
Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

MODELING AND SIMULATION OF PARALLEL PROCESSING
ARCHITECTURE FOR IMAGE PROCESSING

K.MANJUNATHACHARI1, DR.K.SATYAPRASAD2

1PROF. AND PRINCIPAL, JNTUCE,KAKINADA
2ASSOCIATE PROFESSOR IN ECE, GPREC,KURNOOL

ABSTRACT

Typical real time computer vision tasks require huge amount of processing power and time for
handling real time computer vision applications. The nature of processing in a typical computer vision
algorithm usually ranges from many small arithmetic operations (Fine Grain Parallelism) to symbolic
operations (Coarse grain parallelism). The task become more complicate while considering image
processing application due to large data sets and there processing. The existing processing system
responds efficiently under sequential working and result in efficient output, but results in a slow
operating system which results in a inefficient processing system under high speed image processing
systems. Parallel processing founds to be the only solution to obtain the require processing speed for
handling high-speed image processing applications. The existing image processing systems support
usually only one suit of operations at once and fail to respond under multiple tasks. System taking
single instruction or multiple instruction process operates using low level and high-level operations.
Generally SIMD architecture is suitable under low level processing while MIMD architecture is
suitable for high-level processing. This paper explores on modeling and simulation of parallel Image
Processing architecture for Image Processing applications using Parallel Virtual Machine(PVM) ,
MATLAB external interface API and C language on the Linux operating system platform.

KEYWORDS: Image processing, Parallel Processing, PVM, High Performance Computing(HPC)

1. INTRODUCTION
The overall application area of this paper is
computer vision and parallel processing, the
processing of vision information by means of a
computer system. This chapter illuminates the
area of computer vision by looking at
applications and their associated computer
system setup. It then looks at how computer
vision is realized, what are the methods used,
and what are the related problems.

Computer vision
Vision plays an important role in the life of
living beings. The concept and feedback of
vision is important for everyone in order to
move around, communicate and interact. With
computer vision we try to process (three-
dimensional real world) vision information
automatically by means of a computer system.
The reasons to do this are numerous and
computer vision covers a very broad research
area ranging from the computational
understanding of the vision concept to practical
matters like automatic visual inspection of a
production line, machine vision. Examples of
several computer vision application areas are:
Control of a robotic assembly cell, Image
warping, compression, encoding, and
transmission, Video conferencing, Autonomous
vehicle control, Object
detection/recognition/tracking, Machine vision
The common factor in all these applications is

that vision is used for an automated application,
no human intervention or guidance is involved
in the processing of vision. Yet, the processing
and interpretation of the vision information are
not trivial.

Although seemingly easy for living beings,
coping with vision is less natural for computers.
Images need to be captured, digitized and
processed until some form of decision or
conclusion can be made. Thus image processing,
the analysis and manipulation of data, originally
in the form of an image or image sequence, by a
computer is acknowledged as one of the grand
challenges of computing [1]. The reasons for this
are: Data size, Computation complexity, Time
constraints, Types of operations, Variety in
image processing algorithms, Different data
types.

 Image processing applications are characterized
by the requirement for transformations between
disparate data types to be carried out efficiently,
and for computation to be executed efficiently
on all data types involved in the solution of a
given problem.

System setup
Figure 1.1 shows a simple generic setup of a
general computer vision system that could be
used for the computer vision applications
mentioned in Section 1.1. It consists of a sensor

 1

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
part to capture vision information (from the real
world) and convert this to electrical signals.
These electrical signals carry the (sequence of)
image(s) generated by the sensor. The specific
sensor used determines the resolution (number
of pixels) of the images, type of the image

information (color, range, etc.), as well as the
number of generated images per time unit (frame
rate). For processing, the images need to be
captured in order to be able to be processed. This
makes the images available in the computer
memory for processing. The representation of
the image can be different and depends on the
specific application and memory resources. The
processing of the captured image(s) is done by
the computer system followed by analysis and
interpretation resulting in control feedback to the
application.
The different steps that can be distinguished in a
computer vision application on such a computer
vision system are:
Image formation, Image acquisition and (pre-
)processing, Image analysis, Image
interpretation Application control.

