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ABSTRACT

This work discusses general oscillation equations of viscoelastic isotropic medium in linear approximation
with and without consideration for initial shifts and stresses, as well as approximate oscillation equations
with consideration for ambient environment and at small deformations. Under the impact of forces applied
to continuous deformed body, the positional relationship of its particles varies, that is, the deformed body
varies its shape and volume. This can be exemplified by compressed or tensioned rod. Mathematical
description of deformation of solid body is given in this or that coordinate system. For instance, in
Cartesian coordinates x;=x; x>=y, x;=z position of each point is defined by radius vector 7 and the

components (xl, Xy, Xy ) After deformation, position of the point will be defined by another coordinates:
! ! !
(xi, x5, x3).

Keywords: Longitudinal Oscillations, Transversal Oscillations, Viscoelastic Plate, Deformed Body, Small

Deformation.
1. INTRODUCTION Numerous urgent scientific and
engineering  problems are related  with

This work presents fundamental results by
Kazakhstan and foreign scientists. The authors
mention only certain major works based on the
most popular mathematical models. Fundamental
concepts and approaches to development of
mathematical models, theoretical and experimental
studies in the field of dynamic interaction of plate
and base are related with such scientists as
Akhenbakh, Vlasov, Grigolyuk, Ilyushin, Lentev,
Petrashen, Rakhmatullin, Timoshenko, Filippov,
Tyurekhodzhaev and others [1, 2].

investigations into oscillation processes and wave
propagation in continuous mediums. The obtained
results are applied upon consideration of
nonstationary oscillation and wave processes.
However, there are some questions related with
response of medium to external impacts, methods
of motion initiation, kinematic properties of waves,
body geometry, solution of these problems is
important for practical use and achieved by peculiar
methods typical for this field.

While solving the application problems of
oscillation of rectangular plates, it is obvious that
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there exists wide range of relevant problems related
with various boundary conditions: approximate
oscillation equations at plate edges and initial
conditions. In the oscillation theory an important
issue is determination of eigenfrequency, solution
of problems of forced oscillation of plate and
analysis of propagation of harmonic waves.

This work presents the required data on
theory of elasticity and viscoelasticity, the main
boundary problems of viscoelastic medium
dynamics are  formulated. @ Two-component
viscoelastic mediums are considered at small
deformations.

2. METHODS

Exact equations of longitudinal and
transversal oscillations of viscoelastic plates with
and without consideration for initial shifts and
stresses, as well as approximate oscillation
equations  with  consideration for ambient
environment and at small deformations have been
derived using mathematical approach [3].

Under the impact of forces applied to
continuous deformed body, the positional
relationship of its particles varies, that is, the
deformed body varies its shape and volume. This
can be exemplified by compressed or tensioned rod.

Mathematical description of deformation of
solid body is given in this or that coordinate system.
For instance, in Cartesian coordinates x;=x; x>=y,
x3=z , position of each point is defined by radius

vector ¥ and the components (xl, X5, x3). After
deformation, position of the point will be defined
by another coordinates: (x{ s X5, X5 )

Vector # = 7' —F defines the vector of
point  displacement, and the coordinates
(xl' ) X, x;) are the functions of initial
coordinates (xl, X5, x3). Hence, the vector of

displacement is also the function of coordinates

(x17 X35 x3).
3. RESULTS AND DISCUSSION

Let us consider any two close points with the
radius vector (dxl ,dx,,d x3) between them
positioned at the
dl = \/a'xl2 +dx; +dx; . After deformation, the

distance

' = (a2 + (aey (s 2

distance of

between the points is

where

dx; =dx;+dU;, U, are the coordinates of

displacement vector.

