
Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5711

MODELLING OF ASPECTS USING ASPECT-ORIENTED
DESIGN LANGUAGE

1SAQIB IQBAL, 2ABDALLA MANSUR, 3GARY ALLEN

1,2 Department of Software Engineering, Al Ain University of Science and Technology, Al Ain, UAE
3Department of Informatics, University of Huddersfield, Huddersfield, UK

1saqib.iqbal@aau.ac.ae, 2abdalla.mansur@aau.ac.ae, 3g.allen@hud.ac.uk

ABSTRACT

The Aspect-composition is a vital step in aspect modelling. Aspects are composed with each other and with
base constructs through pointcuts defined in the aspects. Design languages address this composition by
providing composition techniques and directives. However, most of the contemporary design languages lack
support for inter-aspect and inner-aspect compositions. Another problem is resolving aspect interference
which arises as a result of a composition. Although some techniques have been proposed to overcome aspect
interference at the implementation level, the problem needs attention at the modelling level. The eradication
of interference and conflicts related to aspect composition at the modelling stage could ensure better
implementation and fewer conflicts. This paper provides a composition strategy equipped with new design
notations and diagrams to provide support for aspect compositions, as well as inner-aspect compositions. The
paper also provides a technique to prioritize aspect execution at the modelling stage to reduce aspect
interference and aspect conflicts.

Keywords: Aspect-Oriented Programming, Pointcut Modelling, Aspect Composition, Aspect-Oriented
Model

1. INTRODUCTION

Aspects interact with constructs in the base
system as well as with other aspects. The interaction
with the base system happens through join points,
which are defined as predicates (in pointcuts) in the
aspects. The interaction of an aspect with other
aspects happens through inheritance relationship
and/or via communications such as reference to each
other’s features. Besides these interactions, there are
some inner interactions within an aspect as well.
Pointcuts interact with each other by defining join
points that include predicates defined on other
pointcuts, and they interact with advices through
binding relationships, which define which advice is
associated with which pointcut. An aspect- oriented
design strategy is required to design these
interactions so that aspects are modelled
comprehensively before being implemented. There
have been some strategies proposed over the years
for composition of aspects, examples include
strategies by Zhang et al., [19], Fleurey et al., [6],
and Whittle et al., [18]. These strategies have
proposed techniques to compose aspects with the
base system and aspects with aspects, but inner-
aspect compositions among pointcuts and advices
have been overlooked.

During the aspect composition process, two
problems arise regarding the priority of execution.
One problem is called aspect interference [9], which
is related to the alteration in values of variables of
aspects or the base system through the execution of
advices. The problem has been addressed in several
ways. At the modelling level techniques by Driver et
al., [3], Zhang et al., (2007) and Reddy et al., [15],
and at implementation level techniques by Nagy et
al., [11], Durr et al., (2005) and Lagaisse et al. (2004)
have been proposed so far. The second problem is
called the shared join point problem [11] which arises
when multiple aspects try to superimpose their
behaviors at one join point simultaneously. Although
this problem is usually addressed under the umbrella
of the aspect interference problem, we mention it
separately due to its importance and impact on the
system design. To resolve this problem, the order of
aspects is required to be determined before
implementation so it does not create problems during
the execution of the system. Some solutions have
already been proposed by Driver et al., [3], Zhang et
al., (2007) and Reddy et al., [15] but they all have
their own limitations (discussed in the related work
section). The research question this paper will try to
answer is that can the shared join point problem and

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5712

the aspect interference problem be resolved by a
diagrammatical approach?

This paper addresses the problems discussed
above by proposing a composition technique which
models the composition of aspects with the base
system and with other aspects with the help of
design notations and design diagrams. The
technique also supports inner-aspect composition of
pointcuts with each other and with related advices.
The paper proposes a precedence mechanism which
can be adopted for all types of composition for
resolving the issues of aspect interference and
shared join point problems at the design level. The
paper does not claim that by adopting the proposed
composition strategy all kinds of aspect interference
(including the shared join point problem) will be
removed; rather it suggests how aspectual and inner-
aspectual composition can be managed, and how
precedence of aspects and advices can be handled at
the design level to reduce such interference. The
proposed method is based on notations and
semantics of AspectJ [22] technology.

