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ABSTRACT 
 

Nowadays target detection and tracking play a vital role in the field of aeronautical, spacecraft, wild area, 
Marine Corps, underwater scenario and so on. In the target detection, Radio Detection and Ranging 
(RADAR) signal is transmitted and the reflected signal has status of target information. In this paper the 
performance of radar signal generation and radar target detection (RTD) models simulated using MATLAB 
Simulink is discussed. The implementation of Extended Kalman Filter (EKF) using Register Transfer Level 
(RTL) Verilog- Hardware Description Language (HDL) and their analysis using for the Field Programmable 
Gate Array (FPGA) implementation in Xilinx tool and the Applications Specific Integrated Circuit (ASIC) 
implementation in cadence encounter tool with 180nm and 45nm library technologies are also presented in 
this paper. The Root Mean Square Error (RMSE) and Signal-to-Noise Ratio (SNR) values are evaluated by 
using MATLAB Simulink. On FPGA analysis, LUT, slices, flip flops, frequency and ASIC implementation 
area, power, delay, Area Power Product (APP), Area Delay Product (ADP) is improved in proposed EKF-
RTD method than conventional methods. 

Keywords: RADAR, MATLAB Simulink, Extended Kalman Filter, Radar Target Detection, RTL, HDL, 
Xilinx, FPGA, Cadence, ASIC. 

 
1. INTRODUCTION  
 

In today’s technology, RADAR is playing a major 
role in the object detection in space. Radar is an 
object-detection system, which utilizes the radio 
waves to measure the velocity, range, and angle of 
the objects. It has received wide importance in the 
detection of objects such as spacecraft, aircraft, 
motor vehicles, ships, guided missiles, weather 
formations, and terrain. In [1] Tugac et.al has 
discussed about applications of Hidden Markov 
models (HMM) for radar target detection. This 
model can detect targets even when that object is 
present in the noisy environment. Kalman filter is an 
optimal state estimation method for stochastic 
signals that estimates the state of a discrete time 
controlled process by using a feedback control. The 
Kalman filter is applicable to linear Gaussian models 
but not applicable to the nonlinear models. In 
estimation theory, the extended Kalman filter is the 
nonlinear version of the Kalman filter which 
linearizes about an estimate of the current mean and 
covariance. A multisensory distributed extended 
Kalman filtering algorithm has been introduced for a 
nonlinear system [2]. In this paper the dynamic 
equations of the system and sensor measurement 

equations were linearized in the global estimates and 
global predictions are discussed.  

The de-noising of the radar signal is the key task 
in the target detection as well as in target tracking 
system. In [3] Lagha et.al has discussed about de-
noising of the weather radar signal by using multi 
thresholding method and wavelet method. It has been 
observed that this multi thresholding method has lost 
the information. In [4] Yuan Niu et.al has introduced 
the extended Kalman filter for moving object 
tracking system. In this work, the extended Kalman 
filter technique is applied for nonlinear motion 
model of the tracked moving object. The optimal 
estimated trajectory was achieved by integrating the 
equations of object tracking problem into EKF forms 
but in this paper the complicated object motion 
detection model is not discussed. 

In [5] Wei Mei et.al has discussed about the 
application of extended Kalman filter for very long 
range radar tracking using pseudo measurement 
noise compensation (PMNCEKF). In this work the 
range filtering performance and filtering consistency 
has improved. In [6] Chan Zeng et.al has discussed 
about the application of extended Kalman filter for 
high dynamic tracking of GPS signal and this method 
is compared with the traditional tracking loop with 



Journal of Theoretical and Applied Information Technology 
15th December 2017. Vol.95. No 23 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
6586 