Writing in brief form
di> =(dx, P; dI* =(dxF  and  substituting
ou,
du ;= —'ka , we obtain
ox,
ou, ou, ou,
(dl'y =dP* +2—Ldx, +—L—Ldx,dx,.
X, Ox, Ox,

After elementary transformations, we have:

, 1
@'y =(diy +2y, dedx;y, =657, ==

23 J>
where
1(Ou;, Ou, ou, Oou,
V== 4t . (1)
2{ ox, oOx; Ox, Ox
Since we will consider only small

deformations, then in Eq. (1) we neglect products of
derivatives of displacements along coordinates and
assume approximately:

ou . ou

ou
J e A

= "
7 ox, / ox, Ox,

Small deformatioﬁs defined by Eq. (2) form
deformation tensor:

; (j;tk) 0]

. l . l
s 58127 5813
1 1 (3)
D= 5‘921; Ens En s €xT&y
1 . 1 .
58317 5‘9327 €y

The deformation tensor, Eq. (3), has three
independent invariants:
T, =&, téy + &, (4)

Ts:‘D‘

T, =&,y T E,E

1( 2 2 2)
1€ T €65 _Z &, té;Té&y

where the invariant 'Z'l is referred to as bulk

extension.
Let us introduce three main elongations,

&, &,, &, then the invariants 7, , 7,, 7 are:
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T, =6 +¢&,+ &
T, =8, t5E, T E,E;

T3 = €16)85,

herewith, the elongations &, &,, &, are the roots

of cubic equation:
3 2 _
e -re +r,6—17,=0.

Using the main elongations, the average
elongation is defined:

1 1
&y 25(511 + &5 +533): grl

and respective spherical tensor is as follows:

&,0,0
0,£,,0 | (5
0,0,¢,

1
DO :ngE = 80E =

The difference between the tensors 1) and
D, 0

deformation equaling to [4]:

is referred to as deviatoric tensor of

212
2 2 2 2
Y = _(511 te, ey —E,E, —

NG

In particular, deformations, Eq. (2), in
cylindrical coordinates are as follows:

3

ou, 10u, u, Ou,
E,=—"; &,y =— +—=; €, = ;
or roe r 0z
ou, Ou. Ou, Ou, (®)
&y = s €. = + ;
oz 00 0z  Or
_10u, ou, u,

£, = .
r o0 or r

Equations (7) and (8) will be used for
solution of the problems.

In order to describe stressed state of
continuous body, let us consider an arbitrary point
M inside the body and possible sites do in this
point.

. 1 -1
En T €&y TELs TE;
1 1
D'=|—-¢ . €, 6,—¢&; —& (6)
219 2 0° 23
2 2
11
58319 5‘932’ &y — €

where main elongations can also be introduced:
g=¢—-¢;
1 1 0°
£, =6,—&;
E=6-6; -

’ ' r
q+g+%—0

that is, the deviator D' determines deformation
without bulk extension or deformation of type
variation without variation of volume.

Intensity of shear deformation is very
important in the deformation theory, it is
determined as follows:

1 2 2 2
&85 _522833)+5(812 te,+ 523) ™

This site is affected from the side of medium

by the force denoted as dP .
Let us assume:

dP=P do,

) ©)
where Rq is the finite vector, 7 is the normal to
the site do .

Expanding the force E into constituents by

the normal 77 and by the tangential 7 to the site
do , we obtain:

(10)
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is the normal stress, o, _ is the

where O r

nn
tangential stress.

Since infinite number of sites do can be

plotted across the point A , then, there exists

infinite number of forces Pn corresponding to

these sites. However, among these forces only three
are linearly independent, all other forces can be
expressed on their basis. We will consider the
forces acting on sites perpendicular to the selected
orthogonal coordinates as independent. These
forces as three independent vectors form the stress
tensor [5]:

c.,0,.,0.

xx 2 xy 2

T'=\oc ,0 ,0 |,

27y 2T yz

o._,0_,0

zx 2 zy 2 zz

)

herewith, this tensor is symmetrical, since it is
assumed that the pairing law of tangential

deformations 0,;,=0; is valid.

For the deformation tensor (11), it is
possible to introduce the notion of main stresses
0,,0,, 05 and invariants equaling to:

3 ]

S=0 . +0o, +0.; S =‘T'
xx » zz

2 2 2
§,=0,0,4+0,0.+0,0. -0 -0 x—0 4,

=

The introduced in this work notions and
values completely characterize stressed-strained
state of continuous body in any point in the case of
small deformations [6].

Knowing the properties of the introduced
variables characterizing stressed-strained state, let
us formulate the laws relating these properties of
viscoelastic body at small deformations.

Let us mention nonlinear law of 0,~&; for
elastic isotropic body. Brief conclusion will be
presented below.

