTAG 

106 GCA 1395 1400 2 GCAGCA 

107 CCT 1402 1407 2 CCTCCT 

108 TTC 1415 1420 2 TTCTTC 

109 TCC #1419 1424 2     TCCTCC(new found) 
110 CAA #1492 1497 2     CAACAA(new found) 

111 CCC 1518 1523 2 CCCCCC 

112 CCA #1575 1580 2     CCACCA(new found) 

113 CCT #1581 1586 2     CCTCCT(new found) 

114 GCC 1594 1599 2 GCCGCC 

115 CCA 1668 1673 2 CCACCA 

116 CAC 1692 1697 2 CACCAC 

117 CAG 1710 1757 16    CAG 16 times 

118 CCT #1779 1787 3   CCTCCTCCT(new found) 

119 CCA 1823 1828 2 CCACCA 

120 CCA #1878 1883 2      CCACCA(new found) 
121 CAC 2072 2077 2 CACCAC 

122 CAG 2125 2130 2 CAGCAG 

123 CCT 2239 2244 2 CCTCCT 

124 CCA 2376 2384 3                  CCACCACCA 

125 GCC 2405 2410 2 GCCGCC 

126 GAG 2445 2450 2 GAGGAG 

127 GGT 2507 2512 2 GGTGGT 

128 CAA 2549 2554 2 CAACAA 

129 AAG 2631 2636 2 AAGAAG 

130 TGG 2647 2652 2 TGGTGG 

131 GCG 2660 2665 2 GCGGCG 

132 AGC #2674 2679 2       AGCAGC(new found) 

133 GAA #2688 2693 2       GAAGAA(new found) 

134 AGG 2779 2784 2 AGGAGG 

135 CCC 2868 2873 2 CCCCCC 

136 CAG 3023 3028 2 CAGCAG 

137 GCA 3326 3331 2 GCAGCA 

138 GGC 3344 3349 2 GGCGGC 

139 CAC 3402 3407 2 CACCAC 

140 TTC 3589 3594 2 TTCTTC 

141 TGC 3608 3613 2 TGCTGC 

142 CAG 3655 3660 2 CAGCAG 

143 TCA 3662 3667 2 TCATCA 
144 CAG 3720 3728 3                    CAGCAGCAG 

145 AGG 3775 3780 2 AGGAGG 

146 ACT 3781 3786 2 ACTACT 

147 GAA 3797 3802 2 GAAGAA 

148 CCC 3884 3889 2 CCCCCC 

149 TGC 3926 3931 2 TGCTGC 

150 GTG #4003 4008 2     GTGGTG(new found) 

151 CCC 4082 4087 2 CCCCCC 

152 CTC #4095 4100 2      CTCCTC(new found) 

153 GCC 4121 4129 3                  GCCGCCGCC 

154 ATT 4152 4157 2 ATTATT 
155 TAA 4270 4275 2 TAATAA 

156 AAA 4308 4313 2 AAAAAA 

157 AAA 4361 4381 7       AAA 7 times 

158 AAGA #297 304 2    AAGAAAGA(new found) 

159 CTCC #550 557 2     CTCCCTCC(new found) 

160 GCCC #714 721 2    GCCCGCCC(new found) 

161 CCAC #725 732 2    CCACCCAC(new found) 

162 CCCA #1010 1017 2    CCCACCCA(new found) 

163 GTGG 1086 1093 2 GTGGGTGG 

164 ACCT 1099 1106 2 ACCTACCT 

165 TCCC 1483 1490 2 TCCCTCCC 

166 TCCC 1633 1640 2 TCCCTCCC 
167 CCCA 1663 1670 2 CCCACCCA 

168 CCCA 1798 1805 2 CCCACCCA 

169 CTCC #1849 1856 2      CTCCCTCC(new found) 

170 CCTC 2235 2242 2 CCTCCCTC 

171 CAGT 2531 2538 2 CAGTCAGT 

172 AACA 2550 2557 2     AACAAACA(new found) 

173 GCGC 2581 2588 2 GCGCGCGC 

174 AGCG 2677 2684 2 AGCGAGCG 

175 CCAT 2954 2961 2 CCATCCAT 

176 GCAC 3680 3687 2 GCACGCAC 

177 CTGC 3765 3772 2      CTGCCTGC(new found) 

178 GGGA #3968 3979 3 GGGA 3 times (new found)                                                                     