A typical computer vision task contains various
different types of processing operations.
Normally a vision task starts with a plain image
and while processing the type of operations
moves from arithmetic to symbolic and the
amount of data to process reduces until in the
end some decision is reached, the image
understanding. Generally [2,3], three levels of
image processing are distinguished to analyze
and tackle the vision application: low-level
operations, intermediate-level operations, and
high-level operations.
1. Low-level operations. Images are transformed
into modified images. These operations work on
whole image structures and yield an image, a
vector, or a single value. The computations have
a local nature, they work on single pixels in an

image. Examples of low-level operations are:
smoothing, convolution, histogram generation.
2. Intermediate-level operations. Images are
transformed into other data structures. These
operations work on images and produce more
compact data structures (e.g. a list). The

computations usually do not work on a whole
image but only on objects/segments (so called
areas of interest) in the image. Examples of
intermediate-level operations are: region
labeling, motion analysis.

3. High-level operations. Information derived
from images is transformed into results or
actions. These operations work on data
structures (e.g. a list) and lead to decisions in the
application. So the high-level operations can be
characterized as symbolic processing. An
example of a high-level operation is object
recognition.

 Parallelism
Given the huge amount of data and processing
involved with computer vision, solutions of
image processing problems have almost always
been tackled by the exploitation of parallelism in
one form or another. The types of parallelism
present in computer vision applications vary.
Low-level operations have a fine-grain type of
parallelism where lots of simple operations can
be done in parallel. The parallelism seen with
high-level operations is more coarse-grain; a
limited number of more complex operations or
tasks can be executed in parallel.
Although parallel computers offer sufficient raw
processing power in order to solve the time
constraint problems, they have more degrees in
freedom with respect to architecture and are
more difficult to program than sequential
computers. But when real-time requirements are
to be met, normal (sequential) workstations
simply are not fast enough. With the current
trend that applications get more and more

Computer
System

Applicatio
n

Frame
Grabber

Object

Sensor With
Camera

Fig 1 1 General Setup of a computer

 2

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
demanding with respect to processing power, it
does not seem likely that plain workstations will
become fast enough for real-time imaging
applications in the near future. So more
processing power is needed than can be achieved
by a single sequential workstation and using
parallel processing systems seems to be the most
likely way to satisfy these real-time
requirements, despite their complexity of
architecture and programming.

Architectures
Simply using a parallel system is not sufficient
to successfully run computer vision applications.
The parallel system should perform well, i.e.
have a high performance, in all three levels of
computation in image processing applications:
low, intermediate, and high-level operations.
The two main types of parallel systems,
homogeneous SIMD (Single Instruction
Multiple Data) or MIMD (Multiple Instruction
Multiple Data) systems, fail this requirement,
even if they are designed with image processing
in mind [4,5, 6, 7,8, 9, 10,11, 12, 13]. Complete
image processing applications could be executed
on either SIMD or MIMD systems but this
alwassys involves inefficient computation of one
part of the problem as neither SIMD nor MIMD
perform well in all levels of image processing.
 Generally, SIMD architectures are suitable for
exploiting the fine-grain parallelism of low-level
image processing operations while MIMD
architectures are able to use the coarse-grain
parallelism of high-level image processing
operations. But even heterogeneous combined
SIMDMIMD systems may not perform well
enough for real-time imaging applications when
intermediate-level image processing is not
handled sufficiently. Reconfigurable systems
that can switch between the type of parallelism
that is supported are also not a real option: the
real-time requirements demand all levels of
image processing to work in parallel, not
sequentially. Even when reconfiguration of the
system could be done without overhead, the
reconfigurable system would still support only
one type of parallelism at a time and not
simultaneously.