At first the linear law of 0,~&; is given

which can be written as follows:

0,=3K&; T'=2GD', (13)

and these main stresses are the roots of cubic
equation:

o’-S06°+S,0-5,=0

By introducing the average stress

1
o, = ESI , the tensor (11) can be subdivided into

two constitutes:
T=T +T'

where T, is the spherical tensor or the tensor of

hydrostatic stress, and T' is the deviatoric

tensor equaling to:

0,,0,0
1,=10,0,,0;
0,0,0,

ax)c _60; ny; axz (12)
T'=|0 ;
yx

0 —0;0
y 0% “yz
0_; 0 ; 0 -0

zx zy zz 0

The notion of intensity of tangential stresses
is very important for analysis of stressed state in a
body:

2 2 2 2 2 2 2
0 —|—-\o. +o0o +to. —oc o —o0o o_—o0 o _|Jto_  +o0o_+0
3 3 xx » zz xx " yy xx = zz Wz Xy Xz yz

where K is the bulk compression modulus, G is
the shearing modulus, which are related with the
Lame constants as follows:

K:ﬂ+§u; G=pu. (14)

Let us write the nonlinear law of 0,;~&;

for small deformations such that in the limit for
infinitely small deformations, it is transformed into
the Hooke's law (13).

Let us consider
deformation:

specific  work of
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A=

S =0

In this case, integration is carried out from
the state when all components of deformation are

zero and to the state when they are presented by the
tensor [ .
If to assume

0,=0,.. t0,,.. and

consider that:

0., t0,,+0,.. =0;

de, +de,, +de. =0

A'(x,y,z)= T (o .de_ + o, deyy, to_des_
0

is the work of shape variation.
In order to derive nonlinear function O~

&, it is possible to satisfy the conditions [7]:

1. Specific work of deformation A should
be simultaneously the function of components of
the deformation tensor D .

2. Material of the body
homogeneous and isotropic.

should be

3. The spherical tensor of stress 7, as in the
Hooke's law, should depend only on the spherical
deformation tensor DO, and the deviator of stress

tensor 7" - on the deviator of deformation tensor
D'.

4. For infinitely small deformation, the
established law should be of the same form as that
of the Hooke's law (13).

Since the formulated conditions should be

satisfied, for specific work A we have [8]:

A=A4,(e,)+ Ay, ,7,),
(18)

where Z'3’ is the third invariant of deviator of

deformation tensor.

(O'Mdgxx + ayydgyy +o_de_+ axydgxy +o de_ + O'yzdgxz)

(15)
then:
A(x,y,z) = 4y(x,y,2) + A'(x,,2),
where
D
A4, = 3j.aodgo
0

(16)

is the work of volume variation and

40 de +0 de +0 _de )
xy Xy Xz Xz yz Xz

(17

As demonstrated in [9], the variable A’
should not depend on the invariant 2'3' , and then the

nonlinear law of O i~ E ij will be as follows:
o, =3Kegyx,(&,);

T'=2Gy(y2)D'
(19)

where X() is the equation function, and ¥ is the

shear function; using the constituents of specific
work of deformation, they are expressed as follows:

1 dA
xo(&) = LK
9Ke, de,
.o 4 dA'
=— ) 20
r(wq) 3G dy? (20)

From Eq. (19) for separate components of
the stress tensor, we obtain:

o, =3Keyx,(8,)+2G(e, — &)y (W);

o, = Gé‘ij]/(l//g);

(i£j;1,j=Xx,2). (21)

Further, it would be more convenient to use
the functions of elongation and shear in the
following form:
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ywe) =1+ fi(wo);
(22)

Xo(80) =1+ /o (&);
1;(0)=0,

and then Eq. (21) is rewritten as follows:

o, =3Ke 1+ f,(e))]+2G(e, —e)i+ fiwd)

o, = Ge,l+ D} (= ). @3

Since Eq. (23) should be the same both upon
loading and unloading, the function f,(&,) should
be even with regard to &, and f;(y/.) should

depend only on l//g . In particular, upon expansion

of these functions into exponential series, we have
as follows:

file) = a,&" "

n=0

L) =2 v
n=0
(24)

Linear theory of viscoelasticity is based on
the memory effect, that is, on linear integral
dependence of stresses on deformations. Then, Eq.
(13) for linear elastic body can be written for linear
viscoelastic body as follows:

o, =3KR,(&,); T'=2GR(D"), (25)
where R, and R are the linear integral operators

of Volterra type:

RO =) — [ Fy (¢ - E)C(E)dé:

(26)
R(§)= 4 ()~ [ Fyy (1 = )$(£)de;

F,(#) are the kernels of these operators.

