
Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1988

QPSJF: A NOVEL CLOUD COMPUTING TASK
SCHEDULING POLICY BASED ON COMBINATION OF

SCHEDULING ELEMENTS

1AMEERA JARADAT, 2AHMAD AL-OMARI
1, 2 Computer Science Department, Faculty of Information Technology & Computer Sciences, Yarmouk

University, Irbid-Jordan
E-mail: 1ameera@yu.edu.jo, 2ahmad.alomari56@yahoo.com

ABSTRACT

Cloud computing is considered one of the rapidly emerging computing environments. It gives the user the
ability to choose among the many computing and storage services. Service providers provide the services to
users. Users prefer to select an appropriate datacenter for their requests to satisfy their requirements. The
need for efficient task scheduling in a cloud computing environment to improve cloud performance motivated
researchers to investigate existing task scheduling algorithms and/or to improve existing ones and to develop
new ones. This article proposes a task scheduling approach named Queue Priority Shortest Job First
scheduling (QPSJF), which is effective in optimizing execution time, waiting time, and response time. The
proposed QPSJF algorithm distributes the cloudlets over three designated queues according to their length
and priority. The efficiency of the proposed algorithm is supported through simulation and comparative
analysis.

Keywords: cloud computing; Task scheduling Algorithm; Virtual Machine; CloudSim; Shortest Job First;
Priority Queue.

1.0 INTRODUCTION

Cloud computing is considered as one of
the most important and essential ingredients of the
present and future computing environment that
produced a pronounced effect in the information
technology sector. It refers to an integrated
environment that provides the users with several on-
demand system resources including storage,
computing resources, and computing power [1].

 The cloud environment focuses on

illustrating the availability of data centers (DCs) to
provide cloud computing services to fulfill the
computational and storage requirements of
customers. With the new advancements in cloud
computing, data access and resource usage from the
customer side becomes easier and cheaper because
of its zero-cost infrastructure, and all of these needs
will be found in one place reachable by all users of
the cloud.

Currently, there are five major types of

cloud computing environments based on the services
provided and users’ scope according to [2] and [10]
as follows:

a. Private clouds (also called internal clouds):
This type of cloud is designed to be used by

one organization and it is built from its
organization infrastructure.

b. Public clouds: Public clouds are used by more
than one organization and are publicly
available over the internet such as Amazon
AWS, which is considered one of the largest
public clouds available. This type of cloud
provides services to customers by cloud
service providers.

c. Hybrid clouds: This type of cloud is a
combination of private clouds and public
clouds. In this type, an organization uses public
clouds for insensitive information and private
clouds for sensitive ones.

d. Virtual private clouds (VPCs): It is an on-
demand pool of computing resources designed
to avoid the limitations of private cloud needs.
In VPCs, a private cloud is built upon a public
cloud by using the infrastructure service from
the cloud to formulate a private cloud with a
customized architectural design. A good
example of VPC in the Amazon VPC launched
in 2009.

e. Community clouds: In this type of cloud, a
computing environment is shared among
several organizations or a group of people with

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1989

common needs and requirements. Examples of
community clouds include banks, a group of
companies working on the same platform,
Google Apps for Government, and Microsoft
Government Community Cloud.

The cloud-computing environment is
generally integrated with several network
architectures such as peer-to-peer architecture,
client-server architecture, grid computing
architecture, and utility computing. The peer-to-peer
architecture enables two distributed devices to
communicate with each other as peers and each peer
may act as a client or server at the same time. The
client-server architecture can be defined as an
architecture that consists of two major parts, the
clients and the server. A client sends its requests to a
server asking for a specific service. On the other
hand, the server responds with the requested service.
Grid computing is a kind of parallel computing that
allows a cluster of computers to work together to
solve a large number of tasks. Utility computing is
concerned with providing customers with packages
of services to satisfy their computational needs.

Cloud services are provided in a pay-per-

use manner and are available in three main models
namely Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service
(SaaS). In the IaaS model, the users are provided
with online-virtualized services that have high
capabilities in Application Programming Interfaces
(API). These services are publicly available over the
internet for direct use such as servers, load balancers,
and virtual machines. The second model (i.e., PaaS)
provides users with a full-suited framework to
design and customize their software and
applications. It is a cost-effective model, easy to use,
and it makes the development operation as fast as
possible for satisfying the user’s needs. The third
model, (i.e., SaaS) is a distributed model that allows
customers to use applications and services hosted by
a third party.

In addition to the above-mentioned three

models, there are three more models namely: The
mobile backend as a service (MBaaS), the server-
less computing model, and the function as a service
(FaaS) model. The first (i.e., the MBaaS) computing
model offers cloud storage and high-level APIs for
web and mobile applications developers to minimize
the programming efforts. The second (i.e., the
server-less) computing model is a cloud code
execution model that offers an environment to
execute codes, as the codes cannot be executed

without a server, and manage virtual machines. The
third model (FaaS) is a service remote procedure call
hosted on a server to allow the developers to develop
a responded events function.

