
Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

Object Oriented Programming Constructs' in VHSIC Hardware

Description Language
‘Why & How’

Deepak Jain

[Life Associate Member: Computer Society of India]
Delhi Institute of Advanced Studies

ABSTRACT
 Object Oriented Programming Structure (OOPS) has proved its importance in software development in
terms of advantages like Abstraction, Encapsulation, Polymorphism, Concurrency, Modularity and
Reusability. Also the Object Oriented codes are found to be more verifiable & maintainable. Hence
they allow reduction in efforts for development, testing & maintenance of the software. In current
scenario, digital-VLSI design life cycle begins with modeling using some Hardware Description
Language (HDL) followed by functional verification of the HDL-model by its simulation. Often,
VLSI-developers show interest in getting software that simulates the functional behavior of the
hardware for its analysis from different points of concern. For the sack of effort minimization in co-
designing of Digital VLSI chips and their simulating software, it is of interest to introduce automation
in code conversion from HDL to OOPS and vise versa. Author’s efforts in this direction are
summarized in this document. The outcome of this paper may be developed as a code converter from
C++ to VHDL and vise versa.

Key Words: Computer Simulation, Co-Designing, Code Conversion, OOAD, VHDL, C++

INTRODUCTION

Object Oriented Programming Structure (OOPS)
have proved their utilities in terms of
manageable design complexities, consistency in
implementation, ease in testing, efficient
maintainability of the software and increased
reuse of software-modules. Object Oriented
Programming Languages are quite popular in
software industries for their benefits of
abstraction, encapsulation, polymorphism,
concurrency & reusability.

Object Oriented Design methodologies have
always been good tools for fair incorporation of
verifiability and maintainability in the design
because object-oriented designs are inherently
decoupled. In addition, object oriented systems
are easier to adapt and scale i.e. larger systems
can be developed by assembling reusable
subsystems. [7][9]

On the other side, Digital VLSI and hardware
design processes are mainly based on data-flow
and control-flow techniques. In current scenario,
digital-VLSI designs are first modeled in
hardware description language (HDL) and
simulated for functional verification. This
functionally-verified HDL-model is then
synthesized and the cell-placement & routing

operations are performed on it, followed by
timing verification. All these operations involve
use of some CAD tools, e.g. Xilinx ISE
(Integrated Software Environment). Wafer

implementation then follows the process.
[1][2][10]

Often, VLSI-developers show interest in getting
software that simulates the functional behavior
of the digital circuit for its analysis from
different points of concern. Simulating-Software
of the digital circuits and IC are getting popular
also because they may be used to educate men-
power about functionalities of the system,
without using a real setup. Simulators are ‘easy
to maintain’ and ‘less-spacious’ too. All these
promote simultaneous development of hardware
and their simulating software, the concept has
now evolved as another branch in engineering,
named Co-Designing.

Looking into the benefits of OOAD & OOPS, it
is preferable to develop simulating software with
Object Oriented Technology (OOT). The efforts
for developing these simulators in OOPL may be
minimized if some rules are defined to convert
HDL-Model of a digital circuit to OOPL code
directly & automatically. For this, the features of

 30

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

Object Orientation are required to be mapped to
the concepts of HDL. This paper is about
mapping of these concepts and finally coming to
a conclusion in the form of a set of rules that
help the developers to convert the HDL-code
(VHDL specifically) to OOPL code & vise versa
for a system. The outcome of this paper may
work as a code-converter from VHDL to C++
and vise versa.

WHY NEED OOPS MAPPING TO VHDL

Object Orientation is basically a concept of
relating a system to real world entities. An
object-oriented design is implemented in an
OOPL in terms of classes, objects, hierarchy and
message passing. Object Oriented Programming
Structure proved its utilities in terms of
manageable design complexities, flexibility of
implementation, ease in testing, efficient
maintainability and increased reuse of system
components. [3][7][8]

VHDL is one of the most popular HDLs in the
industry. VHDL is an acronym for VHSIC
Hardware Description Language where VHSIC
itself is an acronym for
Very High Speed Integrated Circuits. VHDL is a
hardware description language that is used to
model simple to complex digital systems. VHDL
is a language for describing functional or
structural behavior of a digital hardware. It is
very similar to a programming language like
PASCAL but the result is a hardware module
description. It has a number of constructs that
have a direct correlation with digital hardware
components. It can simulate the system on
different levels of abstraction from behavioral
(Truth Table implementation) to structural (in
terms of abstract components-instantiations).
[1][4][10]

The important thing here is that VHDL is not an
object-oriented language and hence it may not
directly be used to code for an object-oriented
design. For this, a mapping is required between
the Object Oriented Concepts & VHDL so that
‘VHDL code for an Object Oriented Design’ or
‘OOPL code for a given VHDL model’ may be
generated with the least efforts. These features
of Object Oriented Approaches are briefly
described here along with there mapped
relevance with VHDL.