 

third order phase locked loop (PLL). It has been 
observed that this method is suitable for less complex 
environments only but it has to be improved by 
implementing in a more complex environment like 
weak and high dynamic signal. In [7] Kramer et.al 
has introduced tracking of multiple targets with 
several manoeuvre characteristics using single 
neural EKF. In this work neural EKF has the feature 
of adaptability. With this it can adapt and gives good 
tracking performance for several targets. In [8] 
Pichlík et.al has discussed about the applications of 
EKF for estimating the train velocity. Some of the 
train control systems have to know the train 
longitudinal velocity that is close to the train 
velocity. The train velocity can be determined from 
the wheel set velocity; this wheel set velocity is 
different from train velocity due to slipping velocity. 
These two velocities were nonlinear in nature; to 
overcome this extended Kalman filter has been used. 
The extended Kalman filter enables to solve the 
issues of a nonlinear dependence between wheel set 
velocity and the train velocity. 

Underwater target detection is very much 
important in the seas and rivers, to detect the objects 
in the underwater. In [9] Liang et.al has discussed 
about an efficient 3D nested array system using 
maximum likelihood (ML) estimation algorithm for 
target size detection. In [10] Shubin et.al has 
discussed about the LASER based underwater object 
detection using Gabor transform. It has been 
observed that Gabor transform has processed the 
LASER signal in under water target detection and it 
also eliminates the random interference with low 
SNR and complexity. In [11] Pitchaiah et.al has 
discussed about high-speed implementation of 
Distributed Arithmetic (DA) based architecture for 
adaptive Least Mean Square filter. In this paper 
FPGA and ASIC implementations of LMS filters are 
discussed. It has also been proved that it requires 
more area, delay and power. In [12] Ahmad Abdul 
et.al has discussed about embedded hardware 
architecture for moving object tracking using 
Kalman filter. But this method is only applicable for 
linear systems and is not suitable for non-linear 
systems. In [13] Subrahmanyam et.al has discussed 
about delayed µ-law proportionate based adaptive 
LMS filters for Sparse system identification by using 
3rd level HAAR type of wavelet transform. In this 
paper ASIC implementation of delayed LMS filters 
using 180nm CMOS technology is discussed. It has 
been observed that this filter implementation 
requires more area complexity and power. 

In [14] Jing Cun et.al has introduced the new 
technique for underwater target detection and 

tracking using the combination of a particle filter 
(PF) and track-before detect (TBD) method. The 
simulated results concluded that the PF-TBD 
algorithm is better compared to the conventional 
MFP at low SNR values, and it’s as good as the MFP 
at high SNRs. But robustness and efficiency are less 
and it has to be improved. In [15] M. Labbarian et.al 
has discussed the target tracking in pulse Doppler 
MIMO radar. The obtained results conclude that the 
target tracking by MIMO radar using target velocity 
is more accurate compared to the MIMO radar 
without using velocity vector. By using velocity 
vector as well as target location, radar can track the 
target very precisely. 

In [16] Mohammad Shaifur Rahman et.al has 
discussed about the applications of EKF for Doppler 
radar cardiopulmonary monitoring system. It is 
observed that the EKF finds better or more robust 
solutions in the noisy environment for target 
detection. It has also been proved that the SNR is 
increased and target detection capability of radar in 
noisy environment has been increased. Principal 
component analysis algorithm has been used to 
extract the features. In [17] Ribeiro has illustrated the 
KF and EKF technique properties. The KF technique 
was based on linear functions, which is not fixed 
value on moving object. The EKF function based on 
non-linearity function that can be applied fixed value 
on moving objects. Furthermore, this work only 
discussed about properties and derivation of the KF 
and EKF techniques. But, this work was not 
discussed about VLSI implementation of KF and 
EKF has not been done. In [18] Belaabed et.al has 
discussed about FPGA implementation of tracking 
algorithms. In this paper FPGA implementation of 
KF filter was discussed. It has also been proved that 
it requires more area and power. So in this paper, the 
development of Extended Kalman filter for radar 
signal de-noising using MATLAB-Simulink to 
obtain better results is presented. The VLSI 
implementation of the developed extended Kalman 
filter to obtain less area, power and delay has also 
been discussed.  