Cloud computing has come to facilitate

many computing processes, by offering many tools
and features [4]. The cloud computing environment
offers many features and tools to simplify and
enhance the task secluding process. Cloudsim toolkit
is a very powerful framework provided by cloud
computing. It can be used to simulate the behavior
of the task scheduling process by providing
programmers with an integrated environment that
allows researchers to develop and create their
scheduling algorithms or use existing ones [5].
CloudSim can be integrated with Java programming
language as a full package to be used for several
tasks such as the task scheduling process. CloudSim
allows researchers to create tasks that are called
cloudlets, virtual machines (VMs) to process these
cloudlets and create datacentres (DCs) to manipulate
and run the task scheduling algorithms [6].

Task scheduling is the process of assigning
computing recourses, mainly processor, to the
various processes. Task scheduling is a main issue in
cloud computing since it handles the allocation of
cloud rescores over variety of cloud users. Task
scheduling plays an important role in ensuring the
quality of service in the cloud-computing
environment. Quality of service takes account of
parameters like execution time, waiting time,
makespan, in addition to some other parameters. It is
important to select the task scheduling algorithm that
enhances the cloud computing performance [24].

The task scheduling problem is considered
as one of the most important problems that affect the
performance of a given computing environment and
may limit its behavior [10]. There exist many task
scheduling algorithms. Most of these algorithms
focus on minimizing four main factors that affect the
performance of the task scheduling operation. These
factors are the makespan, the execution time, the
waiting time, and the energy consummation [3]. A
task scheduling algorithm can be defined as an
algorithm that intends to schedule tasks in an
efficient way that minimizes one or more of these
factors.

The classical scheduling algorithms like
SJF and priority have some problems. In priority
scheduling low priority processes may never execute
if higher priority processes keep arriving, which

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1990

leads to starvation. Similarly, in SJF long processes
may wait longer time if shorter processes keep
arriving. Moreover, the algorithm may have poor
performance in the worst case scenario. Therefore, it
is of a great importance to search for an efficient task
scheduling algorithm that distributes the requests to
the virtual machines and assures a certain level of
quality of service achievement.

This paper proposes a novel task

scheduling algorithm called Queue Priority Shortest
Job First (QPSJF) Scheduling algorithm. The
algorithm is evaluated using the CloudSim
simulator. It is based on queues that contain tasks
and each task has its priority and length (the number
of instructions that a process intends to execute). The
QPSJF divides the tasks into three queues according
to their lengths and priorities. The first queue is used
for the shortest tasks, the second queue for the
longest tasks, and the third queue is used for the
extremely high priority tasks.

The proposed algorithm maps one task

from each queue at the same time to a specific virtual
machine. Consequently, minimizing total execution
time, makespan, and waiting time. Also, saving
energy by mapping all tasks to three virtual
machines. Less energy by using a minimal number
of virtual machines. Hence, fewer computing
resources (e.g. CPU’S, storage). On the other hand,
the combination of processing power onto fewer
virtual machines allowing results in a higher
utilization [3] [14].

The main contribution of this work is

develop a novel task-scheduling algorithm for the
cloud environment. The proposed algorithm takes in
consideration optimality, recourse utilization, and
does not suffer starvation.

The rest of the paper is organized as

follows: Section 2 walkthrough some related works
in task scheduling. Section 3 provides a detailed
description of the proposed algorithm. Section 4
discusses the conducted experiments and the
obtained results, which are compared with results
obtained from other scheduling policies. Finally,
Section 5 provides the paper summary along with the
conclusion and the suggested future works.

2.0 RELATED WORK

For many decades, the task scheduling
problem has been considered one of the very

challenging research problems. The search for an
efficient solution for the task scheduling problem has
been around for a long time and before the
emergence of cloud computing (CC). This section
outlines some of the previous work related to task
scheduling algorithms.

A study presented by N. Panwar in [7]

discusses a multi-criteria cloud computing approach.
The author proposes a task scheduling algorithm
called the TOPSIS-PSO algorithm. The algorithm
focuses on the order of processes to provide a
solution by operating on two levels. In the first level,
the algorithm computes the nearness between the
processes according to their execution time,
transmission time, and cost. In the second level, the
algorithm proceeds to establish a relationship
between the processes according to their nearness
using Particle Swarm Optimization (PSO). The
information obtained from these measures was used
for scheduling the tasks. When compared with other
task scheduling approaches [7], the proposed
algorithm achieved better results. It showed 75%
resource utilization improvement and it reduced the
computation time by 23.93% and 55.49%. Also, the
algorithm reduced the makespan by 29.1%.
Unfortunately, the the algorithm does not consider
the waiting time of the scheduled tasks.