The paper applies the design notations of a design
language, Aspect-Oriented Design Language
(AODL) developed by the authors of this paper [8]
on a Tracing program example borrowed from the
Eclipse AspectJ Programming Guide [4]. The
composition mechanism is built upon the design
models proposed by the language, and utilizes
semantics and notations of the language while
specifying aspect-related and base system related
constructs.

The rest of the paper is structured as follows:
Section 2 discusses the motivation behind the
research, including composition of aspects and
aspect interference problem. Section 3 provides an
overview of AODL along with its design notations
and design diagrams. Section 4 provides a
categorization of pointcuts proposed by the authors.
Section 5 explains the aspect composition
mechanism with the help of an example. Section 6
outlines some of the related research in the same
area, and the last section, section 7, provides a
detailed discussion on the outcomes of the research
and conclusion of the paper.

2. PROBLEMS AND MOTIVATION

There are two primary motivations behind this

paper. First, there is a dearth of comprehensive
aspect composition strategies. The existing design
strategies either lack inner- aspect compositions
(such as pointcut with pointcuts and pointcuts with

advices) or techniques to handle aspect interference.
The proper composition of aspects provides a design
blue print for the system which eventually helps in
analysing aspect interactions in the system. The
design of interaction can help in identifying possible
aspect interference and conflicts among aspects
themselves and between aspects and the base
constructs. The second motivation is to provide a
precedence strategy for aspect composition. The
defined priority of execution of aspects on a particular
base unit helps in avoiding conflicts and interference.
The strategy also provides support to resolve the
shared join point problem at the modelling level. The
details of the problems are provided below.

2.1. Comprehensive Composition of Aspects
Aspects are tightly coupled with the base system

through join points defined in their pointcuts. The
aspects’ code (known as their advices) also has direct
references to the constructs, variables and operations
in the base system. Moreover, aspects can make
references to the features of other aspects and can
have inter-element relationships within their own
bodies. If we categorise these relationships, we come
up with three different types of aspect relationships:

a) Aspect-to-base system relationships  
Advices define the behavior of aspects, which are
superimposed on well-defined join points in the
base system. Join points are control locations in the
base system and are defined in terms of direct
references to operations, variables and objects of
the program. If we define this in simple terms, we
can say that an aspect is tightly connected with the
base constructs where it inserts its behavior. Any
alteration to the connecting join points in the base
system can make the related aspect either useless
or introduce erroneous behavior at run time.  

b) Aspect-to-Aspect relationships  

In AspectJ, aspects can have relationships such as
association, inheritance and dependency with other
aspects. The inheritance is similarly implemented
as in object-oriented programs only with some
minor differences. The child aspects can override
their parent’s pointcuts, but cannot override the
parent’s advices because advices do not have
unique signatures.  

c) Inner-Aspect relationships  

Within the body of an aspect, advices are
tightly connected with their related
pointcuts. Advices in AspectJ are defined for
a certain pointcut and they contain direct
reference to the pointcut in their signature
(in the form of the pointcut’s name).

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5713

Similarly, pointcuts can define join points
on other pointcuts by directly referencing
their names in their predicates. These
inner-aspect relationships are required to
be designed properly to capture the inner
structure of an aspect.

A comprehensive aspect composition strategy
would cover all types of compositions and would
present a design solution to specify associations,
relationships and generalization among aspects and
related constructs at the modelling level.