Bottlenecks
Given that low-level operations can be
efficiently carried out by highly-parallel systems
operating in SIMD mode and high-level
processing can be effectively executed by
moderately parallel systems acting in MIMD
mode, the problem thus boils down to the
interfacing of the low-level and the high-level
operations. The (parallel) architecture
component that is suitable for the intermediate-
level processing is yet unclear. Interfacing these

levels is however essential considering the
growing number of applications having real-time
processing constrains; applications like video
conferencing will play an important role in the
information technology era of the future.
Besides interfacing the different SIMD and
MIMD parallel architectures, programming the
system is another problem. The attractiveness of
using homogeneous SIMD or MIMD systems is
that they have a coherent programming model
and data storage structure. Heterogeneous
systems incorporating more than one parallel
computing paradigm not only add complexity to
the architecture but to the programming (model)
as well. Yet, to meet the real-time constraints of
a vision application, the construction,
programming, and use of heterogeneous systems
for computer vision is desirable.
The structure of this paper is as follows: section
2 reviews high performance computing (HPC),
HPC software technology and parallel image
processing. Section 3 and 4 describes our
programming environment using parallel virtual
machine (PVM), analysis, design and
implementation. Section 5 presents our results
for the above simulation model and draws
conclusion and points to future work.

2. High Performance Computing and Parallel
Image Processing

2.1 Classification
Modern day problems taken from Information
Technology (IT) application areas such as
engineering and scientific numerical simulations,
information processing and wide-area data
exchange in commerce are too demanding to run
on a single microprocessor machines and yet at
the same time do not need the performance level
provided by supercomputers. Such applications
often require multiprocessor systems, which are
capable of parallel execution, ensuring more
accurate, reliable results, increases in throughput
and reduced turnaround time. Solving these kind
of problems which often require significant
computational power, processing of very large
amounts of data quickly or need to operate
interactively across a geographically distributed
network, falls under the domain of High
Performance Computing (HPC).
HPC covers a range of hardware platforms and
software techniques, which are explained below.

2.2 HPC software Technology
HPC systems make use of leading-edge
processor technology and involve parallelism or
multi-processing. These systems can be
classified into four categories as shown in
Figure2.1. In addition, these four categories can
be grouped under the following two headings

 3

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
Shared Memory Systems and Distributed
Memory Systems . The Figure 2.1 shows the
classification of HPC systems graphically.

Parallel Virtual Machine
PVM predates MPI by a few years, the original
project being started in 1989 at Oak Ridge
National Lab in the US. PVM was originally
designed to operate on heterogeneous networks
of workstations, and has important features for
supporting applications in such environments.
From its cluster-oriented beginnings, PVM has
been ported onto SMP and MPP systems and is a
popular choice for an MPS. PVM consists of
two parts, a daemon process that any user can
install on a machine and a user library
containing routines for initiating processes on
other machines, for communicating between
processes and changing the configuration of
machines. PVM uses the following routines to
identify other processes in the system: -
pvm_mytid(), pvm_bufinfo, pvm_gettid() and
pvm_tasks(). Processes can also be identified by
a name and an instance number by joining a
group.

There are also routines t
and delete(pvm_delhost()
machine, routines to start
terminate (pvm_kill()) P
send signals to other tas
to find out information ab
configuration(pvm_conf
The two features of PV
clearly from MPI are
• Dynamic proces
the ability to create and d
the lifetime of an applica
• Standard mach
PVM defines a standard
the parallel machine.

These features are in so
than the types of functi

MPI defines a standard inter-processor
communications API that can be implemented
efficiently on native hardware, it is thus possible
to implement PVM on top of MPI. Attempts
have been made to merge the features of PVM
and MPI and the project PVMPI[15] involves
creating an environment that allows access to
message passing features of MPI and virtual
machine features of PVM.