Hicham Ben Alla et al. [8] presented a

hybrid approach based on dynamic dispatch queues.
The authors propose two hybrid meta-heuristic
algorithms. The first algorithm is hybrid fuzzy logic
and the Particle Swarm Optimization (PSO), which
is referred to as TSDQ-FLPSO. The second
Algorithm is a hybrid Simulated Annealing (SA) and
the PSO algorithm, which is referred to as TSDQ-
SAPSO. In the TSDQ-SAPSO algorithm, the SA is
used to control the inertia weight of a task to
minimize its effects on the PSO algorithm, which in
turn reduces the probability of a blocked process.
The TSDQ-FLPSO algorithm deals with input and
output variables to make the scheduling process
more accurate and efficient. The two algorithms
were compared with each other considering several
performance factors. The TSDQ-FLPSO algorithm
results in a 1.596 fitness value, 14.09 makespan, 0.92
DI, 82.1% RU, and $281,8 cost. The TSDQ-SAPSO
algorithm results in 1.701 fitness value, 14.15
makespan, 0.93 DI, 82 % RU, and $283 cost. The
comparative analysis proved the TSDQ-SAPSO
algorithm more capable of solving the task
scheduling problem. The main limitation of this
algorithm was the relatively high waiting time of the
scheduled tasks.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1991

X. Geng et al. [11] proposed a task
scheduling algorithm in the cloud environment for
scientific workflow. The proposed task scheduling
algorithm combines task duplication and task
grouping, which was referred to as a static DAG
scheduling algorithm. The method involves
duplicating the joining nodes and converting a DAG
(Directed Acyclic Graph). into an in-tree graph.
Then, dividing tasks into groups, which reduces
communication overhead between tasks. This step is
followed by merging some tasks to reduce the load
on the processors. Finally, distribute the tasks over
the processors based on the idle time of the
processors. The analysis showed improvement in the
makespan rate, processor utilization, and
computation cost. However, due to it is complex
computations the execution cost of the algorithm
was high.

S. lmougy et al. in [12] proposed a hybrid

task scheduling approach that combines the Shortest
Job First (SJF) and the Round Robin (RR)
algorithms with dynamic variables for quantum
time. This hybrid approach works on two levels. The
first level contains a variable task quantum that
operates dynamically to make the waiting time
between short and long tasks as equal as possible.
Through the second level, the ready queue is divided
into two queues q1 which contains short tasks, and
q2 for long tasks. Thus, the algorithm allows two
tasks from q1 and one task from q2 to be executed at
the same time making the waiting time between q1
and q2 balanced as much as possible. This hybrid
approach achieved efficient results in reducing the
task waiting time by an average of 18.55 seconds
better than the SJF and the RR, in addition to other
scheduling algorithms from the literature [12].
However, the algorithm did not consider the
makespan time.

S. Banerjee et al., in [13] proposed a task

allocation approach based on resource utilization
policy. The proposed algorithm partitions the
cloudlets into two clusters namely high-end resource
cluster (HERC) and low-end resource cluster
(LERC) to minimize the execution time for each
cloudlet. The partitioning of cloudlets into the two
clusters depends on a deadline value. Therefore, the
cloudlet is placed into the HERC cluster if its finish
time is greater than the deadline value otherwise the
cloudlet is placed into the LERC cluster. The
proposed algorithm achieved efficient results. It
reduced the makespan of HERC and LERC clusters
by 9.23 seconds and 30.49 seconds, better than the
round-robin and greedy algorithms from the

literature [13]. However, the execution cost of the
algorithm was high due to it is complex
computations.

D. Saxena and R. K. Chauhan [14]

proposed an approach that aims to optimize and
enhance the task scheduling process by using the SJF
algorithm with fair priority and energy realization
scheduling. The authors modified the SJF algorithm
by using a fair priority policy. The algorithm
schedule tasks by sending the maximum possible
number of cloudlets to a random VM and then
reducing the number of available servers to save
more energy. This modification achieved promising
results compared when compared with the sequential
and the shortest job first algorithms. One concern
regarding this approach was that, in some cases, the
algorithm scheduled tasks more than ones resulting
in high execution time.

H. G. Tani et al. [15] proposed a Smart RR

algorithm (SRR), which involves modification to the
traditional RR algorithm to enhance the performance
of the task scheduling process and satisfy cloud
computing and big data needs. SRR operates by
adding a smart layer to the current RR algorithm to
adapt to every situation in the clousdsim
environment. SRR uses a dynamic wait event
quantum that will be updated every time there is a
task in the waiting queue. The proposed
modification achieved efficient results. When it is
applied to 10 cloudlets it results in 450 seconds
response time and 600 seconds waiting time.