2.2. The Aspect Interference Problem
The interaction by an aspect with the base system

may create interference. Katz et al. [9] have
identified several different forms of interference that
may arise when an aspect interacts with the base
system. We have categorized this interference into
four types:

a) Shared JoinPoints

This type of interference occurs when
multiple aspects try to superimpose their
behavior at one join point simultaneously
[11]. The priority of aspects is required to
be designed before such interaction takes
place. Several solutions have been
proposed to prioritize the execution. Some
strategies have handled this problem at the
implementation level, such as AspectJ
which provides the <<declare
precedence>> stereotype to order aspects
in the source code. Some approaches such
as by Driver et al., [3], Zhang et al., (2007)
and Reddy et al., [15] have provided order-
managing techniques at the design level.  

b) Altered Join Points

In some instances, an aspect’s behavior
may change the join points of another
aspect. This can happen when an aspect
modifies or adds to the join point which
defines the location of interaction of the
second aspect. This type of interference
may cause an aspect not to insert its
behavior when it is supposed to do so.  

c) Altered Variables

An aspect can modify, add or delete a
variable which is used by another aspect
later in the execution. Although aspects are

designed not to share common variables, a
modification to a variable which in return
modifies another variable or a join point may
cause this type of interference.  

d) Altered Aspect Behavior

In complex systems, designers are tempted
to introduce a number of aspects to increase
the modularity and understandability of the
system. This situation may result in aspects
being created which contradict the
specification of other aspects. This type of
interference can only be handled during the
specification of aspects. Such interference
can induce undesired outcomes from an
aspect due to the execution of a conflicting
aspect.  

This paper proposes a precedence mechanism
which when utilized properly can help in tackling
aspect interference which is the root cause of all the
above-mentioned problems, and can provide a way of
identifying and ordering aspects at the modelling
level.

3. OVERVIEW OF ASPECT-ORIENTED

DESIGN LANGUAGE

Aspect-Oriented Design Language (AODL) [8] is
a design language developed by the authors of this
paper, which introduces some new design notations
and design diagrams for aspects and their elements.
AODL is based on AspectJ technology and provides
a set of extensions to UML 2.4.1 [12]. It introduces
design notations for the main constructs of AspectJ,
such as aspects, join points, pointcuts and advices.
Design notations are used in the AODL models to
describe structural and behavioural properties of an
aspect and its constituent elements.

The design notations used in AODL are shown in
Table 1. They have been proposed to specify and
represent aspectual constructs during the software
development li fe cycle. Each notation depicts the
behaviour and characteristics of the corresponding
element. The details about these notations can be
found in [8].

The structural and behavioural characteristics of
aspect- oriented elements are captured using design
diagrams. An AODL diagrammatic Model (shown in
Figure 1) shows all the diagrams used in AODL.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5714

Table 1: AODL Design Notations

Figure 1: AODL Diagrammatic Model

4. CASE STUDY

The proposed techniques will be evaluated by

implementing them on a case study. The reason to
choose the evaluation by implementation is that
the diagrammatic techniques such as the proposed
ones could very well be tested while implemented
to a real-life problem.

The proposed techniques and models in this
paper are applied to the Tracing example
borrowed from the Eclipse [4]. The reason to
choose this case study is that it is a well-known
case study by AspectJ and has been discussed in
several similar papers. The other reason is the
presence of identified problems in this case study,
which are shared join point problem and the
interference problem. There is no discussion about
the case study other than its application on the
proposed methodology in this paper. To know
more about it, consult [4].

5. COMPOSITION OF ASPECTS

Before composing aspects together and with
related constructs in the base system, their
constituent elements need to be composed. We will
adopt this bottom up approach for the proposed
technique of dynamic composition.

Aspects can contain elements such as attributes,
operations, pointcuts, inter-type declarations and
advices. Attributes and operations describe static
features of aspects so they are specified statically in
the structural model of aspects in AODL. Intertype
declarations and pointcuts, on the other hand,
represent structural crosscutting of aspects and are
needed to be designed in such a manner that their
interactions and relationships are modelled
structurally and behaviourally. In other words,
these constructs should be modelled using a design
model which represents their relationships with the
base constructs explicitly. AODL composes them
(as shown in Figure 2) along with the base
constructs in a composition model which uses

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5715

structural notations to depict relationships and
associations and uses dynamic models to
represent the behavioural binding among aspects
and the base constructs. With regard to advices,
they are the action part of aspects and are
connected with their corresponding pointcuts,
hence they are represented along with their
pointcuts in the structural as well as the
behavioural models.