Benefits
The increasing affordability of HPC is helping in
improving price-performance ratio of systems
and the emergence and stabilization of cross-
platform HPC software standards now means
that truly portable applications can be developed
to garner the benefits of HPC hardware [16].
HPC can offer solutions to problems in a wide
range of business areas, from traditional large-
scale engineering to the emerging entertainment
markets of the Internet. Some of the applications
of HPC are optimisation of industrial processes,
computational modelling, online transaction
processing, data mining, decision support,

Data Parall

High Performance
Fortran

 Figure 2.1: Classification of HPC Software Technology
o add (pvm_addhost())
) hosts from the virtual
 up (pvm_spawn()) and
VM tasks, routines to

ks (pvm_sendsig()) and
out the virtual machine

()) [15].
M that distinguish it

s management which is
estroy processes during

tion run.
ine configuration as

 method of configuring

me sense higher level
on defined in MPI. As

complex visualisation and virtual reality[17].

Trends and Future
High performance computing has come of age
and is now a stable mature technology. It can be
no longer considered as the preserve of computer
scientists in research labs, plugging together
printed circuit boards and writing new flavours
of parallel operating systems[18]. Today, HPC

HPC Software Technology

el Programming Message Passing Programming

Shared Memory
Programming

Message Passing
Interface

Parallel Virtual
Machine

4

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

computers are bei
commodity chips f
workstations and it
commodity chips th
of tomorrow's HPC
emerged as a unifyin
HPC and no one r
could have failed t
emergence of the
buzzword in the field
Grid will do for H
computer documents
Metacomputing, whi
machines rather than
expected to be th
performance paralle
the use of PC and wo
parallel HPC syst
emerging to facilitate
of regular serial ap
cluster. These tools
on individual ma
monitoring their rela
where necessary to
the cluster resources
attractive to firms w
needs that do not
memory of a fully pa
seen that HPC is a
hardware platforms a
this form of comp
adopted widely.
2.2 Image processin
The type of process
computer

Real
time

Just-in-
time

www.jatit.org
 Figure 2.2: Levels of processing in computer vision.
ng built from the same
ound in desktop personal
is the performance of these
at will determine the power
 systems. “The Grid has
g concept for the future of
emotely involved in HPC
o have noticed the recent
 Grid as the dominant
”[19]. It is expected that the
PC what the Web did for
 and desktop environment.
ch refers to connecting HPC
 individual workstations, is
e next step from high

l computing. In addition to
rkstation clusters as explicit
ems, software tools are
 the automatic management

plications running over the
schedule applications to run
chines in the cluster,

tive loads and redistributing
maximise the efficiency of
. Such tools are increasingly
ith more modest computing
require the raw power or
rallel system. Thus we have
broad combination of both
nd software techniques and
uting is grsadually being

g levels
ing operations in a typical

Image (Sequence)

vision task varies greatly. A vision task starts
with a plain image, or sequence of images,
(coming from a sensor) and, while processing,
the type of operations moves from arithmetic
(Floating Point Operations Per Second, FLOPS)
to symbolic (Million Logic Inferences Per
Second, MLIPS) and the amount of data to
process is reduced until in the end some decision
is made (image understanding).
The initial processing of real-time just-in-time in
a computer vision task is real-time as it needs to
keep up with the data rate of the incoming data,
for example from a Charged-Coupled Device
(CCD) camera. The end type of processing
leading to the decision and possibly feedback
(like steering a robot arm) may be characterized
as “just-in-time”. The time, the processing takes
is tuned to give a result in time for the specific
application. For instance with industrial
inspection on product defects, the decision
should be ready before the product leaves the
conveyor belt.
Generally, three levels of processing can be
distinguished [2,3], pictured in Figure 2.2,
although the boundaries between these levels are
not well defined and sometimes a level is
subdivided in sublevels:
1. Low-level operations: Image oriented, these
operations work on whole pixel image structures
and yield an image, a vector, or a single value.

2. Intermediate-level operations: Symbolic
processing, in this the operations work on pixel
images and produce symbolic descriptions of the
image or features in compact data structures (e.g.
a list).