2. EKF - RTD METHODOLOGY 
 

In this EKF–RTD method, we have implemented 
an efficient de-noising algorithm to increase the 
accuracy of the target detection in the free space 
environment. For de-noising, an algorithm is applied 
to the received signal so that it can remove the color 
noise, which is affected during the propagation of the 
signal in the free space. Using EKF technique can 
easily achieve signal de-noising with less complexity 
in terms of hardware as well as computational time. 
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The efficiency of target detection is directly 
proportional to the efficiency of the de-noising 
algorithm. In this paper, Simulink is used to model 
the RADAR transmitter and receiver. Commonly 
used Simulink blocks are used to model free space 
environment. De-noising algorithm used for the EKF 
is implemented by using Verilog-HDL and it is 
synthesized by using Xilinx FPGA. In this paper, 
signal generation, target modeling, and receiver are 
implemented by using MATLAB Simulink. For 

ASIC implementation, we used cadence encounter 
was used with 180nm and 45nm library. 

Detection and tracking of moving targets are very 
challenging nowadays. Some of the techniques used 
are based on linear models. These linear models are 
not fit for moving object detection. The moving 
objects may be linear or nonlinear; the EKF has been 
used to detect the moving targets in the noisy 
environment. 

 

Figure 1: Block diagram of the proposed EKF-RTD methodology 
 

The Figure 1 shows the block diagram of the 
proposed EKF-RTD methodology, it has a signal 
generator system includes sinusoidal signal and 
Barker code. Barker Code has various lengths such 
as 2, 3, 4, 5, 7, 11 and 13. To increase the efficiency 
of operation, 7-bit barker code is used to modulate 
the sine wave. The Radio Frequency (RF) section, 
switch, antenna, received signal, EKF filter, 
convolution, and display are included in the block 
diagram of EKF method. In this method, the 
modulator can send the sinusoidal signal through the 
RF section after this RF signal over the antenna. The 
transmitter can send the Radio signal through 
antenna as shows in the figure 1. It is passed through 
the space to detect objects, which are in space. The 
radar pulse with high velocity has to hit the target and 
it is reflected back. Depending on the reflected signal 
velocity, object velocity and its position from the 
base station are detected. The obtained signal is 
suppressed due to environmental disturbances and 
this can be eliminated by using a special kind of filter 
called EKF. After filtering the detected object 
parameters are processed, analyzed of the target and 
its position will be determined.    

2.1 Kalman Filtering (KF) 
 In this section, formulates the general filtering 

issues and discuss the filtering conditions, which is 
the common filtering simplifies to a Kalman filter 
(KF). The filtering issue used for a non-linear system 
dynamic. 

1k k k k k wkx A x B u G         0k   (1) 

k k k k k ky C x B u v          (2) 

where 
( ) , ( ) , ( ) , ( ) , ( ) ,{ }n m n r r

kx k R x k R w k R v k R y k R w      

and  { }kv   are order of white Gaussian noise, zero 

mean, Gaussian noise with zero mean and joint 
covariance  

[ ] [ ] 0,k kE w E v    (3) 

Joint covariance matrix  

ܧ ቂቀ
௞ݓ
௞ݒ
ቁ	ሺݓ௞

௞ݒ்
்ሻቃ ൌ ൤

ܳ௞ 0
0 ܴ௞

൨ (4) 

The initial state 0x , is a Gaussian random vector 

with mean 

0[ ] ,E x x                          (5) 

and covariance matrix 

0 0 0 0 0[( )( ) ]
T

E x x x x                (6) 

The sequence{ }ku is deterministic. 