5.1. Static Pointcut Composition
AODL proposes a static composition of pointcuts
where pointcuts are composed with each other and
with their corresponding advices. Pointcuts and
their features are represented in the AODL
notation in the form of containers. The containers
are distinguished from those of other constructs
with a join point symbol on top. The list of join
points is shown within the container along with
the pointcut name. The relationship between a
pointcut and its related advices is represented with
the help of an association bearing an occurrence
type (before, after or around). Advices are
represented in a container with the stereotype <<
advice>> which contains the advice’s Id and an
explanation about the implementation contained
in the advice. It is to be noted here that in AODL
advices are assigned ids to identify them contrary
to AspectJ semantics where advices do not have a
signature. Figure 2 shows an Aspect Design
Model for a Trace aspect designed in AODL
which contains a structural representation of
pointcuts. The example system is the Tracing
program borrowed from [4]. The objects of the
base system have also been shown in the model,
with association <<crosscuts>>.

The static composition model helps in
identifying static features of a pointcut. It shows
all the pointcuts of a specific aspect along with
their related advices in a static diagrammatic way.
This diagram is a part of high-level design where
join points are not modelled dynamically but
rather are represented as static features of their
respective pointcuts.

5.2. Dynamic Pointcut Composition
Pointcuts are composed dynamically when

aspects are woven into the system. AODL designs
each join point included in a pointcut with the help
of a behavioural diagram. The diagrams are based
on the UML communication diagram.
Communication diagrams (previously known as
collaboration diagrams) help in designing the
dynamic collaboration of objects with each other in
UML. The interaction is shown in the form of
message passing among objects. AODL exploits
this diagram for the join points’ selection during the
composition of aspects. Before explaining the
pointcut composition, we introduce categories of
pointcuts. We have categorized Pointcuts used in
AspectJ into four types:

Scope Pointcuts: The pointcuts that define a
scope of selection of join points in the base
system are included in this category. Examples
of such pointcuts are: cflow(), within(),
withincode(), cflowbelow(), this(), target() and
args().

Method Pointcuts: The pointcuts that are
defined on methods and constructors of classes
of the base system are part of this category.
Examples of pointcuts defined in this category
are call(), execution(), get(), set(), call(const),
execution(const), handler(), adviceexection()
initialization(), preinitialization(), and
staticinitialization().

Peer Pointcuts: Peer pointcuts select other
pointcuts defined in the same aspect or a related
aspect. These pointcuts are defined on already
defined pointcuts. Some of the examples in this
category are pointcutID(), !pointcut(), pointcut 0
& & pointcut1, pointcut0 || pointcut1 and
(pointcut).

Conditional Pointcuts: Conditional pointcuts
are defined on join points satisfying a Boolean
condition. These pointcuts may be defined on a
type of Boolean operator such as AND, OR, NOT
etc. The if(Boolean) expression is also part of this
category.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5716

Figure 2: AODL Aspect Design Model for Trace Aspect

5.3. Design of pointcuts
AODL models Method Pointcuts and Peer

Pointcuts using extended versions of UML’s
Communication Diagram, whereas Scope
Pointcuts and Conditional Pointcuts are statically
represented in the pointcut container. The reason
to select the Communication Diagram to depict
the behavioural characteristics of a join point is its

usage in UML where it provides means to show the
behavioural interactions among objects (UML
2.4.1). The join points included in Method
Pointcuts are usually defined on the call or
execution of methods, constructors or exception
handlers. The communication diagram can depict
all these types of join point as shown in Figure 3.

Figure 3: Design of Method Pointcuts

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5717

AODL adds stereotypes such as << call>> for
calling of a method, << execution>> for
execution of a method, and

<< handler>> for call of an exception handler.
The join point defined on execution of an
internal method of a class is denoted by a self-
call with << execution>> stereotype.

