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ABSTRACT 
 

Regression analysis studies the form of the relationship between one or more predictor variables with one 
response variable. The relationship of the response variable with several predictor variables in 
nonparametric regression does not always using one type of approach such as Spline, Kernel, or Fourier 
series. This fact is found in many nonparametric regression, between one predictor variable and another 
predictor variable that has a different pattern with the response variable. This study proposes a model that 
has ability to handle the different patterns in the nonparametric regression. This model was developed by 
adding Kernel functions to the goodness of fit component in completion of the smoothing Spline. Empirical 
analysis is carried out on fuel consumption data in Indonesia. The performance of the proposed model is 
evaluated by looking at the GCV value and comparing its coefficient of determination with the parametric 
regression. The result of the study shows that the proposed model is better than the compared model. In 
addition, this model has a highly accuracy in making predictions or forecasting. 
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1. INTRODUCTION  
 

Regression analysis is one of the statistical 
tool that mostly used to determine the relationship 
between a pair or more of variables. Suppose the 
given data  , ,  1, 2, ...,i it y i n  and the relationship 

between it  and iy  assumed to follow the following 

regression model  

 i i iy f t    ; 1, 2,...,i n                        (1) 

where f  is a regression curve and i  is a random 

error that assumed to be independent and identical 
normally distributed with zero mean and variance 

2.   

There are two methods that can be used to 
estimate the function f, which called the parametric 
regression method and the nonparametric regression 
method. The consideration for choosing which 

method to use is related to the assumption of the 
function f. The parametric regression method will 
be appropriate if the form of function f is known or 
there are other sources that can be used to 
determine the form of the function f [1]. However, 
if the function f is unknown, then the nonparametric 
regression method is more suitable than the 
parametric one [2].  In this case, the function f 
simply assumed to be contained in a particular 
function space, where the selection of function 
space is usually motivated by the properties of 
smoothness of the specific function f. 

There are several estimation techniques in 
nonparametric regression, such as smoothing 
Spline, Kernel, Wavelet, and Fourier Series [1]. The 
smoothing Spline was first introduced by Whitaker 
in 1923 as a data pattern approach. It was based on 
an optimization problem, developed by the Reinsc 
in 1967 [3]. The smoothing Spline estimator is 
obtained from a penalized least square optimization  
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(PLS) [4], [5], [6]. The smoothing Spline has very 
special and very good statistical and visual 
interpretation [7]. Besides, the smoothing Spline 
also able to handle data characteristic/ function that 
is smooth. The smoothing Spline also has an 
excellent ability to handle data whose behavior 
changes at certain sub-intervals [5], [6], [7]. 

[3] is use the smoothing Spline function to 
approach the univariable nonparametric regression 
curve, then [8] developed the quantile Spline to 
handle the outlier data, [7] developed the M-type 
Spline as well as for handling the outlier data. 
Furthermore, [9] provides a weighted Spline 
estimator to handle the inequality of variance in the 
nonparametric regression. [10] developed a Spline 
estimator to estimate a robust regression curve and 
[11] used Bayesian in completing the Spline in the 
multiple nonparametric regression. 

The other estimator beside the smoothing 
Spline which is often used in the nonparametric 
regression, named Kernel estimator. The first group 
of researchers which examine the Kernel was 
initiated by [12] and [13]. The Kernel estimator is 
the development of a histogram estimator. This 
estimator is a linear estimator similar to other 
nonparametric regression estimators, the only 
difference is because the Kernel estimator is the  
estimator which apply the use of the bandwidth 
method. The advantage of the Kernel estimator is 
having good ability in modeling data that has no 
specific pattern [14]. In addition, the Kernel 
estimator is more flexible, has simple mathematical 
form, and relatively fast to reach the convergence 
level [15].  In terms of computation, the Kernel 
method is easier to be done and to be implemented 
[16]. 

[17] state that, since the Spline function has 
its own character as well as the Kernel, then it is 
good to check the character of each of the 
predictors before the analysis started, to obtain a 
good estimate. 