As in the case of Eq. (13), the specific work
of deformation A can be represented as follows:

A=A, + 4.
27)

For generalization of Eq. (21) for the case of
viscoelastic body, let us assume that:

1. The specific work of deformation A is
the single valued function of overall deformation

history to the current time t ;

2. The material of viscoelastic body is
homogeneous and isotropic;

3. The deviator of stress tensor 7" depends
only on the variation history of the deviator D',

and the average stress 0, depends only on the

variation history of average deformation &,,.

For infinitely small deformations, the

nonlinear law of 0, ~&; in the limit should be

transferred to the law of linearity of the viscoelastic
theory.

On the basis of the mentioned conditions, we
have for the specific work of deformation A :

A(x,y,z)=p0(11)+,01(l//§), (28)

where 0, and p, are the nonlinear functionals.
Then, the generalized nonlinear law of o, ~

&; for viscoelastic body will be as follows:

o, =3KR, [ro (&)& ];
' = 2GR, (y2)D')
(29)
where

1 d
R, = [’"0(50)50]= 9_Kd_/&)‘o’
0

. 4 dp o,
R F(V/g)l) ]::EgEEZEi;%'Z).
0

On the basis of isotropy, the operators 7,

and 7 can be presented in the series:

INEN =1+ZDO:K,[(5(’)’)

n=1

rwo) =1+>.G,(w")

n=1

(30)

where
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K, (&) = a{eé" O [ o[ B0 = &t = E,) X 3 (6 (£,)dE G, }

G, =7, {v/é” )= [ Fop 6= &t = EN XY (ED a2 (E,)dE o dE |

an are the n-dimensional kernels of the

integral operators K, and G, .

For stress components, the law for
viscoelastic body can be rewritten as follows:

o, =3KR,[r,(¢,)¢, ]+ 2GR]r(w )&, - &)}

o = GR[r(l//O2 )E, ];

(1)
The

interrelations between o and &; for small

latter expressions are nonlinear

deformations.
In  arbitrary orthogonal
coordinates (&, f3,7), displacement of elastic or

curvilinear

viscoelastic medium upon small deformations is
described by stress equations:

i#j, i,j=x,y,z (32)
0 0 0 oh oh Oh
%(hZhSO-aa )"‘ %(hl}%aaﬂ )+ 5(}’1}’20}” )_ O sl 6_; —-o,h, a_; + 0,0 8_ﬁ1 +
Oh, o%u,
+ O-a;/hZ g = p?a
0 0 0 Oh oh oh
5( 2h3aaﬂ)+£(hlh30ﬁﬁ)+5(h1h20'ﬂ7)—0wh1 a—g—amhs a—ﬁ;mﬁ/h a—;+
oh 0’u
+0 h,—%*= L.
" e P o
0 0 0 Oh Oh Oh
5( 2h3aa7)+£(h1h3aﬂy)+§(h1hzaw)——amhz a—yl—aﬂﬁhl a—;+ Oy >
oh 0u
+o,h—=p—;
where /,,h,, h; are the Lame coefficients: ou

00j., ,00j., ,00j,,
h’ = + + :
(6x) (ay) (62)

J

In Eq. (33), bulk forces are not taken into
account.