5.4. Pointcut Composition

AODL uses collaboration classifiers of UML to
contain the dynamic behavior of a join point of a
pointcut. Collaboration is used to show the
structure of collaborating model elements in UML
where each element performs a unique function.
The combined interaction of collaborating
elements forms the desired functionality (UML
2.4.1). The reason behind selecting collaboration
classifier to contain a join point is threefold; (i) a
container element is required to contain dynamic
behavior of a join point, (ii) an element is needed
which could be combined with other related
elements to depict the joining of join points in a
pointcut, and (iii) a UML element is required to
contain the join point as the joinpoint’s internal
behavior is being depicted by UML’s
communication diagram. Each collaboration
included in the pointcut nests a communication
diagram to show the behavior of a join point. The
collaborations are then combined with the help of
Boolean operators such as AND, OR and NOT to
form a complete pointcut model.

Pointcuts are then composed with their
respective advices through an association labelled
with the occurrence type (before, around and
after) which decides when the advice is supposed
to execute. Advices are in return composed with
the parent aspect through composition
associations. Pointcuts, sometimes, may contain
direct reference to other pointcuts. There are two
such examples. In first case, a pointcut contains
another pointcut’s reference in the form of a join
point. AODL shows this relationship with the
stereotype <<includes>>. In the second situation,
a pointcut may define a join point that uses a
reference to another join point. AODL shows this
relationship with the << uses>> stereotype.

Figure 4 shows a Dynamic Pointcut Composition
Model of the aspects Trace and TraceMyClasses of
the Tracing case study. The aspect TraceMyClasses
contains only one pointcut, myClass, which is an
overridden method of an abstract pointcut,
myClass, in the Trace aspect. The definition of this
pointcut is:

pointcut myClass(Object obj): this(obj) &&
(within(TwoDShape) || within(Circle) ||
within(Square));

The pointcut is depicted in a pointcut container
model where the full definition has been shown
statically. Since there is no method pointcut
involved in the definition, so no collaboration
element has been included in the model.

The Trace aspect has three pointcuts, myClass,
myConstructor, and myMethod, where myClass is
an abstract pointcut. AODL designs both pointcuts
using communication diagrams and collaboration
elements. The myClass pointcut has the following
definition.

abstract pointcut myClass(Object obj);

This has been shown in a pointcut container
model. The body of the aspect remains empty since
the aspect has no definition. All the aspects
implementing this pointcut will have an <<
implements>> relationship directed to this
pointcut, as shown in Figure 4.

The myConstructor pointcut has the following
definition:

pointcut myConstructor(Object obj):
myClass(obj) && execution(new(..));

There are two predicates in this pointcut. The
first predicate contains all the join points which are
captured by the myClass pointcut, and the second
predicate contains a join point on the initiation of
any object in the program.

The diagram shows both the predicates in their
collaboration containers, and the containers are
combined with a Boolean operator, AND. The
pointcut is also related with the myClass pointcut of
the TraceMyClasses aspect which has been shown
with the help of an <<includes>> relationship.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5718

Figure 4: Dynamic Composition of Pointcuts for the Tracing Example

The third pointcut of the Trace aspect has the

following

definition:

 pointcut myMethod(Object obj):
myClass(obj) && execution(* *(..)) &&

!execution(String toString());

The pointcut has three different predicates
joined together with the AND operator. The first
predicate indicates all join points captured by the

myClass pointcut. The second predicate indicates
join points on the execution of all types of methods
in the program and the third pointcut ensures that
these methods must not include toString() methods.
The model for this pointcut in Figure 4 contains
three different collaboration elements containing
behavioural representation of each join point. The
collaborations are combined with the help of a
joiner, AND. Since the pointcut contains a direct
reference to the myClass pointcut in
TraceMyClasses so it has been shown related to the

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5719

pointcut with the help of an <<includes>>
relationship.