179 GACA #3978 3985 2    GACAGACA(new found) 

180 TATA 4278 4285 2 TATATATA 

181 CCAA #4319 4326 2    CCAACCAA(new found) 

182 AACC 4327 4334 2 AACCAACC 

183 CAAA 4334 4341 2 CAAACAAA 

184 AAAA 4361 4380 5     AAAA 5 times 

185 GGGCC 338 347 2             GGGCCGGGCC 

186 CCTGG #1200 1209 2  CCTGGCCTGG(new) 

 87 TCCCA #1543 1552 2 TCCCATCCCA(new ) 

188 CCCCT 2012 2021 2         CCCCTCCCCT 

189 CCACC 2206 2215 2                CCACCCCACC 
190 TCATG 2927 2936 2                  TCATGTCATG 

191 AGCTG 3692 3701 2                  AGCTGAGCTG 

192 CCCCT #4128 4137 2   CCCCTCCCCT(new) 

193 AAAAA 4361 4380 4 AAAAA 4 times                                                                                            

194 TGACTC 677 688                   2  TGACTCTGACTC 

195 CCCCTC 883 894 2 CCCCTCCCCCTC 

196 TCCTCT #1422 1433 2 TCCTCT(new found) 

197 CATCAC 1683 1694 2 CATCACCATCAC 

198 CAGCAA 1698 1709 2 CAGCAACAGCAA 

199 CAGCAG 1710 1757 8  CAGCAG 8 times 

200 CTCTTC 1955 1966 2 CTCTTCCTCTTC 
201 CTCTTC 1970 1981 2 CTCTTCCTCTTC 

202 GAGCGC 2697 2708 2 GAGCGCGAGCGC 
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203 GAGCGC 2727 2738 2 GAGCGCGAGCGC 

204 GCACCT 3428 3439 2 GCACCTGCACCT 

205 AAGGCC 3987 3998 2 AAGGCCAAGGCC 

206 AACCAA 4321 4332 2 AACCAAAACCAA 

207 AAAAAA 4361 4378 3 AAAAA 3 times 

208 CCCTTTC 3212 3225 2 CCCTTTCCCCTTTC 
209 TGCCCCT 4247 4260 2 TGCCCCTTGCCCCT 

210 AAAAAAA 4361 4381 3 AAAAAA 3 times 

211 CTTCCCAG 1442 1457 2 CTTCCCAGCTTCCCAG 

212 AAAAAAAA 4361 4376 2 AAAAAAAAAAAAAAAA 

213 CAGCAGCAG 1710 1754 5 CAGCAGCAG 5 times                                                            

214 AAAAAAAAA  4361 4378 2  9 As 2 times 

215 AAAAAAAAAA 4361 4380 2  10 As 2 times 

 
As we can see from the result, our program reports 

many more tracts which are missed by the other 

three program (TFR [4], Sputnik [23], IMEx [16]). 

It is important to  mention that Sputnik does not 

report the mononucleotides and after that the penta 

nucleotides( i.e. hexa nucleotide and more) and 

IMEx also not report the some of the repeats size 

mononucleotide  to hexa nucleotides and it does not 

report after the hexa nucleotides to deca nucleotide 

and more. The IMEx tool dosent reports some of 

the repeats which is starting from mono to hexa 

nucleotide repeats which is reported by the 

proposed algorithm. Our program reports all the 

possible repeats from mono nucleotides to deca 

nucleotide. Using our algorithm we can show 

repeats up to 25, up to 50, up to 75 and up to 100. 