Enhancement

Edges Histogram
Vertices Stastics

Decision

Objects

Matching

understanding

Arithmetic
Operations

109 bits/s

mflops

symbolic
operations

103 bits/s

milps

5

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
3. High-level operations: Knowledge-based
processing, these operations work on symbolic
descriptions of the image and lead to decisions
in the application, e.g. the understanding of a
scene, the understanding of the contents of the
image.

3. Programming model for Parallel Image
Processing using PVM

This chapter describes the layered hierarchical
programming model we defined in the SM-IMP
project [19, 20] for computer vision applications.
The challenge in defining the layered
programming model is to have one programming
model that is common to all (or a maximum
number of) architectural paradigms. Thus coding
a task is independent of the underlying
architecture, and a task which is already coded
can be placed on a specific unit (automatically or
by hand) at compile-time.
The idea behind the hierarchy of programming
models is to allow the user to select the

abstraction level at which to work. One user may
decide, for example, not to take into account the
performance of an application while focusing on
its functional correctness, and in this case the
highest abstraction level is sufficient. On the
contrary, when the performance has to be
optimized, a lower level of abstraction must be

selected, using gradually more detailed
knowledge of the hardware levels. We propose
to organise the programming model as a
hierarchy of three (abstraction) layers or levels,
illustrated in Figure 3.1: a system expert layer,
an image processing layer, and an application
programming layer.
The idea is that the user composes his
application of code (blocks) implemented at the
image

processing level and at the application level
decides on which part of the system (e.g. a
SIMD component) each code block of the image
processing level is going to be run. The
application layer is concerned with the
specification of composite image processing
applications by means of combinations of tasks,
which may run in parallel on a heterogeneous
system. The image processing layer is concerned
with the actual specification of each task of a
composite image processing application. A task
is specified by means of a program and is

supposed to run on specific nodes of the
heterogeneous parallel system, following a
single processing paradigm, such as SIMD, or
MIMD. The system expert layer is concerned
with the improvement of the efficiency of
programs by means of machine specific program

Software Structure

Figure 3.1: SM-IMP layered hierarchical programming model.

Visual Programming Using a Dataflow approach

Stepwise refinement possible (hierarchical model)

Specification of dataflow blocks in C/C++
Using a Communication library

Primitives for signal like programming
Using a library of (parallel) abstract data types

SIMD/SPMD
Programs
libraries

Compiler
mapper run-
time support

MIMD
programs
libraries

Compiler
mapper run-
time support

Sequential
programs
libraries

Compiler
mapper run-
time support

Paradigm

Procedural

Boolean data
flow

Sequential
Programming

Sequential
Programming

Parallel
abstract data
types

Application
Programming
Layer

Image
Processing
layer

System
expert
layer

 6

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

flow pipe-lined manner using the code blocks of

he

sign and Implementation

was

manipulations, aimed at taking advantage of the
specific features of the host hardware.
Figure 3.2 pictures the image processing layer.
The image processing layer program is
composed of tasks that communicate with each
other using message passing. Each task can
consist of multiple threads. Exploitation of these
threads can be done by specification of parallel
control constructs in the application’s code.
In order to allow analysis and use of different
parallel architectures without rewriting an
application for each separate architecture, the
idea is to program in a data parallel way in
combination with a task parallel approach. For
implementing a certain application the user can
use a set of parallel abstract data types. These
types define data structures and the operations
that can be performed on them. The types are
abstract in the sense that actual implementation
mapping of these operations and the internal
structure, and possible decomposition/mapping
of data on different processors, of the object are
shielded from the user.

The data parallel data structures with appropriate
operations (library functions) that can be
performed on them, offer a simple way to
implement parallel programs. The user just
needs to consider the structures as single entities
where the operations on such an entity are
performed in an efficient, and possibly parallel,
manner. So the user need not be concerned with
the actual implementation and execution of an
operation and the distribution of the data of the
structure over the available processors.
Application programming layer:
This layer expresses the behavior of a whole
application running on the entire
(heterogeneous) machine. At this level the
application is constructed in a (hierarchical) data

the image processing layer. So this layer is
associated with composition of code blocks
that perform specific functions and with t
synchronization of the data streams that flow
through these blocks. Also the user can indicate
the mapping of the blocks on specific execution
paradigms of the system. Obviously a block can
only be mapped on a certain paradigm when an
implementation for that paradigm exists at the
image processing layer.