Research that related to nonparametric 
regression involving many predictors is limited to 
the use of the same type of estimator for each 
predictor [6]. Thus, it can be said that there are 
fundamental assumptions in the model, i.e., first, 
the pattern of each predictor in the multi-predictors 
nonparametric regression model is considered to 
have the same pattern. Second, researchers only use 
one form of the model estimator for each predictor. 
These two assumptions used in multi-predictors 
nonparametric regression models are rarely found, 
and in application, there are often cases where 

different patterns of each predictor variable occur, 
including the case of open unemployment [18].  In 
addition, using only one form of estimator in 
estimating multi-predictors nonparametric 
regression curves, resulting the estimator obtained 
will not match the data pattern. This will affect  the 
correctness in estimation of the regression model 
obtained and tends to produce a large error.   

Based on the results of the above research, 
and based on preliminary exploration of the fuel 
consumption data, it was found that there were 
predictors that were in accordance with the 
characteristics of Spline which changed at certain 
intervals and there were predictors that were in 
accordance with the Kernel data pattern and to 
obtain an estimate of the regression curve model 
that is match the data pattern, then in this study not 
only use a single regression curve estimator model, 
but more than one estimator model.  The aim of this 
study is to develop new method in estimating the 
regression curve in nonparametric regression, which 
is by modifying a settlement function of Penalized 
smoothing Spline, by adding a Kernel function on 
the completion of its goodness of fit. This model is 
expected to be able to handle different data patterns 
between each predictor in nonparametric multi-
predictors regression 

  

2. MATERIALS AND METHODS 

2.1 Spline Function 

Spline function is a piecewise polynomial, 
that is a polynomial which has segmented 
properties.  This property provides more flexibility 
than ordinary polynomials, making it possible to 
adjust effectively to the local characteristics of the 
function or data. 

From the form of (1) if the function  

        2 20,1 : , 0,..., 1, 0,1k mmf W f f k m f L      

where  2 0,1L  expresses the set of function of the 

integral square at the interval  0,1  with the 

conformity of the curve to the data is 

  
2

1

1

n

i i
i

n y f t



  and the roughness of the curve 

is   
1

2''

0

f t dt , then the estimate of f  can be 

obtained by minimizing the Penalized Least Square 
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       
1

221 ''

1 0

n

i i
i

n y f t f t dt



    .                  (2) 

To solve the optimization problem in (2), 
Reproducing Kernel of Hilbert Space can be used 
[18], the Spline optimization can be transformed 
into a problem of projection in a Hilbert space [19].  
The very important characteristic of a Reproducing 
Kernel is that we can determine the representation 
of a linear functional, so that the regression curve 

 2 0,1mf W , which is the optimal solution of the 

equation (2). 

2.2 Kernel Function 

The kernel estimator has the advantage of 
being flexible, its mathematical form is easy and 
relatively fast of reaching the level of convergence.  
If regression curve ( )ig t  approached by Kernel 

function, the estimation of the regression curve can 
be presented in the form of:   

   

 

 

1

11

1

1

1

ˆ
n

i
in

i
j

j

n

i i
i

K t t
g t n y

n K t t

n W t y


















 
  
  
 








 

where:  

 

   

 

 

1

1

,

1

i
i n

j
j

i
i

K t t
W t

n K t t

t t
K t t K






  










    
 


  

with K is the Kernel function. According to [13], 
the form of Kernel function K can be:  

- Gaussian Kernel: 
2

[ , ]

1
( ) exp( ) ( )

22

t
K t I z

      

- Uniform Kernel : [ 1,1]( ) 0,5 ( )K t I t   

- Epanechnikov Kernel: 2
[ 1,1]( ) 0,75(1 ) ( )K t t I t    

- Quadratic Kernel: 2 2
[ 1,1]

15
( ) (1 ) ( )

16
K t t I t    

and is the bandwidth. The Kernel approach 
depends on the bandwidth , that can use to control 
the smoothness of the estimation curve. The 
selection of the proper bandwidth is very important 
in Kernel regression [20], [21].  If the bandwidth 
that is too large then it will produce a very smooth 
estimation curve and it will approach the average of 
the response variable, whereas if the bandwidth is 
too small it will produce a less smooth estimation 
curve and it will approach the average of the data 
instead. 
 
3. RESULT AND DISCUSSION 

Definition: 

Reproducing Kernel Hilbert Space H is a 
Hilbert space of real function in the interval  0,1  

with the properties that for every  0,1t  there is 

exist the function  tL f f t  which is defined as 

limited and linear functions, means exist M  such 

that  tL f f t M f  . 