5.5. Aspect Composition
AODL composes aspects with base constructs

in two models. The first model designs the
dynamic composition of aspects with the base
objects. The purpose is to capture composition of
both the constructs at run time. The model is based

on UML’s communication diagram, which is used
to capture dynamic behaviour of objects in UML.
Aspects have been added to this diagram with new
notations and associations to depict composition of
aspectual behaviour (advices) at run time. Figure 5
shows an Aspect-Class Dynamic Model for the
Tracing example, where the process of creation of
a TwoDShape has been depicted.

Figure 5: Aspect-Class Structural Composition

The aspect Trace weaves its behaviour at

different points during the message passing
between objects. The association for weaving is
shown by an arrow with a plus signed head to
depict the appending process of an advice. The
second model is a structural model, called the
Aspect-Class Structural model, which captures
structural composition of aspects with classes.
This model shows interaction between an aspect
and a base class with a stereotype <<
crosscuts>>. For example, in Figure 6, all three
classes, TwoDShape, Square and Circle, are
associated with both the aspects,
 Trace and TraceMyClasses, through <<
crosscuts>> relationship.

 The model provides support to depicts other
relationships such generalization, dependency and
association as well. The model also provides
support for precedence allocation. The stereotype
<< precedes>> depicts a relationship between two
aspects where A << precedes>> B indicates that
aspect A has priority regarding the advice execution
over aspect B. This relationship is also illustrated
in Figure 6 where the TraceMyClasses aspect is
shown as having priority over the Trace aspect.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5720

Figure 6: Aspect-Class Structural Composition

Depicting aspects along with base classes in a

structural model as shown in Figure 6 enhances
the expressiveness of the system and helps in
designing and understanding the structural
composition of aspects. The order implemented
by the << precedes>> stereotype provides
a means to control or even eradicate some types of
aspect interference. The proposed approach,
however, does not claim that all issues related to
all kinds of interference can be resolved by
adopting this mechanism. The method only
suggests that it can help in achieving consistency
in aspect composition and can help in ordering
aspects’ execution at the modelling stage.

6. RELATED WORK

Aspect composition has been offered by almost
all aspect- oriented software design and modelling
strategies. The strategies are categorized into
symmetric and asymmetric modelling techniques.
The symmetric techniques treat aspects and base
classes similarly and propose design strategies for
both the constructs. Examples of the approaches
using this technique include: Theme/UML
approach [1,3], goal-oriented approach [10],
subject-oriented approach [3], and multi-
dimensional separation of concerns approach [7].
The design strategies using asymmetric technique
only support modelling of aspect-oriented
concerns and compose them with the base models
without providing any modelling support to the
base constructs. Examples of these strategies are:
AODM approach [14,15], AOSD profiles [5] and
JAC Design Notations of Pawlak et al. [14]. They
all follow asymmetric notations and semantics of
AspectJ technology. There are some hybrid
approaches as well which do not fully fall in either

technique but rather employ a mixture of both the
techniques; a noted example of this type of
approach is a methodology by Reddy et al. [15].
The problems mentioned in this paper regarding
aspect composition and aspect interference have
been handled by only a few approaches before. For
example, an aspect composition approach for
Motorola Weavr has been proposed by Zhang et al.
[19] in which they suggest three ordering tags for
aspect models, <<follows>>, << dependent on>>
and << hidden by>>. These tags are used to
provide a precedence strategy to avoid aspect
interference. Similarly, AspectJ [22] provides a
declare precedence keyword to prioritize aspects in
order to reduce aspect interference. Similar types of
techniques have been provided by Reddy et al.,
[15], which adopts a follows keyword to resolve
prudence issue, and by Clarke and Baniassad [1],
which offers the prec tag to order the priority. Our
approach is different from these as it does not only
provide an aspect composition mechanism but also
composes aspectual elements at the modelling
level, thus providing support for locating and
rectifying aspect interference problems early in the
development cycle.

A lot of research into resolution of aspect
interference has been conducted at the
implementation level. Most of the approaches
consider this problem an implementation level
problem. For instance, Lagaisse et al. [23] proposed
integration contracts to avoid semantic interference,
Nagy et al., [11] proposed constraints for managing
orders and structural constraints, and Durr et al.,
[24] proposed a technique to define advices in terms
of operations on the aspect model in order to resolve
aspect interference.