S. Sindhu [16] addressed the task allocation

problem by proposing two algorithms to schedule
tasks according to their length. The author developed
two scheduling algorithms namely the Longest
Cloudlet Fastest Processing element (LCFP) and the
Shortest Cloudlet Fastest Processing element
(SCFP). The LCFP orders the tasks in increasing
order according to their lengths then it gives the
longest tasks more processing elements to reduce
their execution time. On the other hand, the SCFP
gives the shortest tasks more processing elements.
To compare the performance of LCFP and SCFP,
both algorithms were applied on 50 cloudlets. The
results showed that the LCFP algorithm
outperformed the SCFP algorithm by achieving a 56
makespan rate. Both algorithms produce high
waiting times due to the absence of queues to
manage the scheduled tasks

F. Ramezani et al. [17] proposed an

evolutionary optimization model to be used in the

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1992

cloud computing environment for task scheduling.
The proposed model combines the Multi-Objective
Particle Swarm Optimization (MOPSO) and the
Multi-Objective Genetic Algorithm (MOGA). This
model operates by minimizing four factors
associated with each cloudlet namely the task
transfer time, the task execution cost, the task queue
length, and the used energy. The experimental
results proved the efficiency of the proposed model.
When the number of cloudlets is four, the model
achieved 260 seconds average transfer time, 56.5%
average power consumption, and 4750 seconds
execution time. When the number of cloudlets is
two, it achieved 260 seconds average transfer time,
71% average power consumption, and 5400 seconds
execution time. The algorithm uses too many VM’s
to schedule tasks which affect the efficiency of the
scheduling procedure.

Limbani and Oza [9] proposed a multi-level

dynamic scheduling policy that minimizes the load
by increasing or decreasing the number of virtual
machines. The proposed dynamic approach
improves the processing time without considering
the cost as a factor that affects the scheduling
process. The proposed comparative study in [10]
provides very important information about several
significant service routing policies. The study
emphasizes the importance of fully optimizing the
service routing policy to keep count of all the factors
that affect the scheduling process. Therefore,
improving the performance of the scheduling
process while reducing the cost [10].

Z. Zhou et al. in [18] proposed a heuristic

named MGGS that combines a modified GA
algorithm with a greedy strategy to optimize and
enhance the task scheduling process. The authors
claimed that the optimal solution to schedule all
tasks were achieved using few iterations. similarly,
many studies proposed Heuristic approaches for
improving task scheduling [19][20][21][22][23].
The drawback of the heuristic approach in general,
is the high probability of generating high execution
time due to their complex natures.

In this section, we went through some of the

proposed methods for task scheduling algorithms.
Each of these algorithms suffers some drawbacks
such as the computational time and the delay. In
addition to other limitations that are related to the
SJF and priority scheduling. Therefore, the need for
developing new techniques to overcome the
limitations in the recent technique is vital.

3.0 METHODOLOGY

This section provides detailed information
about the proposed QPSJF algorithm by addressing
and discussing all the algorithm steps, identifying
the relationships between them, and providing a
detailed workflow that describes how the algorithm
operates. We provide a brief description of the
shortest job first (SJF) algorithm, then we discuss the
implementation environment, which is followed by
describing the QPSJF workflow.

3.1 SHORTEST JOB FIRST ALGORITHM

The shortest job first algorithm is one of the

most commonly used task scheduling algorithms in
many applications [14]. The SJF algorithm works by
sorting the tasks in ascending order from the shortest
task to the longest task according to their expected
execution time. Thus, each time scheduling is
performed; the shortest task will be selected and
executed next until no tasks are left. The most
significant advantage of this algorithm is that it
reduces the average waiting time among all the tasks.
The main concern regarding the SJF algorithm is the
need to know the execution time for each task
beforehand and this is almost impossible in many
environments. On the other hand, starvation is
considered a major issue, when the shortest tasks
keep executes first, the longer jobs may never
execute if shorter tasks keep arriving.

The proposed approach involves sorting all

tasks in ascending order according to their lengths.
Then, distribute these tasks over three queues, the
distribution process takes into consideration two
factors, the length and the priority of the task.
Whenever a mapping between the cloudlets and the
VM’s occurs, three tasks will be sent at the same
time (the shortest one from each queue) to their
specific VM’s to be executed. The described above-
integrated workflow of the QPSJF algorithm solves
the starvation problem. Therefore, the QPSJF is can
be proven to be an efficient and powerful
enhancement to the current SJF algorithm.

3.2. IMPLEMENTATION ENVIRONMENT

The behavioral implementation of the
QPSJF algorithm has been simulated on the
CloudSim toolkit 3.0.3 simulator, which provides an
integrated and powerful environment to simulate
many algorithms including task scheduling
algorithms. The simulation environment is

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1993

configured over the X86 system architecture running
on the Linux operating system.