In this section, the issue of the state estimation can 
be formulated, which is determined as the estimation 
of a random parameter vector, and therefore the 
system (1), (2) The Kalman filter is the filter that 
obtains the minimum mean-square state error 
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estimate. In fact, when (0)x is a Gaussian vector, the 

state and observations noise ( )w k and ( )v k are white 

Gaussian and the 
state and observation dynamics are linear, 

 The conditional probability density functions 
1 1

0( ) | , k
k kp x y u  are Gaussian for any k , 

 The mean, the mode, and the median of this 
conditional coincide, 

 The Kalman filter, i.e., the filter that 
propagates the conditional 1 1

0( ) | , k
k kp x y u  and 

obtains the state estimate by optimizing a 
given criteria, is the best filter among all the 
possible filter types and it optimizes any 
criteria that might be considered. 

Let 

1 1
0 ˆ( ) | , ~ ( ( | ), ( | ))k

k kp x y u N x k k P k k     (7) 

Represent the conditional as a Gaussian. The state 
estimate ˆ( ( | )x k k is the conditional mean and the 

covariance matrix ( | )P k k quantifies the uncertainty 

of the estimate, 

)|(ˆ kkx 1
0

1 ,|)( k
kk uyxp  

|].,[|))|())|()([()|( 1
0

1  k
k

T uykkxkkxkxEkkP


 

From the equation (1) derives the filter dynamics 
in terms of the mean and covariance matrix of the 
conditional, i.e., it shows how the filter propagates 
the mean and the covariance matrix. This dynamics 
is recursive in the sense that to evaluate 

( 1 | 1),x k k 
the Kalman filter only requires the 

previous estimate, ( | ),x k k


and the new observation,

( 1)y k  . 

2.2 EKF Method 
The EKF has been introduced for nonlinear 

models and it can be utilized for radar target 
detection. At each time step, the Jacobian [17] is 
evaluated with current predicted states. These 
matrices can be used in the filter equations. This 
process essentially linearizes the non-linear function 
around the current estimate. 

 

 

Figure 2: Block diagram of the EKF 
 

In this section, the filtering problem is suitable if 
the system dynamics are nonlinear. With no loss of 
generality consider the system has no external inputs. 
Consider the nonlinear dynamic, 

1 ( , )k k k k kx f x u w                (8)                                

Equation (8) gives the difference between the real 
measurements obtained at the instant k+1 and 
measurement prediction obtained from the predicted 
value of the EKF state. 

( )k k k ky h x v           (9)         

where,            

, ( ) : ,n n n
k k kx R f x R R    (10)    

       ,r
kv R  

,n
kw R  

where { },kv { },kw is white Gaussian, independent 

random processes with zero mean, ܴ௞,	ܳ௞	are 
covariance matrixes, f and h are non – linearity 
functions and ku  is control vector. 
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௞ݑ	௞ݒሾܧ
்	ሿ ൌ ܴ௞, ܧሾݓ௞݁௞்ሿ ൌ ܳ௞  (11) 

 0 0 0
~ ,x N x  . 

Where	ݔ଴ is represents the system initial condition 
measured as a Gaussian random vector, 

 1 1 2, ,....k
kY y y y  is represents a set of system 

measurements. The EKF’s main aim is to obtain an 
estimation of the system states based on these 
measurements.  The estimator is used to reduce the 
mean square error. In this method, the conditional 

PDF transitions 1( | ),k
kp x Y  1 1( | )k

kp x Y  and 
1

1 1( | )k
kp x Y 
 are Gaussian. 

The EKF produces calculation of the optimal 
estimate. The Non-linearity of the system’s 
dynamics is approached by a linearizes type of the 
non-linear system around the final state estimate. For 
this estimation to be correct, this linearization could 
be better estimation of the non-linear system model 
in all unreliability domain connected with the state 
estimation. 