For 25 it generates 221 repeats, for 50 it generates 

221 and so on. We also run the program on four 

whole genome sequences Plasmodium falciparum 

chromosome IV (NC_004318.1), yeast 

chromosome IV (NC_001136.8), Mycobacterium 

tuberculosis H37Rv genome (NC_000962.2) and 

E.coli K12 genome (NC_000913.2). TRF uses the 

probabilistic algorithm which includes a ‘detection 

step’ to identify the candidate repeats and an 

‘analysis’ step that uses different statistical criteria 

to filter the candidate repeats. Sputnik uses a 

recursive algorithm and the performance depends 

on the recursion depth of the program. Hence, 

Sputnik’s execution time seems to be dependent on 

the sequence composition. IMEx uses the simple 

string-matching algorithm that scans the entire 

sequence using sliding window approach and 

reports the results in a single run. Hence, the 

processing time of IMEx is dependent on the length 

of the DNA sequence and not on the number of 

microsatellites. Our program  uses the simple string 

matching algorithm and report the results in a 

single run. Hence processing time is not dependent 

on the DNA sequence file, it depends upon the size 

of the motif. The program has been designed 

keeping in view of the limitations we encountered 

with the other available tools. Using the proposed 

program the user can search perfect microsatellite 

and also imperfect microsatellite, generate 

alignments, set the imperfection percentage 

threshold of the entire tract of each repeat size, 

search the repeats of a particular size. From the 

result, we generate more number of repeats as 

shown in above Table.1. 

Table 2:Comparison of execution times(in seconds) of 

TRF, Sputnik, IMEx, and proposed program 
           TRF        Suptnik               IMEx                         EPI  

 Sequences    Repeats   Time     Repeats   Time     Repeats   Time       Repeats   Time    

 

Plasmodium   25601     69.8      10810      89.1     54232       2.9          111695     5.69 

Chr4(1204Kb) 

Yeast Chr4     7308       4.4         2831     287.2       39759      4.0          54768       7.35  

(1531 Kb) 

MTB H37Rv  16439     25.5        9412    17.7      111113     11.6          131290     21.03 

(4411Kb) 

E.coli K12     12043    8.8         5387     8.5        105392       12.3         129229      22.09 

(4639 Kb) 

TRF: Match: þ2 Subs: 8 Indel: 8 Min. Score: 20 pM: 0.80 pI: 0.10 

Max.Period:6.Sputnik: Match: þ2 Mismatch: 6 Min. Score: 8. 

IMEx: ‘k’ value: Mono: 1, Di: 1, Tri: 1, Tetra: 2, Penta: 2, Hexa: 3; ‘p’ 

value:10% for all repeat sizes; repeat length: 10 bases or more XXXX: ‘k’ 

value: Mono: 1, Di: 1, Tri: 1, Tetra: 2, Penta: 2, Hexa: 3; ‘p’ value:10% 

for all repeat sizes;  ‘n’ value : Mono: 5, Di: 3, Tri: 2, Tetra: 2, Penta: 2, 

Hexa: 3  repeat length: 10 bases or more. 

The above comparison shows that our program 

reports more number of repeats than the mentioned 

three tools (TRF, Sputnik, and IMEx). So we can 

say that our program is more efficient, more 

accurate and flexible than the other ones. 

 

4. CONCLUSION: 

In this paper we have presented a new 

algorithm for finding perfect and imperfect 

microsatellite repeats in DNA sequences. In this 

first we have found all perfect repeats in DNA 

sequences and then also we have to find imperfect. 

And then we have stored them in to a text file. for 

finding tandem repeats is wide ranging and non-

standardized. One has to be careful in 

understanding the tools’ inherent constraints to 

select the right tool for the right purpose. It is hence 

important to be able to compare the repeat search 

tools and understand their behavior and inherent 

limitations.  
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