The simulation parameters consist of one

broker, two datacentres, 2 hosts with 2 Processing
Elements (PE), 3 virtual machines, and 40 cloudlets.
At each run, the lengths and the priorities of all
cloudlets are randomly generated from 1000 – 3000
instructions and from 1 – 70 priorities to generate
more realistic task execution. Table 1 shows the
parameters for the two hosts and Table 2 shows the
parameters for the VMs.

3.3 QPSJF ALGORITHM WORKFLOW

The proposed algorithm workflow consists
of seven steps. These steps are portrayed in the
flowchart shown in Figure 1.

The workflow of the QPSJF Algorithm is

as follows:

1. Sorting the step cloudlets: after all cloudlets are
created, they are sorted in ascending order
according to their lengths (number of
instructions) to produce a sorted list that
contains all of the cloudlets. This step results in
minimizing the execution time for all cloudlets.

2. Computing the Average Length 𝐴𝐿 of all
cloudlets and the priority threshold 𝑇: let 𝐶 ൌ
 ሼ𝑐1, 𝑐2, 𝑐3 . . . 𝑐𝑛ሽ be the set of all cloudlets that
will be executed, let 𝐿 ൌ ሼ𝑙1, 𝑙2, 𝑙3 . . . 𝑙𝑛ሽ be
the set of all cloudlets lengths and let 𝑃 ൌ

 ሼ𝑝1, 𝑝2, 𝑝3 . . . 𝑝𝑛ሽ be the set of all priorities
among all cloudlets. Thus, the AL is the average
length of the cloudlets in list L.

𝐴𝐿 ൌ
ሺ௟ଵା௟ଶା௟ଷା⋯ା௟௡ሻ

௡
 (1)

The value of T for all cloudlets is the difference
between lowest priority (LP) and highest priority
(HP) divided by 2.

𝑇 ൌ
ு௉ି௅௉

ଶ
 (2)

 The T value is used to distinguish the high priority
cloudlets from the low priority ones. The value of T
is computed as a median value because the priorities
among the cloudlets are randomly generated. Thus,
T will guarantee that all cloudlets are covered and
distinguished into high priorities cloudlets and low
priorities cloudlets. The AL value distinguishes the
cloudlets with long lengths from those with short
lengths.

3. Queues creation: this step involves creating and
initializing three queues to store the cloudlets
according to their lengths and priorities.

4. Cloudlets allocation: this step allocates each
cloudlet to the destination queue. based on the
resulted values of 𝐴𝐿 and 𝑇 the cloudlets will be
divided into three queues namely the Shortest
Cloudlets Queue (SCQ), the Longest Cloudlets
Queue (LCQ), and the Highest Priority Queue
(HPQ). The SCQ contains all of the cloudlets
that have short lengths and low priorities, the
LCQ contains all cloudlets having long lengths
and high priorities and the HPQ contains all
cloudlets having extremely high priorities.

For example, given a cloudlet 𝑐𝑖 with a length 𝑙𝑖
and a priority value 𝑝𝑖. To place the cloudlet 𝑐𝑖
in the proper queue, we test the value of the
corresponding 𝑙𝑖 and 𝑝𝑖 against the average
length AL and the threshold T using the
following scenario:

𝑖𝑓ሺ𝑙𝑖 ൏ 𝐴𝐿ሻ𝑎𝑛𝑑ሺ𝑝𝑖 ൏ 𝑇ሻ → 𝑖𝑛𝑠𝑒𝑟𝑡ሺ𝑆𝐶𝑄, 𝑐𝑖ሻ

𝑖𝑓ሺ𝑙𝑖 ൒ 𝐴𝐿ሻ𝑎𝑛𝑑ሺ𝑝𝑖 ൒ 𝑇ሻ → 𝑖𝑛𝑠𝑒𝑟𝑡ሺ𝐿𝑆𝑄, 𝑐𝑖ሻ

𝑖𝑓ሺ𝑝𝑖 ൐ 𝑇ሻ → 𝑖𝑛𝑠𝑒𝑟𝑡ሺ𝐻𝑃𝑄, 𝑐𝑖ሻ

It is worth mentioning that the cloudlets in the
SCQ and LCQ are sorted in ascending order

Table 1. Hosts Parameters.

Table 2. Virtual Machines Parameters.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1994

according to their lengths, and the cloudlets in
HPQ are sorted in ascending order according to
their priorities.

Figure 1. QPSJF Algorithm Workflow

5. cloudlets - VM mapping: having three queues
filled with cloudlets according to the previously
described allocation, the cloudlets are mapped
to VM’s as follows: all the SCQ cloudlets are
mapped to the VM that has 6 GB RAM, the
LCQ cloudlets are mapped to the VM that has
5000 MIPS processing power, and the HPQ are
mapped to the VM that has 6 processing
elements (processors). This step aims at
minimizing the execution time for each
cloudlet.