4. Analysis, De
The parallel computing functionality
developed keeping in view the processor
intensive tasks such as performing s-fold cross-
validation on a large amount of data in
MATLAB. The basic operations that needed to
be performed were setting up the server farm
which would be an array of active processors
running the remote MATLAB engine. Other
operations included distribution of data to the
remote hosts in the farm, execution of

commands on the remote data, fetching of the
result after the data had been processed and
finally after the tasks were done, shutting down
the farm of active processor nodes. The aim was
to use the parallel functionality transparently
from within the MATLAB environment. This
meant that programming would be done using
MATLAB M-files which would utilize the
parallel functionality in the form of special
functions to achieve parallelism.

Task
Threads/shar
edmemory

Task
Threads/shar
edmemory

Abstract
Data object

Abstract
Data object

Abstract
Data object

Abstract
Data object

Message
passing

Object
access

Figure 3.2: Image processing layer.

 7

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

F
a
n
i
T
o
L
l
e
r
l
p
l
i
p
a
m
l
A
d
T
s
d
l
d
p
M
c
t
c
p
r
w
c
(
(
a
p
t
e
l

number of slaves that could be spawned by the
user. Once the remote slaves have been started,
data would be distributed to each slave which
would put this data into its corresponding
MATLAB engine. Now the master would
invoke a set of commands via the remote slave
processes to process the remotely distributed
data. Ideally the set of commands will be written
in a MATLAB M-file. So executing the M-file at
the remote slave would amount to execution of
the desired set of commands. Thus the number
of iterations to be performed on the data during
the s-fold cross validation can be assigned to a
number of slaves spawned on different nodes in
the parallel virtual machine. The processing of
data, which in this case refers to s-fold cross
validation, done in this manner would reduce the

MATLAB Application

MEX (parallel routines)

 PVM library

MATLAB API

Operating system

Network

Figure 4.1 Architecture Overview
 The
igure 4.1 shows the overview of the
rchitecture stack. The lowest layer is the
etwork layer, which includes the
nterconnecting physical layer of wires, hubs etc.
he layer above the network layer is the
perating system layer, which in our case is the
inux operating system. MATLAB and PVM

ibrary share the same layer and the functionality
xposed by them is used by MEX parallel
outines layer, which sits in the next higher
ayer. The parallel routines developed for the
roject reside in the MEX layer. On the top most
ayer is the MATLAB Application layer which
n turn uses functionality exposed by the MEX
arallel routines layer. All the parallel
pplications developed will reside in the top
ost layer and use the functionality of the lower

ayers.
fter having understood the task, the
evelopment environment needed to be set up.
his involved the choice of the operating
ystem, the message-passing library, the
evelopment and debugging tools and
anguages. A collection of routines was
eveloped based on the concept of Master/Slave
aradigm to do parallel programming in
ATLAB. Keeping in mind the task of s-fold

ross validation, this approach was suitable, as
here needed to be minimum inter-slave
ommunication. Data could be distributed to and
rocessed separately by each slave process and
esults retrieved at the end the master process
ould start up a desired number of

omputational slaves either on the same machine
multiprocessor machine) or on other machines
cluster). The slave process would in turn invoke
n instance of the MATLAB engine on its
rocessor, thus acting as an interface between
he master and the remotely invoked MATLAB
ngine. Of course, the number of MATLAB
icenses available would cap the limit on the

computational load at the master node and also
arrive at the overall result faster.
The routines for the parallel execution of
MATLAB programs have been written using
MEX -files, PVM (Parallel Virtual Machine),
MATLAB external interface API, and C
language [22] on the Linux operating system
platform[21].