Definition: 

Reproducing Kernel of H is R function 
which defined in the    0,1 0,1  such that for 

every fixed point  0,1t  imply tR H with  

   ,tR s R s t  and   ,t tL f R f f t  . 

H is a Hilbert space and exist single reproducing 
Kernel tR  for point  0,1t  in H and tL  is limited 

and linear function in H which maps the function 
f in the H space to real numbers  :i iL f f t . 

Suppose that the given data 

 , ,  1, 2, ...,i it y i n  and the relationship between 

it  and iy  assumed to follow the regression model  

i i iy L f                                                 (3) 

Thus, if it is assumed that the regression 
model is additive, then equation (3) can be 
modified by adding the kernel function as follows: 

i i iy L f g                                           (4) 
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Estimating function f and g are to find the 

function f and g which exist in the Hilbert space 

and minimize  

  22

1
1

1 n

i i R
i

y L f g P f
n 

                 (5) 

for  i iL f f t  and     
1 22

1

0

m

R
P f f t dt  . 

3.1 Solution of Spline Function 

Theorem 

If  0 1RH H H  and 1,..., m   are both defined in 

the 0H  space and n mT   is the n m order of full 

matrix that given by:   , 1, 2,...,n m i vT L i n      

and 1, 2,...,v m . Then f which minimize  

 2 2

1
1

1
,

n

i i R
i

y f P f
n




       

is 
1 1

ˆ
m n

v v i i
v i

f    
 

     

 T       

Proof: 

f̂ can be written in the form of  

1 1

ˆ

,  

m n

v v i i
v i

R

f

H

   

     
 

 

    

     

which perpendicular with  1 1,..., , , ..., ,m n     then it 

should be 0  such that  

1 1

ˆ
m n

v v i i
v i

f    

   
 

 

  

    

for ,i f from Riesz representation 

     0 1
ˆ, ;i i i RL f f H H H       

   
   

1 1 1 2 1

1 1 1 2 1

,

         , , ,  1, 2,...,

             ...

             ...

i i

i i

m

n

L f

i n

    

     

    
       

  

   

    
    

  

 
 

1 1 1 2 1

1 1 1 2 1

1 1 1

1 1 1

      , ...

                ...

      , ... ,

         , ... ,

i m

n

i i m

i i n

   

     

   

     

    

  

   

 

 

0 1

0 1 0 0 1 1,  ,  
i R

i i i i i

H H H

H H


    
  

   
  

1 1 1 1 1

1 1 1 1 1

, ... ,

  , ... ,

oi i oi i m

oi i oi i n

     

       

     

   
  

0 0 1 1, ,i iH H   span from 0 1,  span iH H   

0 1 1 0 1

1 1 1 1 1

= , ... ,

  , ... ,

i i m

i i n

     

     

  

 
  

    0 0 1,oi RH H H H                                   (6) 

According to the definition of RKHS, it is 
guaranteed that the linear and limited function in 

RH which is    0 ,i v i vL    and with the Riesz 

representation then    1 1, ,i i j    so that the 

equation (6) can be written in the form of:  

     1 1 1 2 1 1 1

1 2 1

... ,

, ... ,

i i i m i

i i n

L L L        

     

    

 
  

for 1, 2,...,i n . 



Journal of Theoretical and Applied Information Technology 
31st January 2019. Vol.97. No 2 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
469 

 

1 1 1 2 1 1

2 1 2 2 2 2

1 2

1 1 1 2 1 1

2 1 2 2 2 2

1 2

ˆ

       

m

m

n n n m m

n

n

n n n n n

L L L

L L L
f

L L L

   
   

   

      
      

      

  
   
    
  
   
   
   
   
   
   
       





    







    



  

f̂ T                                                            (7) 

for 
2

R
Pf   

1: RP H H  furthermore 
2

R
Pf  can be written as  

   

   
 

2
,

,

, ,  

0 ,0 ,

,

;  ,

R

i j

Pf Pf Pf

P P

P P P P

P P P P

       

       

       

   

   

     



     

     

      

 

 

     

  

                                                           (8) 

3.2 Solution of Kernel Function 

The Nadaraya-Watson Kernel estimator is a 
special case of the local polynomial regression 
curve, that is the local polynomial regression curve 
which has equal order to 0 or also called the local 
constant regression curve. When the local 
polynomial regression curve has an order equal to 
one, then the local polynomial regression curve is 
also called the local linear regression curve. The 
local polynomial regression curve adopts the 
expansion of the Taylor series around t. If a 
regression curve  g t is approached by a local 

polynomial regression curve  

       

 

2

0 1 2

0

...