6. Task execution: to minimize the waiting time,
and the response time for each cloudlet, three
cloudlets are sent at the same time (the shortest
one from SCQ, the shortest one from the LCQ,
and the lowest priority cloudlet from the HPQ)
to the VM’s. In case if one of the virtual
machines is busy executing other cloudlets, the
arrived cloudlet will be sent to the next available
virtual machine. Thus, this will ensure that the
waiting time is reduced to its possible minimum
value.

7. Output generation: this step represents all the
scheduled cloudlets according to their lengths
and priority and gives the information about
each cloudlet including execution time, waiting
time, cloudlet length, and cloudlet priority.

3.4 QPSJF PSEUDOCODE

Figure 2 describes the scheduling operation
of the proposed QPSJF algorithm.

Figure 2: QPSJF Pseudocode describing how the
proposed algorithm schedules tasks

The pseudocode in Figure 2 shows the main

steps of the QPSJF algorithm, which involves
creating the three main queues and sorting the tasks
in a non-decreasing order of task length. Then,
distribute the sorted tasks over the three queues
according to their length and assigned priority.
Consequently, three cloudlets at a time will be
transferred to the designated virtual machine
whenever mapping occurs.

In this section, we presented the detailed

steps of the proposed scheduling algorithm. The
algorithm starts by sorting the cloudlets in ascending
order of lengths, which guarantees optimality in
scheduling by reducing the average waiting time.
Then, the algorithm calculates the priority of each
cloudlets. After that, the cloudlets are grouped into
three main categories depending on the combination
of the length and the priority of each cloudlets. Each

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1995

of the generated groups forms a priority queue of
cloudlets that combines properties of length and
priority. The combination of length and priority is
selected carefully to insure optimality. On the other
hand, the proposed selection avoids starvation by
assuring the fair execution of all processes including
the long ones and the low priority ones. Finally, each
of the three queues is mapped to a specific virtual
machine the suites the process execution
requirements.

4.0 EXPERIMENTAL RESULTS

To evaluate the performance of the
proposed QPSJF algorithm and to compare the
obtained results with other scheduling algorithms, an
experimental environment was created consisting of
forty cloudlets, three VM’s, two hosts, two
datacentres, and one service broker. The main
parameters that were applied to measure the
efficiency of the proposed approach are execution
time, waiting time, response time

The following three scheduling parameters
are used as metrics to evaluate the performance of
the proposed QPSJF task scheduling algorithm.

 Average Waiting Time 𝐴𝑊𝑇. The waiting
time for task 𝑖 is the amount of time in
seconds that the cloudlet spends in the
waiting queue.

𝐴𝑊𝑇 ൌ
∑ ௐ்೔

௡
 (3)

 Average Execution Time 𝐴𝑋𝑇. The
execution time for task 𝑖 is the amount of
time in seconds that the cloudlet spends in
the virtual machine.

𝐴𝑋𝑇 ൌ
∑ ௑்೔

௡
 (4)

 Average Response Time 𝐴𝑅𝑇. The
response time for task 𝑖 is the amount of
time in seconds that the cloudlet spends
before it starts execution.

𝐴𝑅𝑇 ൌ
∑ ோ்೔

௡
 (5)

The results obtained showed a significant
improvement in the values of these parameters. The
results are illustrated in Table 3 through table 6.

 Table 3 shows the performance results of
the proposed QPSJF algorithm compared to other
algorithms from the literature. The proposed QPSJF
algorithm achieved efficient results. The
performance of the QPSJF algorithm has been
evaluated using several cloudlets dataset, starting
from a dataset that contains 10 cloudlets and
finishing with a dataset that contains 200 cloudlets.
Therefore, when we used 10 cloudlets to test the
performance of the QPSJF algorithm, it achieved 6.5
seconds execution time by an average of 0.65
seconds, 35 seconds waiting time by an average of
3.5 seconds. When we used 50 cloudlets to test the
performance of the proposed algorithm, it achieved
78 seconds execution time by an average of 1.56
seconds, and 280 seconds waiting time by an average
of 5.6 seconds. Also, when we used 200 cloudlets to
test the performance of the QPSJF algorithm it
achieved 600 seconds execution time by an average
of 3 seconds, and 553 seconds waiting time by an
average of 2.75 seconds.

The execution performance of the QPSJF
algorithm is presented in table 4 and figure 3, the
performance of the proposed QPSJF algorithm has
been evaluated by comparing it with the algorithms
(SJF with fair priority, FCFS, Min-Min, and MGGS)
in [14, 18]. Therefore, the results in table 4 and

Table 3. The QPSJF Algorithm Results

Table 4. The execution time in seconds of QPSJF
compared with other algorithms

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1996

figure 3 show that the proposed QPSJF algorithm
outperforms the compared algorithms in minimizing
the execution time. The missing values (--) in the SJF
with fair priority algorithm column indicate that the
algorithm was not tested using 50 and 70 cloudlets.
Also, in the proposed experiments, the QPSJF
algorithm was tested using 3 virtual machines, on the
other hand, the SJF with fair priority algorithm was
tested using 6 virtual machines in [14], and both
Min-Min and MGGS algorithms were tested using
10 virtual machines in [18].