In particular, in cylindrical coordinates, Egs.
(33) are rewritten as follows:

oo, 10o,, 0o, 0,—0, ou,
+— + = ;
or r 00 0Oz r or’
2
0o,, +l 00, N oo, N 20, _ Ouy. (34)

o ro0 oz r P’

oo, 100, 0o,
+— +

4

o
+ —rz p z .
o r o0 oz r or’’
Equations (33) and (34) in displacements in
the case of nonlinear function 0, ~¢&; are very
complicated. However, for linear function O,~&j»

these equations are simplified by introducing
potentials of longitudinal and transversal waves
according to the following equation:

U = grad® +rotVY,
(35)
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herewith, the vector potential of transversal waves
—

Y should satisfy the supplemental condition [10]:

5
div¥ =0.
(36)
Equation (36) in arbitrary orthogonal
coordinates is sufficiently complicated. In
cylindrical coordinates (7,60,z), Eq. (36) is
-
satisfied automatically if the vector potential ‘¥ is
set to:

Y =Y e +rot(\¥ e,).
(37

5
In the potentials @ and ¥, Egs. (33) in
linear form are as follows:

1 o°D
Nl(A(D):_z_z;
a
SRR I
MI(A\P)=??, (38)

where @ and b are the propagation speeds of

longitudinal and transversal waves, and the
operators N and M are:

4
N =R+ R; M, =R. (39)

In solid state dynamics, the stressed-strained
state is uniquely determined by boundary and initial
conditions.

In general case, the initial conditions are as
follows:

ol -u; Y -y
=0 ot ‘

=0
(40)

In terms of boundary conditions, three main
problems are highlighted.
The first problem takes place when at the

boundary S the stresses are preset, applied to it in
certain time. If projections of these forces related to
unit surface area are denoted as X,,Y ,Z , then

the boundary conditions are written as follows:

o cos(n,x)+o_cos(n,y)+o_cos(n,z)=X; (41)

o, cos(n,x)+o, cos(n,y)+ 0o, cos(n,z)=Y,;

[

o, cos(n,x)+o,_ cos(n,y)+o_ cos(n,z)=2,,

where 71 is the normal to body surface S .
In the case of the second problem,
displacements are preset on the surface .S :

U, = fi(s1,5,); U\‘ = f5(51,8,); U\Z :fl(slssz)’(42)

where (n,S,,S,) is the orthogonal coordinate
system on surface.

The third problem occurs in the case when
on one part of the surface S the conditions (41)
are preset, and on the remaining part — the
conditions (42).

In addition to the main boundary problems,
there are cases when continuous body is comprised
of mediums with various properties. In this case,
various conditions of contact can be preset on
medium interface 1" .

1. In the case of absolutely rigid contact along the
interface /', normal and tangential stresses are
continuous, that is,

(2).

oV = 5.

ns, nsy

O 7@ 7@ 7
v =UuPu0 =uP U =U?,

n n 2

2). ) _
nn nn 50—}1‘\'] - Gnsl

(43)

2. Ifatthe interface I there is no friction, then:

o =66 = 0,(i,j =1,2;U" = U, (44)

nn nn 2> ns

3. In the case of friction along the contact I, its
conditions are complicated and up till now there is
no unique opinion concerning the type of these
conditions. If one of the mediums is absolutely
solid body, then such conditions can be presented
by the Coulomb law.

The formulated main and supplemental
boundary conditions occur generally upon solution
of dynamic problems.

Now let us develop general oscillation
equations of viscoelastic isotropic medium in linear
approximation.

Isotropic viscoelastic medium of infinite
sizes is considered in the plan as 3D viscoelastic
body which at certain time ¢ =0 is impacted by
external nonstationary forces applied to its surfaces
and causing longitudinal or transversal oscillations.

Since plate oscillation is considered in linear
approximation, then it would be more convenient to
write the displacement equations in terms of

1016



Journal of Theoretical and Applied Information Technology

B

31* March 2020. Vol.98. No 06

© 2005 — ongoing JATIT & LLS

-
E Y]

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

potentials of longitudinal and transversal waves
(38):

- o*Y
N(AD) = pa— M(A‘P) P op (45)

Herewith, Eq. (36) in Cartesian coordinates
is as follows:

ov, 0%,
ox Oy
W= W Wk, (46)

which imposes constraint on components of the

a2

0z

vector potential ¥ .