 

 
Figure 3: Dynamic concept of EKF 

 
The figure 3 shows the one iteration of the 

successive prediction and filtering updates within the 
successive PDF transitions are shown below 

1 1 1
1 0 1 1 0 1 1 0( | , ) ( | , ) ( | , )k K k k k

k k kp x Y U p x Y U p x Y U 
  

One orientation of the EKF is composed of the 
following successive steps, 

 Consider final filter state estimation  
(( | ))x k k


 

 Linearizes the system dynamic, 

1 ( )k k k k aroundx f x w    (( | ))x k k


 

 Apply the prediction step of the Kalman filter 
to the linearizes system dynamics just    
obtained,  

x


( 1 | ) ( 1 | )K k and p k k    

 Linearizes the observation dynamics, 

( ) ( 1 | )k k k k aroundy h x v x k k    

 Apply the prediction step of the Kalman filter 
to the linearizes system dynamics just    
obtained,  

 ( 1| ) ( 1| )x k k and p k k     

Let ( )F k  and ( )H k  be the Jacobian matrices of 

the (.)f  and (.)h  represented by  

( ) ( | )kF k f x k k   

( 1) ( 1 | )H k h x k k     

2.2.1 Predict cycle 
Prediction Cycle Plug-in is a simple and free plug-

in used for barker code, which separates the 
underlying cycle component from the rate and helps 
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to understand the current cycle. This gives a better 
perspective about the cycles happening in the larger 
time-frames and thereby better decision making. 
Equation (12) gives the taken predicted state 
estimate and also associated co-variance obtained by 
using the EKF algorithm, 

( 1| ) ( ( | ))kx k k f x k k   

( 1 | ) ( ) ( | ) ( ) ( )TP k k F k P k k F k Q k    (12) 

2.2.2 Filtered cycle 
 

1 1

( 1| 1) ( 1| )

( 1)[ ( ( 1| ))]k k

x k k x k k

K k y h x k k 

    

  

1

( 1) ( 1 | ) ( 1)[ ( 1)

( 1 | ) ( 1) ( 1)]

T

T

k k p k k H k H k

P k k H k R k 

    

   
( 1 | 1) [ ( 1) ( 1)]

( 1 | )

P k k I K k H k

P k k

     


 

It this important to state that the EKF is not an 
optimal filter, but rather it is implemented based on 
a set of approximations. Thus, the matrices ܲሺ݇|݇ሻ 

and ܲሺ݇ ൅ 1|݇ሻ do not represent the true covariance 
of the state estimates.  

Moreover, as the matrices F(k) and H(k) depend 
on previous state estimates and therefore on 
measurements, the filter gain ( )K k  and the matrix 

ܲሺ݇|݇ሻ and ܲ ሺ݇ ൅ 1|1ሻ  cannot be computed off-line 
as occurs in the Kalman filter. Contrary to the 
Kalman filter, the EKF may diverge, if the 
consecutive linearization is not a good 
approximation of the linear model in the entire 
associated uncertainty domain [17]. 

 

Figure 4: Block diagram of the Pkbar_update 
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Figure 5: Block diagram of the Pk_update 

 

 
Figure 6: Block diagram of the Kk_update 

 

Figure 4 Pkbar_update, figure 5 Pk_update and 
figure 6 Kk_update block diagrams are sub modules 
of figure 2, which are used for improving the EKF 
performance in terms of accuracy.  

3. IMPLEMENTATION OF EKF METHOD 
 

The EKF method was implemented in MATLAB 
version R2017a to obtain the noise free signal by 
using EKF. Xilinx ISE tool is used to find the 
number of Flip-flops, slices and LUTs. For the area, 
power and delay analyses cadence encounter tool 
with 180nm and 45nm library technologies are used 
and for RTL schematic generation Simplify pro 
software is used. The complete work was done by 
using the I7 system with 8 GB RAM. A number of 
iterations were performed to de-noise radar signal 

and to obtain the minimized values of RMSE and 
better values of SNR. 

