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ABSTRACT 
 

This work discusses general oscillation equations of viscoelastic isotropic medium in linear approximation 
with and without consideration for initial shifts and stresses, as well as approximate oscillation equations 
with consideration for ambient environment and at small deformations. Under the impact of forces applied 
to continuous deformed body, the positional relationship of its particles varies, that is, the deformed body 
varies its shape and volume. This can be exemplified by compressed or tensioned rod. Mathematical 
description of deformation of solid body is given in this or that coordinate system. For instance, in 
Cartesian coordinates x1=x; x2=y; x3=z position of each point is defined by radius vector r


 and the 

components  321 ,, xxx . After deformation, position of the point will be defined by another coordinates: 

 321 ,, xxx  . 

 
Keywords: Longitudinal Oscillations, Transversal Oscillations, Viscoelastic Plate, Deformed Body, Small 

Deformation. 
 
1. INTRODUCTION 

 
This work presents fundamental results by 

Kazakhstan and foreign scientists. The authors 
mention only certain major works based on the 
most popular mathematical models. Fundamental 
concepts and approaches to development of 
mathematical models, theoretical and experimental 
studies in the field of dynamic interaction of plate 
and base are related with such scientists as 
Akhenbakh, Vlasov, Grigolyuk, Ilyushin, Lentev, 
Petrashen, Rakhmatullin, Timoshenko, Filippov, 
Tyurekhodzhaev and others [1, 2].  

Numerous urgent scientific and 
engineering problems are related with 
investigations into oscillation processes and wave 
propagation in continuous mediums. The obtained 
results are applied upon consideration of 
nonstationary oscillation and wave processes. 
However, there are some questions related with 
response of medium to external impacts, methods 
of motion initiation, kinematic properties of waves, 
body geometry, solution of these problems is 
important for practical use and achieved by peculiar 
methods typical for this field. 

While solving the application problems of 
oscillation of rectangular plates, it is obvious that 
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there exists wide range of relevant problems related 
with various boundary conditions: approximate 
oscillation equations at plate edges and initial 
conditions. In the oscillation theory an important 
issue is determination of eigenfrequency, solution 
of problems of forced oscillation of plate and 
analysis of propagation of harmonic waves.  

This work presents the required data on 
theory of elasticity and viscoelasticity, the main 
boundary problems of viscoelastic medium 
dynamics are formulated. Two-component 
viscoelastic mediums are considered at small 
deformations. 

 
2. METHODS  
 

Exact equations of longitudinal and 
transversal oscillations of viscoelastic plates with 
and without consideration for initial shifts and 
stresses, as well as approximate oscillation 
equations with consideration for ambient 
environment and at small deformations have been 
derived using mathematical approach [3]. 

Under the impact of forces applied to 
continuous deformed body, the positional 
relationship of its particles varies, that is, the 
deformed body varies its shape and volume. This 
can be exemplified by compressed or tensioned rod. 

Mathematical description of deformation of 
solid body is given in this or that coordinate system. 
For instance, in Cartesian coordinates x1=x; x2=y; 
x3=z , position of each point is defined by radius 

vector r


 and the components  321 ,, xxx . After 

deformation, position of the point will be defined 

by another coordinates:  321 ,, xxx  . 

Vector rru


  defines the vector of 
point displacement, and the coordinates 

 321 ,, xxx   are the functions of initial 

coordinates  321 ,, xxx . Hence, the vector of 

displacement is also the function of coordinates 

 321 ,, xxx . 

 
3. RESULTS AND DISCUSSION 

Let us consider any two close points with the 

radius vector  321 ,, xdxddx  between them 

positioned at the distance of 
2
3

2
2

2
1 dxdxdxdl  . After deformation, the 

distance between the points is 

     23
2

2
2

1 xdxdxdld  , where 

jjj dUdxxd  , jU  are the coordinates of 

displacement vector. 
Writing in brief form 

   2222 ; jj xdlddxdl   and substituting 

k
k

j
j dx
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After elementary transformations, we have:  
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Since we will consider only small 
deformations, then in Eq. (1) we neglect products of 
derivatives of displacements along coordinates and 
assume approximately:  
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Small deformations defined by Eq. (2) form 
deformation tensor: 
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The deformation tensor, Eq. (3), has three 
independent invariants:  