Displacements in terms of the

u,v,w

potentials @ and y/, are expressed by the

equations:
_ 0o n oy; 0y,
ox Oy oz’
_0® Oy, 9y,
oy 0z  ox’
_0® Oy, oy, @
0oz Ox Oy

Similarly, the stresses 0, in terms of o

and W ; are expressed as follows:

Vs _ o oy,
oxay axaz

62‘//1 25 ). (48)
ayoz oxéy |
a V, azl//l R
Gxﬁz ovoz |
2 2 2
UY,:MZa(D 6 6y/7_8y/73+6(//23;
Y 0x0y 5x62 oyoz  ox* oy
o, =M2 a(D al//1+a§1/1 0'//2761’/3,
* ooz 0y* 0z oxdy Oxdz
2 2 2 2
O_X_:M26<D_Bu/, 01//72_6(/;, 01//z
- Ox0z Ox0y Ox~ 0Oz ooz |
where L=N-2M:; M = GR;
4
N=KR,+GR.

Oscillations of viscoelastic plate in general
case are caused by forces applied to the surfaces
z = th, that is, the boundary conditions are:

O-zz F ()C y’ )’ :Eviz-(xaynt);
o, = F;(x,y,t); z=1+h.
(49)
Let us consider that initial conditions are
ZEero:
oo 81//
O=y, =— =0,¢t=0 50
Vi= ot ot (50)

that is, the three-layer shells at f < 0 are in the

state of rest.
Let us substitute external conditions in the

following form [11]:

. psinkx sinqy P
= !—cos kx}dkj.—cos }qu. Seoedp: (51)
. pcoskx singqy »
F:= dk "dp;
: Lmh}jﬂmwkjgﬁ .
P Tsinkx dk.[cosqy J Jf+ ry
_—— 2.0€ 5
4 —coskx| ysingy q, ot AP

+ . ot
ﬂkz,o

. . +
and let us consider the functions f, ,; f. ,;

negligible outside of the region:

|k| <k,;

ql < 4o

Jmp‘ < w,;
(52)

that is, the external conditions do not contain high
frequency harmonics, otherwise, the length of
propagating waves both in time and coordinate
exceeds transversal sizes of plate, which is obvious
in terms of physics, otherwise, the plate as 3D body
cannot be presented as 2D body.

Equations (45)—(50) will be solved with the
following assumptions:

sin kx sin
o= dkj @ j ®,e" dp;
o —Ccoskx cosqy

“sinkx tcosqy »
= dk e"dp;
L4 -[—coskx} -!;sin " }dq.!- Ve ap

“coskx singy }d P
Vo= . dk q|wae dp; (53)
'([Sll’lkx} I—cosqy -!.
tcoskx cosqy »
= dk 'd]
v {Smkx} Jooo e

1017



Journal of Theoretical and Applied Information Technology

B
31 March 2020. Vol.98. No 06
© 2005 — ongoing JATIT & LLS ‘ T ATIT
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195
Equation (52) allows to strictly differentiate w_, [20, (qo } . { S } (57)
: : . = —\k"+q° + —q’Dy+qg—0— o
Eq. (53) with regard to coordinates and time and to ~ °” ~ R Rt I I

substitute them into Eq. (45), the boundary and
initial conditions (49) and (50). Then, in order to

determine @, and y ,,, we have the following

equations:
d*®
dZZO _a2(D0 = 0;
d’y .
— P, =0, (54)
where
2
o’ =k +q’ + 22,
N,
2
F=k+q +2, (55)
M,
N, and M, are the Laplace transformed

operators N and M .
The transformed displacements and stresses

in terms of @ and ¥, are as follows:

d
Uy :mo_ﬂ_q'//w;

dz
d
vy =qD, + 1o +kys;
dz
do,
Wy =——+q W, —kyy; (56)
dz

2
o= L{dd@‘) ~ (e +q2)¢10}+2M0{—k2®0 +k d;’l’m +hqu,
Z. A

2

dz?

E
[

0, (o d*® dy dy,
—k*+q* ), |+2M | —L2+ gL — k2,
S ( 4 )( 0 0 dz, a dz dz

oV = M| 2kq®, +k—dl//10 —q—d%O +<k2 —qz)//w};
L dz dz

do d’ d
oW =M, 22 +qy,, + ‘//210 —kqy,, Nyl
dz dz dz

[ 2
O"(C(Z)):MO 2k%+kql//10_k2l//20—d l//zo_qd[//m:|;

dz* dz

General solutions of Eq. (54) are as follows:

®, = Ach(az) + A,sh(az);
W = B sh(fz)+ Blzch(ﬂz);

Wa = Bysh(fz) + Bzzch(ﬂz);
(58)
Wi = By ch(fz) + B32Sh(ﬂz);

herewith, the integration constants B ij due to Eq.