THE MAPPING

It is observed that VHDL also corresponds to
some features of Object Oriented Designs and

Object Oriented Programming Structure (OOPS)
like abstraction, encapsulation, reusability,
polymorphism, concurrency etc. These concepts
of sighting the OOPS features correspondence in
VHDL is termed here as ‘Mapping’. This
mapping may be used for automation in
conversion of program codes from VHDL to
C++ and vise versa. Abstraction, Encapsulation,
Polymorphism, Reusability and Concurrency
features of Object-Oriented Programming
Structure (OOPS) mapped in VHDL as follows.

ABSTRACTION

Abstraction provides facility of hiding the
internal details of a component from other
components in the system. Abstraction allows a
system to be broken into small manageable
subsystems and their individual & independent
development. These subsystems are finally
integrated into the complete system. Abstraction
property in OOPS provides description of the
system in terms of different independent classes
or modules, which collectively describe the
system behavior.

VHDL provides ‘abstraction’ by component
dialect that facilitates to break system behavior
into smaller subsystems. The behavior of
different components can be described
independently. Finally the complete system may
be modeled by instantiating these components in
architecture of the system. There, while
integrating and interconnecting the components,
no component interferes in the internal structure
and working of the other components, quite
similar as in OOPS, where integration of
modules or classes has nothing to do with
internal view of a class. It is only the external
behavior of the module, which is of concern
while integration of the system.

ENCAPSULATION

Encapsulation may be taken as stipulating the
implementation of abstraction where different
components may access the services of other
components but none can see how the
component processes for these services and also
none can interfere in their internal working.
Encapsulation enables selective or total
information hiding in components. The concept
of encapsulation in OOPS provides us the
properties of inheritance and facilitates to have
Public, Protected & Private accesses of data
objects. [7]

 31

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

In VHDL, in order to achieve encapsulation,
different entities are defined and stored in library
that can be used as components in architectures
of other systems so that the internal information
and data of a component are inaccessible
(hidden) to the other components. Concept of
Public, Private & Protected data objects can be
visualized in VHDL as follows:
public data objects of OOPL code will be
represented in a VHDL model by the interfacing
ports of the system i.e. the ports of the main
entity of the system. It is because public data
object are globally accessible, similar to the
interfacing ports of some integrated circuit (IC)
chip.
protected data objects in a VHDL system will be
represented by the ports of the subsystems or the
components used in its architecture. It is so
because ports of internal components can be
accessed by other components within the same
system, similar to the protected data objects that
are accessible to the member functions only and

not outside the IC.
private data objects of OOP, in VHDL will be
shown by the internal signals & variables
defined in the VHDL architecture of the system.
It is also obvious as per their accessibility within

the component similar to private data objects in
OOPS, accessibility within class or the function
in which they are defined.

Keeping these points in concern, following six
C++ mapped references may be defined for
VHDL constructs.Any component used in
structural VHDL architecture (i.e. a component
port-mapped with some signals) refers to an
OOPS class inherited by the class referred by the
main entity in VHDL.

Ports of the VHDL main entity refer to global
data-variables in OOPS.
Behavior of the component used by main entity
is put as ‘protected functions’ in its equivalent
OOPS class.
Port Mapping is implemented as Public
Functions of OOPS.
‘bit’ type of VHDL model may be referred to
‘bool’ or an enumerated type may be defined for
this in OOPS.

Activities of assigning signal values to the input
ports is implemented in
‘void main()’.

REUSABLE
COMPONENT

(OW) X 4(OW)
DMUX

IW

OW

OW

OW

OW

OW

4(IW) X (IW)
MUX

IW

IW

IW

IW

Select lines/Bus

Figure 1: Setup for reusing a component at different palaces

 32

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

Modularity & Reusability
Modularity defines the units of reuse. The
system is divided into a number of components
and these components may be reused in different
parts of the system. Modularity seems to be
closely related to abstraction but here the focus
of application is different. In abstraction, the
focus of division of system into subsystems is to
hide the internal details of subsystems whereas
in modularity, focus is to divide the system in
reusable units called modules that can be
compiled individually and stored in library.
[4][7]

In the hardware systems, the concept of
reusability may be of two types:
One: To use the single component at
different places.
Two: To use the clones of a component at
different places.