 2
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2
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2
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3

3322111

4

1
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
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





D
(4) 

where the invariant 1 is referred to as bulk 

extension. 
Let us introduce three main elongations, 

321 ,,  , then the invariants 321 ,,   are:  
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herewith, the elongations 321 ,,   are the roots 

of cubic equation:  
 

.032
2

1
3    

 
Using the main elongations, the average 

elongation is defined: 
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and respective spherical tensor is as follows:  
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The difference between the tensors D  and 

0D  is referred to as deviatoric tensor of 

deformation equaling to [4]: 
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where main elongations can also be introduced: 
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that is, the deviator D  determines deformation 
without bulk extension or deformation of type 
variation without variation of volume. 

Intensity of shear deformation is very 
important in the deformation theory, it is 
determined as follows:  
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In particular, deformations, Eq. (2), in 

cylindrical coordinates are as follows:  
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Equations (7) and (8) will be used for 

solution of the problems. 
In order to describe stressed state of 

continuous body, let us consider an arbitrary point 
М  inside the body and possible sites d  in this 
point.  

This site is affected from the side of medium 

by the force denoted as Pd


.  
Let us assume:  

,dPPd n


     

     (9) 

where nP


 is the finite vector, n


 is the normal to 

the site d . 

Expanding the force nP


 into constituents by 

the normal n


 and by the tangential r


 to the site 
d , we obtain:  

 

 


nnnn nP     

      (10) 
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where nn  is the normal stress,  n  is the 

tangential stress. 
Since infinite number of sites d  can be 

plotted across the point М , then, there exists 

infinite number of forces nP


 corresponding to 

these sites. However, among these forces only three 
are linearly independent, all other forces can be 
expressed on their basis. We will consider the 
forces acting on sites perpendicular to the selected 
orthogonal coordinates as independent. These 
forces as three independent vectors form the stress 
tensor [5]: 
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herewith, this tensor is symmetrical, since it is 
assumed that the pairing law of tangential 

deformations jiij    is valid. 

For the deformation tensor (11), it is 
possible to introduce the notion of main stresses 

321 ,,   and invariants equaling to:  
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and these main stresses are the roots of cubic 
equation: 
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1
S , the tensor (11) can be subdivided into 

two constitutes: 
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where 0Т  is the spherical tensor or the tensor of 

hydrostatic stress, and T   is the deviatoric 

tensor equaling to:  
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The notion of intensity of tangential stresses 

is very important for analysis of stressed state in a 
body: 

  .
3

1

3

2 2222222

0 yzxzxyzzyyzzxxyyxxzzyyxx    

The introduced in this work notions and 
values completely characterize stressed-strained 
state of continuous body in any point in the case of 
small deformations [6].  

Knowing the properties of the introduced 
variables characterizing stressed-strained state, let 
us formulate the laws relating these properties of 
viscoelastic body at small deformations. 

Let us mention nonlinear law of ij ~ ij  for 

elastic isotropic body. Brief conclusion will be 
presented below. 

At first the linear law of ij ~ ij  is given 

which can be written as follows:  
 

0 = 3 K
0 ;  ,2 DGТ   (13) 

 
where K  is the bulk compression modulus, G  is 
the shearing modulus, which are related with the 
Láme constants as follows: 

 


3

2
K ;  G  .  (14) 

Let us write the nonlinear law of ij ~ ij  

for small deformations such that in the limit for 
infinitely small deformations, it is transformed into 
the Hooke's law (13). 

Let us consider specific work of 
deformation: 
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In this case, integration is carried out from 

the state when all components of deformation are 
zero and to the state when they are presented by the 
tensor D . 

If to assume хх = 0'  хх ,… and 

consider that:  
 

0'''  zzуухх  ;  

0'''  zzyyхx ddd   

then:
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is the work of volume variation and  
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is the work of shape variation. 

In order to derive nonlinear function ij ~

ij , it is possible to satisfy the conditions [7]:  

1. Specific work of deformation A should 
be simultaneously the function of components of 
the deformation tensor D . 

2. Material of the body should be 
homogeneous and isotropic. 

3. The spherical tensor of stress 0T , as in the 

Hooke's law, should depend only on the spherical 

deformation tensor 0D , and the deviator of stress 

tensor T   - on the deviator of deformation tensor 
D . 