 

p

i i i p i

p
k

k i
k

g t t t t t t t

t t

   




       

 
Related to the local polynomial regression model, 

the Nadayara-Watson Kernel regression model is a 
local polynomial regression model that only 
contains local constant. So, if the regression 
function g only contain the local constant, then by 

minimizing the function  

 2

0
1

n
i

i
i

t t
L y K



    
 

                                   (9) 

will be resulting 

 0
1

1

i
n

i
ni i
i

t t
K

y
t t

K








 
 
 

 
 
 




  

so that  

   
 

1

1
1

1

ˆ
n

i
in

i ii

K t t
g t n y

n K t t




















  

  1

1

        
n

i i
i

n W t y




                                        (10) 

The  iW t function is a weighted function,  

   

 1

1

i
i n

i
j

K t t
W t

n K t t













  

where  
j j jiK t t  is the Kernel function of 

  1
.i

i

t t
K t t K  

    
 

The Kernel function is a 

function that is real, continuous, limited and 
symmetrical, with its integral is equal to one. The 
Kernel function can be a uniform Kernel, triangle 
Kernel, Epanechnikov Kernel, squared Kernel, tri-
weight Kernel, cosine Kernel and Gaussian Kernel 
[22]. The Gaussian Kernel is quite often used in 
many studies. Gaussian Kernel function is smoother 
than the other kernel functions. The form of the 
Gaussian kernel function is   

  21 1
exp ,  .

22
K t t t


       
 

            (11) 
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If the addition form in the equation (10) is 
explained then  

     1 1
1 1ˆ ...i n ng t n W t y n W t y  

                (12) 

From the equation of the kernel function (12), 
applies to every 1t t  up to nt t  then .  
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Dy                                                   (13)  

3.3 Penalized Spline-Kernel 

Based on the equation (7), equation (8) and 
(13) estimation of the penalized Spline-Kernel 
nonparametric regression curve is presented as 
follows: 

     21
, y T Dy

n
                (14) 

Next, will be determined and  to minimized 

(14)  

    2
, y T Dy n                  (15) 

By derived partially equation (15) to  and the 

results is equated to zero then obtained:  

  0y T n 

            


            (16) 

If the whole equation is completed, it is obtained  

 1M y T    with M n I                   (17) 

In a similar way, the equation (15) derived to and 
equated to zero then obtained  

0T y T T T 

        


                            (18) 

If the equation (17) and (18) are solved 
simultaneously obtained: 

   
11 1T M T T M I D y
                             (19) 

    
11 1 1M I T T M T T M I D y
           (20) 

From the equation (19) and (20) the estimator for 
the Spline smoothing component us obtained as 
follow: 
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     y                                                            (21) 

while for Kernel component: 

 ĝ Dy                                     (22) 

Based on the equation (21) and (22), the penalized 
Spline-Kernel estimator will be obtained as follow 
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4. SMOOTHING PARAMETER SELECTION 
METHODS 

 
In producing a good estimation of regression 

curve, the selection of the optimal smoothing 
parameter of  and is an important thing. By 
using the Reproduction Kernel Hilbert Space to 
estimate the regression curve, then the optimal 
values of   and   will be selected. 
In the nonparametric regression model with one 
response, [2] shows that if the smoothing parameter 
value of ,  is very small  , 0  , it will 

provide a very rough regression curve estimator. If 
the smoothing parameter value ,  is very large 

 ,  , it will produce a very smooth 

nonparametric regression curve estimator. 
As a result of that, the optimal smoothing parameter 
of ,  will be selected to obtain the most suitable 
estimator for the data.  
 

For the purpose of selecting optimal 
smoothing parameters , , several methods have 
been developed in nonparametric and 
semiparametric regression, [2] providing a 
generalized cross validation (GCV) method. 