4. RESULTS AND DISCUSSION 
 

The Table 1 is the performance comparison of the 
parameters such as number of slice, LUTs and flip 
flops for different algorithms such as FIR, LMS, KF, 
and EKF. From this result table, we can easily 
understand that the number of slice, LUTs, flip flop 
has been reduced using proposed EKF method. Due 
to the reduction of those parameters, the area can be 
optimized in EKF filter. The EKF performance is 
shown in figure 7, which is obtained from Xilinx ISE 
software. 
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The Figure 7 shows the hardware performance of 
difference algorithm such as LMS, FIR, KF and 
EKF. This figure described the total number of used 
LUTs, slice and flip flop values of the LMS, FIR, KF 
and EKF method. Furthermore, the proposed EKF 
method reduces number of LUTs, slice and flip flop 
as compared with LMS, FIR and KF algorithms. 

Table 1: The performance of a number of slices, LUTs, 
flips flops for different algorithms 

 

Filte
r 

orde
r 

Algo
rith
m 

No. of 
slices 

No. of 
LUTs 

No. of 
flip flop 

16 
tap 

[11]
a 

732/2880
0 

2714/2880
0 

449/2997 

16 
tap 

[11]
b 

888/2880
0 

1376/2880
0 

681/1583 

16 
tap 

[12] 855/2073
60 

746/20736
0 

475/1126 

--- [18] 4924/512
0 

6296/1024
0 

1898/1024
0 

16 
tap 

FIR 225/5,47
2 

230/10,94
4 

204/10,94
4 

8 tap LMS  208/5,47
2 

272/10,94
4 

288/10,94
4 

8 tap KF 152/5,47
2 

195/10,94
4 

135/10,94
4 

8 tap EKF 95/5, 472 153/10,94
4 

59/10,944 

 

 

Figure 7: Performance of slices, LUTs and flip flop for 
different algorithms 

 

Figure 8: Area, power and delay performance of different 
algorithms using 180nm technology 

 

The Table.2 Shows the proposed EKF algorithm 
by considering the parameters such as area, power, 
delay, APP and ADP for the ASIC implementation 
using cadence encounter tool with 180nm and 45nm 
technology. From this result table, we can clearly 
observe that all the parameter values are minimized 
in the proposed EKF algorithm as compared with 
LMS, FIR and KF algorithms. 

 

Table 2: The performance of area, power and delay for different algorithms by using ASIC - cadence encounter tool 
with 180nm and 45nm technology 

 

Technology Filter 
Order 

Algorithm Area 
(µm2) 

Power 
(µW) 

Delay 
(ps) 

Area and Power 
Product (APP) 

Area and 
Delay 

Product 
(ADP) 

180nm 16 - tap [13] 863061 58310 --- 50325086910 --- 
32 - tap [13] 1722799 115165.6 --- 198407180514.4 --- 

45nm 16 - tap [11].a 5924 107076.059 6077 634318573.516 650701210.54 
[11].b 5515 85092.633 3593 469285870.995 305737830.36 

32 - tap [11].a 38949 532424.22 8624 20737390944.78 4591626473.2 
[11].b 10526 160081.16 4096 1685014290.16 655692431.36 

180nm 8 - tap LMS 777578 130095.822 91.6 1011595403737.116 71226144.8 
8 - tap KF 177507 303096.005 92.7 53801662559.535 16454898.9 

16 - tap FIR 103075 183794.540 100 18944622210.5 10707500 

2
0
8

2
7
2

2
8
8

2
2
5

2
3
0

2
0
4

1
5
2

1
9
5

1
3
5

9
5 1
5
3

5
9

N O .   O F   S L I C E S NO .   O F   LU T S NO .   O F   F L I P  
F LOP

HARDWARE 
PERFORMANCE

LMS FIR KF EKF

1
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10000

1000000

Area(um2) Power(uW) Delay(ps)

180nm Technology

LMS KF FIR EKF
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8 - tap Proposed 
EKF 

24959 28709.638 90.5 716563854.842 2258789.5 

45nm 8 - tap LMS 81913.03 104463.764 256.6 8556943457.380 21018883.498 
8 - tap KF 17804.77 26723.439 270.8 475804696.221 4821531.716 

16 - tap FIR 9899.88 19614.238 100 194178602.491 989988 
8 - tap Proposed 

EKF 
2336.64 3217.718 270.8 7518649.311 632762.112 

 

 

The Figure 8 and Figure 9 are shows the area, 
power and delay performance bar-graph comparison 
between FIR, LMS, KF and EKF algorithms for both 
180nm and 45nm technology. 