5. Results and Conclusion

Figure 5.1 shown illustrates the processes
analysis obtained for the two implemented
systems namely sequentially process system
(SPS), parallely process system (PPS). The
processes analysis for the two systems is
obtained by applying the single input image to
the varying number of processes. From the
graph obtained it is n that the computational time
for the sequentially processing system is more
when compared with the parallel processing
system

Figure 5.2 shown above illustrates the
dimension analysis obtained for the two
implemented systems namely sequentially
process system (SPS), parallely process system
(PPS). The dimension analysis for the two
systems is obtained by applying the varying the
dimensions of the input images to the single
process. From the graph obtained it is seen
that the computational time for the sequentially
processing system is more when compared with
the parallel processing system.

8

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

From the graph obtained it is seen that the
accuracy level for the two system remain almost
similar with the variation in the image
dimension.

Figure5.3 shown above illustrates the
system performance level obtained for the two
implemented systems namely sequentially
process system (SPS), parallely process system
(PPS).
The system performance level for the two
systems is obtained by varying the image
dimensions and the number of the processes.
The performance is obtained

 (Number of processes)*(total image dimension)
 Performance = --

 (Total computation time)

From the graph obtained it is seen that

the sequential performance is degraded when
compared with the parallel performance

Figure 5.4shown above illustrates the
error level obtained for the two implemented
systems namely sequentially process system
(SPS) ,parallely process system(PPS).

Figure 5.1 Figure 5.3

Figure 5.4
Figure 5.2

The aim of this paper was to design a
programming model for the development of
time-constrained image processing applications
on currently available parallel architectures, like
a cluster of workstations. The goal was to bring
the benefits of parallel computing to the image
processing community at large, without
requiring comprehensive skills needed to write a
parallel program. Parallel programming to utilize
the latent processing power of idle processors in
a network is an interesting area of computing
and today this form of computing is being been
seen as a means to obtain competitive advantage
by cost effective means [Booth et.al.1997].
Clusters of geographically dispersed computers
are being connected for enhanced collaboration
and resource sharing. There is a strong trend
towards the emergence of ‘Grid Computing’..
This paper has attempted a task-oriented
approach to parallel computing and functionality
was developed with a view of doing s-fold cross
validations in parallel. However it is apparent

 9

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
that the parallel routines developed can be used
in other tasks which involve remote distribution,
remote execution and remote collection of data.
Because of time constraint, complex MATLAB
data types such as struct matrix, cell matrix,
sparse matrix, objects etc are not handled. The
software has been tested to work with double
matrices. Thus these are also the areas where
functionality can be built to extend the software.
There are some future improvements to be made
to our work. One of the issues would be to
improve the data redistribution scheme. Data
redistribution is critical for implementing a task
and data parallel execution scheme. Our
implementation was very simple; the master
processor gathers the data processed by the
allocated processors in a task and sends it to the
master processor of the successor task in the
graph. It would be more efficient if the
processors allocated to a task can send the
computed data directly to the processors
allocated to the successor task in the graph, as it
was proposed in [84]. Another extension would
be performing the data dependency analysis of a
given image processing application. In our
research, we started from the assumption that
we already have the information related to data
dependencies in the form of the Image
Application Task Graph. It only inserts Inter-
processor communication when data is missing
or outdated on a certain processor. This method
would be an excellent tool to replace our simple
data redistribution scheme, yielding a system
that has to be best of both worlds.

Bibliography

[1]. Benjamin W. Wah, Thomas Huang,
Aravind K. Joshi, and Dan Moldovan.
Preliminary Report on the Workshop on
High Performance Computing and
Communication for Grand Challenge
Applications: Computer Vision, Natural
Language and SpeechProcessing, and
Artificial Intelligence, March 1992.
Workshop held in Arlington,
Virginia,U.S.A., February 21-22, 1992.