For the first case, i.e. to use the single
component at different places, we can use a
structure as shown in Figure 1. In this figure,
'IW' is the width of Input port and 'OW' is the
width of output port of the reusable component.
The reusable component receives input through

input buses I0, I1, I2 and I3 and provides output
on output buses O0, O1, O2 and O3. The input
buses (I0 to I3) are of width IW each and output
buses (O0 to O3) are of OW each. This system
can easily be simulated in VHDL using MUX,
DMUX and Reusable components in library and
the components needing access to the reusable
component can access it through its I/O buses.

For the second case i.e. to use the clones of a
smaller system at different places in a large
architecture it can be defined as an entity in the
library and its instantiations can be used in the
architecture of the bigger system. VHDL
keyword ‘component’ can be used for
instantiating a clone of the subsystem and ‘port
map’ can be used to make interconnections.

To instantiate multiple orderly-interconnected
clones in VHDL, ‘generate’ keyword can be
used. In any OOPL, it is analogous to define
multiple objects of a class & then use their
functionality & behavior individually. Each of
these objects will have its own identity & state
but their behavior will be same for same
conditions. Similarly in VHDL, different
component-instantiations have their own identity

& state but all components have same behavior
as that of their base identity from which they
were generated.

POLYMORPHISM

Another feature of the object-oriented concepts
is to provide the facility of function overloading
in terms of polymorphism. In fact,
polymorphism may be defined as the capability
of existence in more than one form. [8]

The similar concept in VHDL may be
implemented using the subprogram overloading.
In this we may have two or more programs with
same names. For example:
function COUNT (ORANGES: INTEGER)
return INTEGER;
function COUNT (APPLES: BIT) return
INTEGER;

Here the function COUNT is said to be
‘overloaded’. When a call is made to either of
them, it is possible to identify the right function,
which the call is actually meant for. The target
function is identified by the type of actuals
(parameters) passed because the two functions
have different parameter-types. [1][5]

CONCURRENCY

In the concerned domain, concurrency means to
concurrent running of the functions or processes.
OO designs allow independent processes to run
simultaneously in parallel. Object Oriented
Program codes define the concurrent states of
objects and subsystems along with their
concurrent state-transition using multithreading
facilities. It is a type of explicit parallelism
dialect provided in object oriented programming
language like JAVA. Using such parallelism
dialects, concurrent behavior of a design can be
implemented.

VHDL implements concurrent states & behavior
of subsystems using “Process” statement. The
statements under the “Process” block execute
sequentially but the “Process” statement itself is
a concurrent statement. It is similar to that the
statements under a ‘thread’ execute sequentially
but multiple threads run parallel. Multiple OOPL
threads are analogous to multiple VHDL process
blocks, which will finally be executed
concurrently. Data flow architecture modeling is
another way to achieve concurrency in VHDL
models.

 33

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

IDEA OF APPLYING AND USAGE OF
MAPPING

Figure 2.c: Rules
of Mapping

Rules to be followed for

conversion

i. Any component used in

structural VHDL
architecture (a component
port-mapped with some
signals) refers to an OOPS
class inherited by the
class referred by the main
entity in VHDL.

ii. Ports of the VHDL main

entity refer to global
data-variables in OOPS.

iii. Behavior of the component

used by main entity is put
as ‘protected functions’ in
its equivalent OOPS class.

iv. Port Mapping is implemented

as Public Functions of
OOPS.

v. ‘bit’ type of VHDL model

may be referred to ‘bool’
or an enumerated type may
be defined for this in
OOPS.

vi. Activities of assigning

signal values to the input
ports is implemented in
‘void main()’.

The concepts of mapping of OO features to
VHDL features, as discusses herein this paper,
may be used to convert a given VHDL
simulation model of some digital circuit to
OOPL software simulation of the system and
vise versa. A simple example of such application
is discussed here as follows. Here given (Figure
2.a) the VHDL model of a simple Half Adder
module. Using the rules of conversion as
discussed, an abstract OOPL (C++) code may be
generated as in Figure 2.d.