Square

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5721

Although aspect composition and aspect
interference have been addressed at both the
modelling and the implementation levels, the
expressivity in terms of composition of inner-
aspect interactions and aspectual elements such as
pointcuts and advices is lacking in most of the
discussed strategies. This paper provides a
composition approach for all levels of binding of
aspects with base models and with each other. The
paper provides static and dynamic models to
address all issues of aspect composition, hence
aiding in resolving conflicts and aspect
interference at each level. The paper also proposes
a stereotype << precedes>> to order aspect
execution during the weaving process.

7. DISCUSSION AND FUTURE WORK

AODL has proposed composition strategies for
aspects and their constituent elements at the
design and modelling level. The strategies provide
means to depict structural composition as well as
behavioral composition of aspects. Pointcut
composition is carried out by first composing
pointcuts with the related advices and with the
base constructs statically using a Static
Composition Diagram. This diagram helps in
specifying a certain pointcut within the container
of its parent aspect. The features of the pointcut
are included in its definition, and its associations
with related advices are depicted with the help of
design notations and design diagrams. The
diagrams also show the base constructs which
interact with pointcuts. This diagrammatic
approach to specify a pointcut improves
comprehensibility of the model.

The behavioral composition of pointcuts is
carried out using Dynamic Composition Models.
These models provide a means to depict the
behavioral characteristics of join points and the
relationship among pointcuts and their related
advices. The Dynamic Composition Model helps
in understanding the weaving process of aspects
at the join point and object-interaction level. For
making the dynamic composition more
expressive, AODL categorizes pointcuts into four
types, Method Pointcuts, Scope Pointcuts, Peer
Pointcuts and Conditional Pointcuts. The
categories help in understanding characteristics
and behavior of a pointcut. The categories also
help in the dynamic composition process where
pointcuts are designed according to their type.
AODL provides a Dynamic Composition Model
for pointcuts. The structural composition of
aspects has been represented with the help of an

Aspect-Class Structural Model which shows the
structure of aspect composition. It provides support
for depicting all types of relationships among
aspects including associations, generalization and
dependencies. The model also introduces a priority
mechanism where precedence of an aspect is shown
with the help of the << precedes>> stereotype. The
approach is still primitive and requires more
investigation before claims can be made of
resolving all types of aspect interference.

This paper introduces an on-going research work
which is still progressing. The future investigations
will focus on addressing issues related to pointcut
composition, such as the fragile pointcut problem
and shared join point problem. The idea is to
propose general notations to depict relationships
between aspects and base classes. The future work
also includes development of tool-support for the
proposed aspect composition techniques, and
implementation of at least one large case study to
fully test the efficacy and scalability of the
approach.

REFERENCES:

[1] Clarke, S. and Baniassad, E. “Aspect-Oriented
Analysis and Design: The Theme Approach”.
Addison Wesley, 2005

[2] Clarke S., Harrison W., Ossher H., and Tarr P.
“Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and
Code”. Presented at Proc. Object-Oriented
Programming, Systems, Languages and
Applications (OOPSLA 1999), 19999 Denver,
Colorado, USA.

[3] Driver, C., Cahill, V., and Clarke, S.
“Separation of distributed real-time embedded
concerns with Theme/UML”. In Proceedings
of the 5th International Workshop on Model-
Based Methodologies for Pervasive and
Embedded Software. IEEE Computer Society,
27–33. Eclipse, 2012.

[4] Aspect-J Programming Guide,
http://aspectj.org/doc/dist/progguide/index.ht
ml, Accessed on 5th of June. 2017.

[5] Elrad, T., Aldawud, O., and Bader, A.
“Expressing Aspects Using UML Behavioral
and Structural Diagrams”. In R.E. Filman, T.
Elrad, S. Clarke, and M. Aksit, editors, Aspect-
Oriented Software Development, 2005, pages
459-478. Addison-Wesley, Boston.