[2]. Vipin Chaudhary and J.K. Aggarwal.
Parallelism in Computer Vision: a
review. In Vipin Kumar, P.S.
Gopalakrishnan, and Laveen N. Kanal,
editors, Parallel Algorithms for
Machine Intelligence and Vision, pages
271–309. Springer-Verlag, 1990.

[3]. D. Ballard and C. Brown. Computer
Vision. Prentice Hall, 1982.[4] W.D.

[4]. Hillis. The Connection Machine. MIT
Press, 1985.

[5]. K.E. Batcher. Design of a Massively
Parallel Processor. IEEE Transactions

on Computers,C-29(9):836–840,
September 1980.

[6]. L.A. Schmitt and S.S. Wilson. The
AIS-5000 parallel processor. IEEE
Transactionson Pattern Analysis and
Machine Intelligence, 10(3):320–330,
May 1988.

[7]. T.J. Fountain, K.N. Matthews, and M.J.
Duff. The CLIP7A Image Processor.
IEEETransactions on Pattern Analysis
and Machine Intelligence, 10(3):310–
319, May1988.

[8]. V. Cantoni and S. Levialdi. PAPIA: A
Case History. In L. Uhr, editor, Parallel
ComputerVision, pages 3–13.
Academic Press, 1987.

[9]. W.D. Hillis and L.W. Tucker. The CM-
5 Connection Machine: A Scalable
Supercomputer.Communications of the
ACM, 36(11):31–40, November 1993.

[10]. V. Michael Bove and John A.
Watlington. Experiments in Hardware
and Softwarefor Real-Time Image
Sequence Processing. In Proc. IEEE
Workshop on Visual SignalProcessing
and Communications, September 1992.
Raleigh, NC.

[11]. A. A° stro¨m, P.E. Danielsson,
K. Chen, P. Ingelhag, and S. Svensson.
Videorate signalprocessing with PASIC
and VIP. In Proc. of Barnaimage ’91,
Barcelona, Spain,September 1991.

[12]. H. Miyaguchi, H. Krasawa,
and S.Watanabe. Digital TV with Serial
Video Processor. In Proc. of the 9th
IEEE International Conference on
Consumer Electronics, Illinois,USA,
1990.

[13]. Y. Fujita, N. Yamashita, and
S. Okazaki. A 64 Parallel Integrated
Memory Array Processor and a 30
GIPS Real-Time Vision System. In
Proc. of Computer Architectur efor
Machine Perception ’95, pages 242–
249, Como, Italy, September 1995.
IEEE Computer Society Press.

[14]. Ian Foster, Designing and
Building Parallel Programs: Concepts
and Tools for arallel Software
Engineering, Addison-Wesley
Publishing Co.,1995.

[15]. A. Geist, A. Beguelin, J.
Dongarra, W.Jiang, R. Mancheck, V.
Sunderam: PVM: Parallel Virtual
Machine. A Users' Guide and Tutorial
for Networked Parallel Computing,

[16]. Yung-Lin Liu, Hau-Yang
Cheng, Chung-Ta King, High
performance computing on networks of
workstations

 10

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
[17]. HPC Info, EPCC, 2002.
[18]. Dr Rob Baxter, Whither HPC

in Europe? A Strategic Review of
High-Performance Computing from a
European Perspective, The DIRECT
Initiative, EPCC, August 1999

[19]. J.M.Brooke, R.J.Allan,
F.Costen, M. Westhead, Grid-based
High Performance Computing, 2000.

[20]. J.G.E. Olk. SIMD-MIMD
Processor Architectures applied to
Image Processing: A Project Overview.

In J. van Katwijk, J.J. Gerbrands, M.R.
van Steen, and J.F.M. Tonino, editors,
ASCI’95: Proceedings of the first
annual conference of the Advanced
School for Computing and Imaging,
Heijen, The Netherlands

[21]. M.Mitchell, J.Oldham,
A.Samuel, Advanced Linux
Programming, New Riders, Inc. 2001

[22]. B.W.Kernighan and
D.M.Ritchie, The C Programming

 11