The response performance of the QPSJF
algorithm is presented in table 5 and figure. The
proposed QPSJF algorithm has been compared with
the algorithms (FCFS, Min-Min, and MGGS) in [14,
18]. The results in table 5 and figure 4 show that the
proposed QPSJF algorithm outperforms the other
algorithms in minimizing the response time. In the
proposed experiments, the QPSJF algorithm was
tested using three virtual machines, and both Min-
Min and MGGS algorithms were tested using 10
virtual machines in [18].

Table 6 and Figure 5 describe the
performance of the QPSJF algorithm compared with
the benchmark algorithms (SJF, and smart round-
robin algorithms) in [15] for the average waiting
time. Therefore, the results in table 5 and figure 4
show that the proposed QPSJF algorithm
outperforms the compared algorithms in minimizing

the waiting time for all cloudlets. The missing value
(--) in the smart round-robin algorithm column
indicates that the algorithm was not tested using 50
and 70 cloudlets. Besides, in the proposed
experiments, the QPSJF algorithm was tested using
three virtual machines; on the other hand, the SJF
and the smart round-robin algorithms were tested
using six virtual machines in [15].

Figure 5. The waiting time QPSJF compared
with other algorithms

0

1000

20 40 50 70

T
he

 E
xe

cu
ti

on
 T

im
e

in
 S

ec
on

ds

The Total Execution Time

QPSJF

Table 5. The total response time of QPSJF
compared with other algorithms.

Table 6. The waiting time in seconds of our
proposed QPSJF compared with other algorithms

Figure 3. The execution time of QPSJF compared
with other algorithms.

Figure 4. The total response time of QPSJF
compared with other algorithms.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1997

According to the results presented in Figure
3 through Figure 5, and Table 4 through Table 6, the
QPSJF algorithm enhanced the performance of the
task scheduling process. Thus, it minimized the
execution time, waiting time, and response time
comparing to other prosed benchmark algorithms

In this section, we tested the performance
of the proposed scheduling algorithm (QSJF) and
compared the results to other proposed scheduling
algorithm from the letreture. The main parameters
that were applied to measure the efficiency of the
proposed approach are makespan, execution time,
waiting time, response time.

5.0 CONCLUTION

This paper proposes a novel task
scheduling approach (QPSJF) that uses multiple
queues and combines properties of different classical
scheduling algorithms to arrange the tasks to be
mapped to the virtual machines efficiently.

The algorithm sorts the cloudlets in
increasing order of the task length, which achieves
optimality in reducing the total execution time,
waiting time, and response time.

Based on the cloudlet's priority and a
threshold value, the cloudlets are distributed among
three main priority queues (namely, the shortest
cloudlets queue, the longest cloudlets queue, and the
highest priority queue). This process helps accelerate
the execution of the higher priority cloudlets without
causing starvation to the other low priority cloudlets.

Each of the three generated queues is
mapped to a specific virtual machine so that
whenever mapping occurs, three cloudlets are sent at
the same time (the shortest one from SCQ, the
shortest one from the LCQ, and the highest priority
cloudlet from the HPQ) to their specific VM’s to be
executed. This process helps in maintaining energy
while enhancing recourse utilization.

The simulation results show that the QPSJF
algorithm enhanced the performance of the task
scheduling process by minimizing the average
waiting time, the average execution time, and the
average response time. On the other hand, QPSJF
algorithm helps enhance resource utilization while
maintaining energy. In the future, we will continue
our study by implementing the algorithm in real-life
cloud computing environments.

REFERENCES:

[1] M. R. Rahimi, J. Ren, C. Harold, A. V

Vasilakos, and N. Venkatasubramanian,
“Mobile Cloud Computing : A Survey, State of
Art and Future Directions,” Mob. Networks
Appl., vol. 19, no. 2, pp. 133–143, 2014.

[2] Zhang, Q., L. Cheng, and R. Boutaba, Cloud
computing: state-of-the-art and research
challenges. Journal of internet services and
applications, 2010. 1(1): p. 7-18.

[3] S. Singh and I. Chana, “A Survey on Resource
Scheduling in Cloud Computing ,” J. Grid
Comput., vol. 14, no. 2, pp. 217–264, 2016.

[4] R. Sosan and C. F. Azim, “RETRACTED
ARTICLE : Mobile Cloud Computing : The
Taxonomy and Comparison of Mobile Cloud,”
Wirel. Pers. Commun., vol. 89, no. 4, p. 1435,
2016.