4. For infinitely small deformation, the 
established law should be of the same form as that 
of the Hooke's law (13). 

Since the formulated conditions should be 

satisfied, for specific work A we have [8]: 
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where 3 ' is the third invariant of deviator of 

deformation tensor. 

As demonstrated in [9], the variable A  
should not depend on the invariant 3  , and then the 

nonlinear law of ij ~ ij  will be as follows:  

 )(3 0000  xK ;

 ')(2' 2
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where 0х  is the equation function, and   is the 

shear function; using the constituents of specific 
work of deformation, they are expressed as follows:  
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From Eq. (19) for separate components of 

the stress tensor, we obtain:  
 
 

);()(2)(3 2
00000   jjjj GxK  

 );( 2
0 ijij G   

( ;ji   zyxji ,,,  ).  (21) 

  
Further, it would be more convenient to use 

the functions of elongation and shear in the 
following form:  
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and then Eq. (21) is rewritten as follows:  
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Since Eq. (23) should be the same both upon 

loading and unloading, the function )( 00 f  should 

be even with regard to 0 , and )( 2
01 f  should 

depend only on 2
0 . In particular, upon expansion 

of these functions into exponential series, we have 
as follows:  
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Linear theory of viscoelasticity is based on 

the memory effect, that is, on linear integral 
dependence of stresses on deformations. Then, Eq. 
(13) for linear elastic body can be written for linear 
viscoelastic body as follows:  
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where 0R  and R  are the linear integral operators 

of Volterra type: 
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0 ( )jF t  are the kernels of these operators. 

As in the case of Eq. (13), the specific work 
of deformation А  can be represented as follows:  

 

 AAА  0 .   

      (27) 

For generalization of Eq. (21) for the case of 
viscoelastic body, let us assume that:  

1. The specific work of deformation А is 
the single valued function of overall deformation 

history to the current time t ; 
2. The material of viscoelastic body is 

homogeneous and isotropic; 
3. The deviator of stress tensor Т   depends 

only on the variation history of the deviator D , 

and the average stress 0  depends only on the 

variation history of average deformation .0  

For infinitely small deformations, the 

nonlinear law of ij ~ ij  in the limit should be 

transferred to the law of linearity of the viscoelastic 
theory.  

On the basis of the mentioned conditions, we 
have for the specific work of deformation А :  
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0110   IzyxА ,  (28) 

 

where 0  and 1  are the nonlinear functionals. 

Then, the generalized nonlinear law of ij ~

ij  for viscoelastic body will be as follows: 
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On the basis of isotropy, the operators 0r  

and r  can be presented in the series: 
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where  
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        (31)

jnF  are the n-dimensional kernels of the 

integral operators nK  and nG . 

For stress components, the law for 
viscoelastic body can be rewritten as follows:  
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The latter expressions are nonlinear 

interrelations between ij  and ij  for small 

deformations.  
In arbitrary curvilinear orthogonal 

coordinates ),,(  , displacement of elastic or 

viscoelastic medium upon small deformations is 
described by stress equations: 
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(33)

where 321 ,, hhh  are the Láme coefficients:  

h
j
2  (

 j

x
)2  (

 j

y
)2  (

 j

z
)2; 

.;; 321    
In Eq. (33), bulk forces are not taken into 

account. 
In particular, in cylindrical coordinates, Eqs. 

(33) are rewritten as follows:  
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Equations (33) and (34) in displacements in 

the case of nonlinear function ij ~ ij  are very 

complicated. However, for linear function ij ~ ij , 

these equations are simplified by introducing 
potentials of longitudinal and transversal waves 
according to the following equation: 

 

,


 rotgradU   

      (35) 
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herewith, the vector potential of transversal waves 


  should satisfy the supplemental condition [10]: 
 

.0


div    
      (36) 

Equation (36) in arbitrary orthogonal 
coordinates is sufficiently complicated. In 
cylindrical coordinates ),,( zr  , Eq. (36) is 

satisfied automatically if the vector potential 


  is 
set to:  

 

).( 11



 zz еrotе   

      (37) 

In the potentials   and 


 , Eqs. (33) in 
linear form are as follows:  
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,   (38) 

 
where а  and b  are the propagation speeds of 
longitudinal and transversal waves, and the 
operators N  and M  are:  

;
3

4
01 RRN   .1 RM   (39) 

In solid state dynamics, the stressed-strained 
state is uniquely determined by boundary and initial 
conditions. 