The following method will be designed to 
select smoothing parameters. 
Mean Square Error (MSE) of this estimator is given 
by: 

     
   

   

   

 

* *

, ,

, ,

, ,

2

,

1 ˆ ˆ,

1

1

1

1

MSE y f y f
n

y y y y
n

I y I y
n

y I I y
n

I y
n

 

 

 





 

 

 



   

  

         

  

 

   

Furthermore, the following quantity is defined as: 
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5. EMPIRICAL STUDY 
 

Indonesia has officially become an oil 
importing country since 2004. This is  due to a 
decrease in the level of oil production, on the other 
hand, the level of oil consumption continues to 

increase. One of the most crucial of fuel oil 
products is Premium. The premium is one of the 
three subsidized fuel products and are most 
demanded by the society. According to 
Downstream Regulatory Agency (DRA) for oil and 
gas data, this type of fuel consumption always 
increases every year. This is different from the 
other two types of subsidized fuel products which 
has a downtrend. 
 

Although premium is the most consumed 
fuel in Indonesia, the demanding problems have not 
much resolved. This can be seen from the 
considerable difference between estimated of 
useable  premium given by the government every 
year with the realization of its consumption. From 
2007-2012, there was an average difference of 
9.44%. Some researchers have conducted research 
related to the fuel oil, including [23], [24], [25].  
Then the use of Multiple Linear Regression to 
predict energy needs has been done by a lot of 
researchers in various directions. In Italy, [26], use 
data  historical electricity and  fuel consumption, 
gross domestic product, gross domestic product per 
capita, number of cars and population as an 
independent variable in predicting the Italian 
electrical energy consumption until 2040. [27], 
predict the energy consumption in Turkey use four 
predictor variables, namely gross domestic product, 
population, fuel price disparity, and number of 
vehicles.  [28] used predictors instantaneous speed 
and accelerate levels to estimating vehicles fuel 
consumption.  
 

Whereas in New Zealand, [29] use multiple 
linear regression methods  to predict electricity 
energy consumption until 2015, using three 
predictor variables, namely fuel price disparity, 
population and average selling price of electricity. 
The use of predictors of number of cars, population, 
number of exports and imports, conducted by [30] 
in estimating energy demand at South Korea.  From 
the literature study conducted, it appears that the 
researchers most use parametric regression in 
knowing the relationship between fuel consumption 
and predictor variables that influence it.  

In determining influential predictors, in 
addition to the literature study, this study also uses 
the knowledge acquisition method to experts 
directly related to premium consumption. In 
general, knowledge acquisition from experts can be 
done with  two techniques which are the Expert 
Group Discussion (EGD) and Delphi Method 
(DM). The Expert Group Discussion is a discussion 
process  involving experts to identify problems, 
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analyze causes of problems, determine ways to 
solve problems, and propose various alternative 
solutions to problems by considering available 
resources.  Thus, based on the research that has 
been done before and input from experts, then in 
this study two predictor variables that influence fuel 
consumption are used, which are the fuel price 
disparity and the number of vehicles. However, 
what distinguishes it from previous studies is the 
use of nonparametric regression model in this 
study.  
 

To defined the penalized Spline-Kernel 
model using two predictors mentioned above, the 
historical past data for 12 years (data from 2001 to 
2012), will be used in this study. The exploration of 
data based on complete descriptive statistics can be 
seen in Table 1. 
 

Table 1: Descriptive Statistics of Data 
Variable Mean StDev Minimum Maximum 
Y 
X1 
X2 

18.93 
1.913 
6.244 

4.74 
1.474 
2.413 

13.07 
0.490 
3.130 

28.26 
5.080 
9.890 

Based on the table, it is known that the 
average amount of fuel consumption from 2004 to 
2015 is 618.93 10   kl. While the highest and 

lowest of fuel consumption are 628.26 10 kl 

and 613.07 10 kl, respectively. Similarly, the 
average of fuel price disparity is 1,913 thousand 
rupiahs with the highest price disparity is 5.080 and 
the lowest is 1.560. The disparity being 5,080 and 
the lowest is 1,560. The average number of cars 
between 2004 and 2015 was 6,244 million units 
with the highest number of car units was 9,890 
million units and the lowest was 3,130 million 
units.  

The next step is to test whether the pattern of 
the relationship between fuel price disparity, the 
number of cars to the fuel consumption, in the form 
of linear or non-linear relationships. 