Figure 2.b: Half Adder RTL view

Figure 2.a: Half Adder VHDL Model

VHDL Structural Model for Half Adder

library IEEE;
use IEEE.std_logic_1164.all;
entity adder
 port (X, Y:in bit; S, C:out bit);
end adder;

architecture adder_struct of adder is
 component XOR1
 port(XI1, XI2:in bit; XO:out bit)
 end component;

 component AND1
 port(AI1, AI2:in bit; AO:out bit)
 end component;

Begin
 HA1: XOR1 port map (X, Y, S);
 HA2: AND1 port map (X, Y, C);
End adder_struct

 34

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

#include <iostream.h>

struct input
{
 bool X;
 bool Y;
} inPort;

struct output
{
 bool S;
 bool C;
} outPort;

class adder
{
 private:

 protected:

bool XOR1(bool XI1, bool XI2)
{

 bool ret;
/*Here, the functionality of the XOR1 component may be implemented as
described in its architecture*/

 return ret;

}

bool AND1(bool AI1, bool AI2)
{

 bool ret;
/*Here, the functionality of the AND1 component may be implemented as
described in its architecture*/

 return ret;

}

 public:

void HA1(bool I1, bool I2)
/*here the component used is XOR1, and hence its input port (bit, bit)
can directly be mapped to the input parameters of the void HA1*/

{
 outPort.S = XOR1(I1, I2);
}

void HA2(bool I1, bool I2)
/*here the component used is AND1, and hence its input port (bit, bit)
can directly be mapped to the input parameters of the void HA2*/

{
 outPort.S = AND1(I1, I2);
}

}
void main()
{
/*here, the values may be assigned to the input ports “inpot.X ans input.Y” as
according to the used signals by forcing values in any VHDL simulator while
simulating the application*/

 adder a1;
 a1.HA1(inport.X, inPort.Y);
 a1.HA2(inport.X, inPort.Y);
}

 35

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

CONCLUSIONS & FUTURE WORK

Conceptually, constructs of an object-oriented
design have direct resemblance with those of
VHDL models. VHDL models also exhibit the
properties of object-oriented designs including
abstraction, modularity, reusability, polymorphism
and concurrency. To bring these concepts to a
mathematical level, efforts are required to define a
more formal logical platform where these concepts
may be transformed into materialistic results for
the benefits of VLSI and software designers. This
analysis can be concluded as an effort to answers
the following summarized queries:
With this analysis, can the hardware systems be
classified in terms of complexity, nature and/or
some other characteristics where the Object
Oriented concepts give better design results in
lesser efforts?
Can a format or concept be defined where using
object-oriented language; simulation software
might be developed for a given HDL model i.e.
can this analysis be translated into a VHDL to
OOPS code converter?
Can a concept be defined where an HDL Model
may be developed for a system from Object-
Oriented Language code of its simulator i.e. can a
code converter be developed to convert OOPS
(C++) code to HDL (VHDL) model?
Can a system or some concept be produced with
which one may be able to implement an object-
oriented design of some hardware system into its
HDL code and vise versa?

REFERENCES

[1] Douglas L. Perry (2000), VHDL
Designing, PHI Publication.

[2] Douglas L. Perry (2002), VHDL:

Programming by Example, McGraw-Hill
Company, New York.

[3] Grady Booch (1994), Object Oriented

Analysis & Design with Application, 2nd
Edition, Addison-Wesley.

[4] James Rumbaugh (2002), Object Oriented

Analysis & Design, Prentice Hall.

[5] Jayaram Bhasker (1999), VHDL Primer,
3rd Edition, Prentice Hall of India.

[6] Kai Hwang (2001), Advanced Computer

Architecture-Parallelism, Scalability,
Programmability, Tata McGraw Hill.

[7] Richard C. Lee, William M. Tepfenhart

(2005), UML and C++, A Practical Guide
to Object Oriented Development, 2nd
Edition, Prentice-Hall of India.

[8] Robert Lafore (2003), Object Oriented

Programming in Turbo C++, 3rd Edition,
Galgotia Publication.

[9] RS Pressman (1992), Software

Engineering, A Practitioner’s Approach,
3rd Edition, McGraw Hill Company, New
York.

[10] Z. Navabi (1998), VHDL: Analysis and

Modeling of Digital System, 2nd Edition,
McGraw Hill Company, New York

 36