(46) are interrelated as follows:

kB, +qB,,+ BB, =0, i =1;2. (59)

In order to determine the integration

constants 4, B ; » we have the boundary conditions

(49) which in the transformed potentials @, and

} Y ;o are as follows:

dz dz

d’o d’o d d
Lo{ 0—(k2+q2)®0}+2M0{ d20+q Vio 4 Wzo}:fzt’o;
zZ

do dzl//, dy .
M0{2k7;+kql//]0 ~ky _dT{O_q?m = fe0s (60)

do d? d "
M| 2q L+ qzl//lu + l//zl() —kqy, +k Yoo | = fxz,oa
dz dz dz

Since the problem is linear, let us consider
separately longitudinal and transversal oscillations
of viscoelastic plate [12].

Analysis of wave processes in constrained
deformed bodies is reduced to complex
mathematical problems, which at present can be
solved neither by analytical nor by numerical
methods.

Even for deformed mediums described by
the simplest models, such as elastic and viscoelastic
mediums, numerous nonstationary problems are not
solved and there are no methods capable to solve
these problems in exact formulation. Therefore,
many application problems are solved on the basis
of simplified models reducing spatial problems of
dynamics to two- or one-dimensional cases. Such
simplified models are presented by plates, rods, and
shells.
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4. CONCLUSION

Simplified model is applied for studying
nonstationary oscillations of plates, rods, and shells,
motion of such systems are simulated by motion of
points of center plane (plate), center surface (shell),
center line (rods).

Classical theories of oscillation of rods and
plates are based on hypotheses of plane cross
section and the Kirchhoff hypothesis. On the basis
of these hypotheses, approximate oscillation
equations are derived known as classical equations.

Sharp increase in the number of application
problems leading to analysis of dynamic behavior
of rods, plates, and shells wunder various
nonstationary external impacts revealed
insufficiency of the classical equations for
description of the considered phenomena, in its turn
this resulted in high number of various updated
oscillation theories and equations. These updated
equations are also based on new hypotheses of
various researchers.

It should be mentioned that there are few
works devoted to approximate oscillation equations
of rods and plates with consideration for more
complicated mechanical and rheological properties
of rod or plate material, nonlinear dependence of
stresses on deformations, consideration for initial
shifts and stresses with accounting for ambient
temperature and environment, anisotropy, etc.

Non-unique approach to derivation of
oscillation equations of rods, plates, and shells is
attributed to the fact that these equations were
derived on the basis of various hypotheses aimed at
approximate description of distribution of required
shifts and stresses through cross sections of these
bodies. Various approximate oscillation equations
are based on these hypotheses.

However, analysis of oscillations of rods,
plates, and shells can be based on accurate
formulation of the problem for rods, plates, and
shells as 3D bodies under external impacts leading
to this or that oscillation type.

While solving these 3D problems, it is
possible to obtain with this or that degree of
accuracy the oscillation equations of these bodies
depending on external conditions, fixing conditions
of interfaces with consideration for certain
mechanical, rheological and other properties of
material.

Such mathematical approach was applied by
Vlasov for determination of stress and strain state
of elastic isotropic homogeneous plates in linear
formulation under stationary ambient conditions.

This approach is known as the method of initial
functions.

This work attempted to apply the
mathematical theory of oscillations of elastic or
viscoelastic plate to analysis of their dynamic
behavior under nonstationary external impacts. On
the basis of mathematical approach, exact equations
of longitudinal and transversal oscillations of
viscous plates with and without consideration for
initial shifts and stresses as well as approximate
equations with accounting for ambient environment
and physical nonlinearity of material have been
obtained.

For all problems, the equations are obtained
for all shifts and stresses across plate thickness, the
main boundary problems are formulated leading to
longitudinal or transversal oscillation of plate.

On the basis of the exact equations, certain
resulting approximate equations have been
analyzed, and approximate boundary conditions
have been formulated.
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