[5] A. Siavashi and M. Momtazpour,
“GPUCloudSim : an extension of CloudSim
for modeling and simulation of GPUs in cloud
data centers,” J. Supercomput., vol. 75, no. 5,
pp. 2535–2561, 2019.

[6] M. Shiraz, S. Abolfazli, Z. Sanaei, and A.
Gani, “A study on virtual machine deployment
for application outsourcing in mobile cloud
computing,” J. Supercomput., vol. 63, no. 3,
pp. 946–964, 2013.

[7] N. Panwar, “TOPSIS – PSO inspired non-
preemptive tasks scheduling algorithm in
cloud environment,” Cluster Comput., pp. 1–
18, 2019.

 [8] H. Ben Alla, S. Ben Alla, and H. Ben Alla, “A
novel task scheduling approach based on
dynamic queues and hybrid meta-heuristic
algorithms for cloud computing environment,”
Cluster Comput., vol. 21, no. 4, pp. 1797–
1820, 2018.

 [9] Limbani, D. and B. Oza, A Proposed Service
Broker Policy for Data Center Selection in
Cloud Environment with Implementation.
International Journal of Computer Technology
& Applications, 2012. 3(3).

[10] Mishra, R.K., S. Kumar, and B. Sreenu Naik.
Priority based Round-Robin service broker
algorithm for Cloud-Analyst. in Advance
Computing Conference (IACC), 2014 IEEE
International. 2014.

[11] X. Geng, Y. Mao, M. Xiong, and Y. Liu, “An
improved task scheduling algorithm for
scientific workflow in cloud computing
environment,” Cluster Comput., pp. 1–10,
2018.

Journal of Theoretical and Applied Information Technology
15th May 2021. Vol.99. No 9
© 2021 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1998

[12] S. Elmougy, S. Sarhan, and M. Joundy, “A
novel hybrid of Shortest job first and round
Robin with dynamic variable quantum time
task scheduling technique,” J. Cloud Comput.,
2017.

[13] S. Banerjee, A. Roy, A. Chowdhury, R.
Mutsuddy, R. Mandal, and U. Biswas, “An
Approach Toward Amelioration of a New
Cloudlet Allocation Strategy Using
Cloudsim,” Arab. J. Sci. Eng., vol. 43, no. 2,
pp. 879–902, 2017.

 [14] D. Saxena and R. K. Chauhan, “Shortest-Job
First With Fair Priority and Energy Awareness
Scheduling In Green Cloud Computing,” Int. J.
Trend Res. Dev., vol. 3, no. 6, pp. 373–377,
2016.

[15] H. G. Tani et al., “Smarter Round Robin
Scheduling Algorithm for Cloud Computing
and Big Data To cite this version : HAL Id :
hal-01443713 Smarter Round Robin
Scheduling Algorithm for Cloud Computing
and Big Data,” J. Data Min. Digit. Humanit.
Episciences.org, 2018.

[16] S. Sindhu, “Efficient Task Scheduling
Algorithms for Cloud Computing
Environment Efficient Task Scheduling
Algorithms for Cloud Computing
Environment,” in High Performance
Architecture and Grid Computing, 2016, no.
January 2011.

[17] F. Ramezani, J. Lu, J. Taheri, and F. K.
Hussain, “Evolutionary algorithm-based
multi-objective task scheduling optimization
model in cloud environments,” World Wide
Web, vol. 18, no. 6, pp. 1737–1757, 2015.

[18] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy,
and M. U. Chowdhury, “An improved genetic
algorithm using greedy strategy toward task
scheduling optimization in cloud
environments,” Neural Comput. Appl., vol. 31,
pp. 1–11, 2019.

[19] I.Strumberger, N. Bacanin, M. Tuba, E. Tuba,
Resource Scheduling in Cloud Computing
Based on a Hybridized Whale Optimization
Algorithm, Applied Sciences, Vol. 9, No. 22,
pp. 4893 - 4893, Nov, 2019.

[20] Kalra, M.; Singh, S. A review of metaheuristic
scheduling techniques in cloud
computing.Egyptian Informatics Journal 2015,
16, 275 – 295.

[21] I. Strumberger, M. Tuba, N. Bacanin, E. Tuba,
Cloudlet Scheduling by Hybridized Monarch
Butterfly Optimization Algorithm, Journal of
Sensor and Actuator Networks, Vol. 8, No. 3,
pp. 44 - 44, Aug, 2019.

[22] Ameera Jaradat, "Rational graph: a model for
complex networks" , International Journal of
Web Engineering and Technology 13 (1), 56-
77, (2018).

[23] Sreenu, K.; Sreelatha, M. W-Scheduler: whale
optimization for task scheduling in cloud
computing. Cluster Computing 2017.

[24] A. Arunarani, D. Manjula, and V. Sugumaran,
“Task scheduling techniques in cloud
computing: a literature survey,” Future
Generation Computer Systems, vol. 91, pp.
407–415, 2019.