[6] Fleurey, F., Baudry, B., France, R., and Ghosh,
S. “A Generic Approach for Automatic Model
Composition”. In AOM@MoDELS'07, 2007,
11th Int. Workshop on Aspect- Oriented

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5722

Modelling, Nashville TN USA.

[7] France R., Georg G., and Ray I. “Supporting
Multi- Dimensional Separation of Design
Concerns”. Presented at Workshop on
Aspect-oriented Modelling with UML (held
with AOSD 2003), 2003, Boston,
Massachusetts, USA

[8] Iqbal, S. and Allen, G. “Designing Aspects
with AODL”. International Journal of
Software Engineering, 2011, ISSN 1687-
6954 (In Press)

[9] Katz, E. et al.” Detecting Interference among
Aspects”. AOSD Europe Deliverable, 2008,
D116

[10] Lamsweerde A. “Goal-Oriented
Requirements Engineering: A Guided Tour”.
 Presented at 5th IEEE International
Symposium on Requirements Engineering,
2001.

[11] Nagy, I., Lodewijk, B., and Mehmet, A.
“Composing aspects at shared join points”. In
Proceedings of International Conference
NetObjectDays (NODe), 2005, volume P-69
of Lecture Notes

[12] OMG, 2017, Unified Modelling Language,
http://www.uml.org/, Accessed on June 2,
2017.

[13] Pascal, D., Tom, S., Lodewijk, B., and
Mehmet, A. “Reasoning About Semantic
Conflicts Between Aspects”. In the 2nd
European Interactive Workshop on Aspects
in Software (EIWAS),2005, Brussels,
Belgium.

[14] Pawlak, R., Seinturier, L., Duchien, L.,
Martelli, L., Legond-Aubry, F., and Florin G.
“Aspect-Oriented Software Development
with Java Aspect Components”. In Aspect-
Oriented Software Development, 2005, pages
343-369. Addison-Wesley, Boston.

[15] Reddy, R., Ghosh, S. , France, R., Straw G.,
Bieman, J. M., McEachen, N., Song, E., and
Georg, G. “Directives for Composing
Aspect-Oriented Design Class Models”.
Transactions on Aspect-Oriented Software
Development, 2006, LNCS 3880, Springer-
Verlag, pp. 75-105.

[16] Stein, D., Hanenberg, S., and Unland, R..
“Expressing Different Conceptual Models of
Join Point Selections in Aspect-Oriented
Design”. In Proc.of the 5th International
Conference on Aspect-Oriented Software
Development (AOSD'06), 2006, Bonn,
Germany, pages 15-26. ACM Press.

[17] Stricker, V., Hanenberg, S., Stein, D.
“Designing design constraints in the UML
using join point designation diagrams”. In
Proceedings of the 47th International
Conference on Objects, Components, Models
and Patterns (TOOLS’09) 2009.

[18] Whittle, J., Jayaraman, P., Elkhodary, A.,
Moreira, A., and Araújo, J. “MATA: A Unified
Approach for Composing UML Aspect
Models Based on Graph Transformation”.
Aspect-Oriented Software Development. 2009.
VI, 6:191-237.

[19] Zhang, J., Cottenier, T., Berg, A. V. D., and
Gray, J.. “Aspect Composition in the Motorola
Aspect- Oriented Modelling Weaver”. In
Journal of Object Technology, vol. 6, no. 7,
Special Issue: Aspect-Oriented Modelling,
2007, pp. 89-108.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In Proceedings of the
European Conference on Object-Oriented
Programming, 2001.

[21] Lagaisse, B., Joosen, W., and De Win, B.
“Managing semantic interference with aspect
integration contracts”. In SPLAT: Software
Engineering Properties of Languages for
Aspect Technologies.2004.

[22] Durr, P., Staijen, T., Bergmans, L., and
Mehmet A., 2005. Reasoning About Semantic
Conflicts Between Aspects. Presented in 2nd
European Interactive Workshop on Aspects in
Software (EIWAS), Brussels, Belgium.