 

 

Figure 9: Area, Power and delay performance of 
different algorithms using 45nm technology 

 

The Table.3 shows the RMSE values can be 
reduced and SNR value is increased for the EKF 
compared with LMS, FIR and KF algorithms. As 
discussed earlier, the entire system is modeled and 

simulated by using MATLAB Simulink 
environment. Similarly, for ASIC implementation 
cadence encounter with 180 and 45nm libraries are 
used. The Simulink provides customizable block 
libraries, a graphical editor, and solvers for 
simulating and modeling dynamic systems. It is 
integrated with MATLAB, enabling to incorporate 
MATLAB algorithms into models then export 
simulation results to MATLAB for more analysis. 
The EKF algorithm target detection tracking model 
consists of radar transmitter (sine wave, repeating 
square star, rate transition 1 and 2, and product) 
selector, switch, target, receiver part (buffer, mean, 
product1, and EKF filter). In this paper, the 
modulator will send the signal through the selector 
after this radar signal over the target as shown in the 
Figure 10. 

Table 3: SNR and RMSE performance of different 
algorithms 

Algorithm RMSE SNR 
EKF 0.70539792703 36.874321695761 
KF 0.705659980538 29.0945684649902 

LMS 0.705932617187 27.756614670204 
FIR 0.705519652201 32.352605854000 

 

 

 

Figure 10: Proposed target detection tracking model using MATLAB Simulink 
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It is transmitted towards the target to detect objects 
which are in space. The radar pulse with high 
velocity has hit to target and it is reflected back. 
Depending on the reflected or received signals 
velocity, target velocity from the base station can be 

measured. Noise can be suppressed by using a 
special kind of filter called Extended Kalman Filter. 
Finally, the detected object parameters are processed 
analyzed of the target and motion will be determined. 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 11: (a) Transmit signal (b) Reflected signal (c) Detected target location 
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Figure 12: Proposed EKF method simulation result using Modelsim 

 

The Figure 11.a show the modulated sine wave 
sequence which is used to transmit towards the target 
with respect to time. Figure.11b shows the noisy 
signal which is affected by additive white Gaussian 
noise. Figure 11.c shows the detected target location 
in terms of distance from transmitter. Figure. 12 
shows the simulation output waveform which is 
obtained after simulation of proposed EKF Verilog 
code in Modelsim tool. In figure 12, the first 

sinusoidal signal is the noisy signal and the second 
signal is de-noised signal. The RTL schematic of 
EKF filter is shown in Figure 13. This schematic 
obtained from Simplify pro by using Verilog HDL 
code which is written for EKF. We have developed 
a separate module for each block such as update 
Fk_Hk, Pkbar_update, Pk_update and Kk_update. 

 

 

 

Figure 13: RTL schematic of EKF 
 

 
5. CONCLUSION 

 

In this paper a new efficient radar target detection 
using radar signal de-noising with an EKF to 
suppress the white Gaussian noise which is added in 
free space is presented. In order to validate and 
compare the performance of the proposed EKF-RTD 
design with existing designs, RMSE and SNR values 
are evaluated by using MATLAB Simulink, number 
of slices, LUTs and  flip-flops are evaluated using  
Xilinx ISE FPGA tool and area, power, delay and 
other parameters are evaluated using Cadence ASIC 
with 180nm and 45nm library technology. From the 
simulation results, it is concluded that the proposed 

model yielded better results in terms of SNR, RMSE, 
less hardware and computational complexity as 
compared to existing models. This work will be 
extended by using optimization techniques, which is 
used to further improving the performances of SNR, 
area, power, delay and minimize RMSE value. 
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