In general case, the initial conditions are as 
follows: 
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      (40) 
 
In terms of boundary conditions, three main 

problems are highlighted. 
The first problem takes place when at the 

boundary S  the stresses are preset, applied to it in 
certain time. If projections of these forces related to 

unit surface area are denoted as nnn ZYX ,, , then 

the boundary conditions are written as follows:  

,),cos(),cos(),cos(

;),cos(),cos(),cos(

;),cos(),cos(),cos(

nzzyzxz
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


(41) 

 
where n  is the normal to body surface S . 

In the case of the second problem, 
displacements are preset on the surface S :  

),,();,();,( 213212211 21
ssfUssfUssfU ssn  (42) 

 

where ),,( 21 ssn  is the orthogonal coordinate 

system on surface.  
The third problem occurs in the case when 

on one part of the surface S  the conditions (41) 
are preset, and on the remaining part – the 
conditions (42). 

In addition to the main boundary problems, 
there are cases when continuous body is comprised 
of mediums with various properties. In this case, 
various conditions of contact can be preset on 
medium interface Г . 
1. In the case of absolutely rigid contact along the 
interface Г , normal and tangential stresses are 
continuous, that is,  
 

.;;
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 (43) 

 
2. If at the interface Г  there is no friction, then:  
 

.);2,1,(; )2()1()()2()1(

1 nnj
j

nsnnnn UUji        (44) 

 
3. In the case of friction along the contact Г , its 
conditions are complicated and up till now there is 
no unique opinion concerning the type of these 
conditions. If one of the mediums is absolutely 
solid body, then such conditions can be presented 
by the Coulomb law. 

The formulated main and supplemental 
boundary conditions occur generally upon solution 
of dynamic problems. 

Now let us develop general oscillation 
equations of viscoelastic isotropic medium in linear 
approximation. 

Isotropic viscoelastic medium of infinite 
sizes is considered in the plan as 3D viscoelastic 
body which at certain time 0t  is impacted by 
external nonstationary forces applied to its surfaces 
and causing longitudinal or transversal oscillations. 

Since plate oscillation is considered in linear 
approximation, then it would be more convenient to 
write the displacement equations in terms of 
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potentials of longitudinal and transversal waves 
(38): 
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Herewith, Eq. (36) in Cartesian coordinates 

is as follows:   
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which imposes constraint on components of the 

vector potential 


. 
Displacements wvu ,,  in terms of the 

potentials   and j  are expressed by the 

equations:  
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Similarly, the stresses ij  in terms of   

and j  are expressed as follows:  
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where ;2MNL   ;GRM   

.
3

4
0 GRKRN   

Oscillations of viscoelastic plate in general 
case are caused by forces applied to the surfaces 

hz  , that is, the boundary conditions are: 
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         (49) 
Let us consider that initial conditions are 

zero: 
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that is, the three-layer shells at 0t  are in the 
state of rest. 

Let us substitute external conditions in the 
following form [11]: 
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and let us consider the functions ;0,


zf  ;0,


xzf  
0,yzf  

negligible outside of the region: 
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      (52) 
 

that is, the external conditions do not contain high 
frequency harmonics, otherwise, the length of 
propagating waves both in time and coordinate 
exceeds transversal sizes of plate, which is obvious 
in terms of physics, otherwise, the plate as 3D body 
cannot be presented as 2D body. 