Test result of Ramsey Test can be shown in the 
following table. 

Table 2: Result of Ramsey Test 
Relationship p-value Remark 
x1 toward y 
x2 toward y 
x1, x2 toward y 

0.0394 
0.0445 
0.0261 

non-linier 
non-linier 
non-linier 

 

Based on the Table 2 can be concluded that the 
relationship between fuel price disparity, and the 
number of cars uses towards the fuel consumption 
is a non-linear relationship.  

Since the pattern of the relationship fuel 
price disparity variable, and the number of cars uses 
towards the fuel consumption and the non-linear 
function is unknown, then it will be modeled using 
nonparametric regression. 

For models with predictor variables fuel 
price disparity and the number of cars which 
modeled with a penalized Spline-Kernel, the 
optimum of smoothing and bandwidth parameters 
will be determined by choosing the value of the 
minimum GCV. The GCV’s values, smoothing and 
different bandwidth parameters can be seen in 
Table 3. 

Table 3: Result of GCV value 
Smoothing Parameter 

GCV       
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
   

1.25 

0.088 
0.089 
0.090 
0.091 
0.092 
0.093 
0.094 
0.095 
0.096 
0.097 
0.098 
   

0.187 

0.3778 
0.3538 
0.2692 
0.2413 
0.2264 
0.2183 
0.2359 
0.3186 
0.3924 
0.3936 
0.3940 
   

0.3767 

Based on Table 3, it is seen that the 
minimum GCV value is 0.2183 with smoothing and 
optimal bandwidth parameter values 0.3  and 

0.093  , respectively. The value 2R  obtained is 
0.9314 or 93.14% of the model obtained can 
describe the relationship between fuel price 
disparity and number of cars with fuel 
consumption. 
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Figure 1: Plot Between Fuel Price Disparity vs Fuel 

Consumption 

 

 
Figure 2: Plot Between Number of Cars vs Fuel 

Consumption 

 
Figure 3: Plot Fuel Consumption Actual and Prediction 

The fuel consumption data is also modeled 
using parametric regression to compare it with the 
result of nonparametric regression model developed 
in this study. The results between the actual data 

and predictive data using the parametric regression 
model are shown in the following graph. 

 
Figure 4: Plot Fuel Consumption Actual and Prediction 

From the results of the analysis using parametric 
regression model, obtained the value of 2R  as 
0.7823 or 78.23% of the model obtained can 
describe the relationship between fuel price and 
number of cars with fuel consumption. Based on 
the value of the determination coefficient, it can be 
concluded that the regression model developed in 
this study is better when compared with the 
parametric regression model. 

6. MODEL VALIDATION 
 

The next step that needs to be done is 
validate the model, to see the accuracy of the model 
in predictions.  The process carried out is a cross 
validation evaluation by eliminating one or two out 
cross validations on each subject. Brief cross 
validation results are summarized in Table 4. 

 
Table 4: Result of Cross Validation 

Obs Actual 
Estimator  

Leave two out Leave one out 
Predic Resid Predic Resid 

11 

12 

25.52 

28.26 

25.522 

27.951 

-0.002 

0.309 

 

28.11 

 

0.15 

The results of cross validation estimation in Table 4 
by removing one last observation obtained the MSE 
value of 0.0225, whereas the results of cross 
validation by removing the last two observations 
obtained the MSE value of 0.0477. Thus, it can be 
concluded that the resulting model is valid and able 
to describe the real phenomena that exist. 
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7. CONCLUSION 

       From the analysis and discussion that has been 
done above, some conclusion can be deduct as 
follows: 

1. If given the data  ,i ix y and the relationship 

between ix and iy  assumed to follow the 

regression model 

i i iy L f     

with f H and iL is a linear functional and 

limited to the H and H has decomposition 

0 1H H H    then the estimate of f is 

f H which minimize  

  22

1
1

1 n

i i R
i

y L f P f
n 

    

and written in the following form 

1 1

ˆ
m n

v v i i
v i

f T     
 

        

2. The developing of the Spline model with 
additional Kernel function can be obtained from 
the following solution function 

  22

1
1

1 n

i i R
i

y L f g P f
n 
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and produce the following result  
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3. The selection of the smoothing and bandwidth 
parameter in developing the penalized Spline-
Kernel model can be obtained by the GCV 
method: 
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