Equations (45)–(50) will be solved with the 
following assumptions:  
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Equation (52) allows to strictly differentiate 
Eq. (53) with regard to coordinates and time and to 
substitute them into Eq. (45), the boundary and 
initial conditions (49) and (50). Then, in order to 

determine 0  and 0j , we have the following 

equations:  
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0N  and 0M  are the Laplace transformed 

operators N  and M . 
The transformed displacements and stresses 

in terms of 0  and 0j  are as follows:  
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General solutions of Eq. (54) are as follows: 
 

 ;)( 210 zshAzchA    

 ;)( 121110 zchBzshB    

 ;)( 222120 zchBzshB      

       (58) 

 ;)( 323130 zshBzchB    

 

herewith, the integration constants ijB  due to Eq. 

(46) are interrelated as follows:  
 

,0321  iii BqBkB   2;1i .  (59) 

 
In order to determine the integration 

constants iji BA , , we have the boundary conditions 

(49) which in the transformed potentials 0  and 

0j  are as follows:  
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   (60) 

 
Since the problem is linear, let us consider 

separately longitudinal and transversal oscillations 
of viscoelastic plate [12].  

Analysis of wave processes in constrained 
deformed bodies is reduced to complex 
mathematical problems, which at present can be 
solved neither by analytical nor by numerical 
methods. 

Even for deformed mediums described by 
the simplest models, such as elastic and viscoelastic 
mediums, numerous nonstationary problems are not 
solved and there are no methods capable to solve 
these problems in exact formulation. Therefore, 
many application problems are solved on the basis 
of simplified models reducing spatial problems of 
dynamics to two- or one-dimensional cases. Such 
simplified models are presented by plates, rods, and 
shells. 
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4. CONCLUSION  
 

Simplified model is applied for studying 
nonstationary oscillations of plates, rods, and shells, 
motion of such systems are simulated by motion of 
points of center plane (plate), center surface (shell), 
center line (rods). 

Classical theories of oscillation of rods and 
plates are based on hypotheses of plane cross 
section and the Kirchhoff hypothesis. On the basis 
of these hypotheses, approximate oscillation 
equations are derived known as classical equations. 

Sharp increase in the number of application 
problems leading to analysis of dynamic behavior 
of rods, plates, and shells under various 
nonstationary external impacts revealed 
insufficiency of the classical equations for 
description of the considered phenomena, in its turn 
this resulted in high number of various updated 
oscillation theories and equations. These updated 
equations are also based on new hypotheses of 
various researchers.  

It should be mentioned that there are few 
works devoted to approximate oscillation equations 
of rods and plates with consideration for more 
complicated mechanical and rheological properties 
of rod or plate material, nonlinear dependence of 
stresses on deformations, consideration for initial 
shifts and stresses with accounting for ambient 
temperature and environment, anisotropy, etc. 

Non-unique approach to derivation of 
oscillation equations of rods, plates, and shells is 
attributed to the fact that these equations were 
derived on the basis of various hypotheses aimed at 
approximate description of distribution of required 
shifts and stresses through cross sections of these 
bodies. Various approximate oscillation equations 
are based on these hypotheses. 

However, analysis of oscillations of rods, 
plates, and shells can be based on accurate 
formulation of the problem for rods, plates, and 
shells as 3D bodies under external impacts leading 
to this or that oscillation type. 

While solving these 3D problems, it is 
possible to obtain with this or that degree of 
accuracy the oscillation equations of these bodies 
depending on external conditions, fixing conditions 
of interfaces with consideration for certain 
mechanical, rheological and other properties of 
material. 

Such mathematical approach was applied by 
Vlasov for determination of stress and strain state 
of elastic isotropic homogeneous plates in linear 
formulation under stationary ambient conditions. 

This approach is known as the method of initial 
functions. 

This work attempted to apply the 
mathematical theory of oscillations of elastic or 
viscoelastic plate to analysis of their dynamic 
behavior under nonstationary external impacts. On 
the basis of mathematical approach, exact equations 
of longitudinal and transversal oscillations of 
viscous plates with and without consideration for 
initial shifts and stresses as well as approximate 
equations with accounting for ambient environment 
and physical nonlinearity of material have been 
obtained. 

For all problems, the equations are obtained 
for all shifts and stresses across plate thickness, the 
main boundary problems are formulated leading to 
longitudinal or transversal oscillation of plate. 

On the basis of the exact equations, certain 
resulting approximate equations have been 
analyzed, and approximate boundary conditions 
have been formulated.  
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