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                                                                                ABSTRACT 

An electronic voting scheme is a set of protocols that allow a collection of voters to cost their votes, while 

enabling a collection of authorities to collect votes, compute the final tally, and communicate the final tally 

that is checked by talliers. This scheme is based on the RSA and factoring assumptions. We apply the 

protocols of [CDS – 88] to Guillon – Quisqnater’s identification protocol [GQ –88] to constant proofs of 

validity for ballots. 

 
1. INTRODUCTION: 

An electronic scheme is a set of 

protocols that allow a collection of voters to cost 

their votes, while enabling a collection of 

authorities to collect votes, compute the final 

tally, and communicate the final tally that is 

checked by talliers. In cryptographic literature on 

voting schemes, three important requirements are 

identified. 

Privacy: 

A system maintains privacy if: 

1. Neither election authorities nor any 

one can link any ballot to the voter 

who cost it. 

2. No voters can prove that he or she 

voted in a particular way. 

Verifiability: 

A system is verifiable if all voters can 

independently verify that their voters have been 

counted correctly without sacrificing privacy. In 

addition each voter must be able to verify the 

final results of the tally. 

Robustness: 

A system is robust if it ensures that all the system 

can recover from the faulty behavior of any 

(reasonably sized) location of parties. 

 

The main contribution of this paper is presenting 

an efficient voting scheme that satisfies universal 

verifiability privacy and robustness. 

2. OVERVIEW OF THE APPROACH 

The parties in a voting scheme are 

modeled as probabilistic polynomial time 

process. Two means of communication are 

typically assumed to be available for these 

parties. 

A bulletin board: 

The communication model required for our 

election scheme is viewed as a public broadcast 

channel with memory, which is called a bulletin 

board. All the communications through the 

bulletin board is public and can be read by any 

party (including passive observers). No party can 

erase any information from the bulletin board. 

Private channels: 
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To support private communication between 

voters and authorities. Fro this task any secure 

public key encryption scheme is suitable. 

The parties of the voting scheme perform the 

following steps to execute an election. To cast a 

vote, each voter constructs a ballot as an 

encryption of the desired vote and post the ballot 

to the bulletin board. At his point, a proof of 

validity is also required that convinces all parties 

that the posted encryption contains a valid vote, 

without revealing it.  

The auhorities, how ever, are able to decrypt the 

ballots (because of the extra information received 

from the voter through the private channel). In 

the end, the final tally is published together with 

some auxiliary information to enable universal 

verifiability. 

More technically, universal verifiability is 

achieved by requiring the encryption function to 

be suitably homomorphic. 

Central to our results is the way we achieve an 

efficient proof of validity for ballots. The proof 

of validity shows t any interested party that a 

ballot actually represent a vote e.g., that it either 

represents a yes or a no, and nothing else. 

To maintain privacy for the voters, the general 

idea is to use some sort of zero – knowledge 

proof. The problem is however that ZK proofs 

usually require a large number of repetitions 

before the desired level of confidence is 

achieved. The efficiency of the whole scheme is 

influences by these proofs. 

Our contribution now is two fold. We use a 

particular efficient homomorphic encryption 

scheme, based on q-th residuary assumption. 

“ a number is a q-th residue modulo n if there 

exists an α such that α q  =x (mod n)”, moreover , 

by applying the results from [CDS – 94] , the 

proof of validity is simple three – move – 

protocol which is witness indistinguisible ( in fact 

, witness hiding as well). Instead of ZK proofs. 

 

3. CRYPTOGRAPHIC PRIMITIVES 

We implement our election based on q-th 

residuosity assumption. 

 “A number x is a q-th residue modulo n 

if there exists an α such that  

α q  =x (mod N)”. 

Homomorphic Encryption with Efficient Proof of 

Validity: 

Initialization: 

 Initialized the parameters of the scheme 

are a modulus N, Which is a product of two large 

primes, a prime q with gcd (q, Ф (N))=1. Also an 

element h Є Z *N   - are available to all parties. 

The fixed number h is not a q-th residue modulo 

N. 

Encryption: 

A participant encrypts V by choosing α Є RZ N   

and computes  

B  α q h v  . 

Opening: A participant can later open B by 

revealing v and α. A verifying party then checks 

whether B = α q h v   and accepts v as the 

encrypted value. 

Homomorphic property: 

Encryption is homorphic in the sense that; if B1 

and B2 are encryptions of v1 and v2 respectively, 

then B1 .B2 is an encryption of (v1+v2) mod q. 

Proof of knowledge for q-th residuosity: Using 

thenotations above, we present proof of 

knowledge for q-th residuosity, where by a 

proper shows possession of an α   Є Z q satisfying 

x= α q . 
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PROTOCOL –1 

 
[x= α q ] 
 
Prover   Verifier 
 
W Є R Z * N    
 
A  w q  
 

    a 
 
       C Є R Z q 
 
     c 
 
r  w α c 
     
     r 
 
       r q ?  ≡ a x c 

    Figure- 1
 
Theorem: 1: 
 
The above protocol is a three – more public coin 

proof of knowledge for q-th residuosity. The 

proof satisfies special sound ness and special 

honest verifier zero knowledge. 

Proof: Special soundness now holds because for 

any two accepting conversations (a,r,r) and (a, c1, 

r1), c > c1, it follows that 
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 Since 0 < c – c1 < q, we have that there 

exist integers terms k, 1 such that  
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which is contradiction to the q-th residuosity 

assumption. Further more, by the result of [CDS 

– 94], the protocol of fig(2), in a proof of 

knowledge that a voter knows q-th residue of 

(Bh) or .⎥⎦
⎤

⎢⎣
⎡

h
B

 Thus the verifier learns that the 

voter knows α and v ∈ {1, -1} such that B = 

vq hα without obtaining any information about 

actual value of v. 

Proof of validity: in our voting scheme to follow, 

it will be the case that a voter posts an encryption 

of a value v Є {1, -1}.  To demonstrate that the 

encrypted value is indeed is  {1, -1} without 

revealing it, the voter and the verifier execute the 

following efficient proof of validity. 

PROTOCOL-2 

VOTER       VERIFIER 

V=1     V=-1 

α , r1, d1, w2  Є  Z q   α , r2, d2, w1  Є  R Z n 

 
B  α q . h     B  α q / h 
 
a1  r1 

q (Bh) –d 
1   a1  w1 

q 

 

a2  w2 
q   a2  r2 

q   .⎥⎦
⎤

⎢⎣
⎡

h
B – d

2 

      B, a1, a2 
    
    C Є R Z n 

   C 

d2  =c -  d1
      d1 = c -  d2 

r2  = w2 .  α d 
2           r1  = w1 .  α d 

1 

d1, d2 ,  r1, r2 

d1 + d2    = c 

r1 
q     ≡  a 1 (Bh) d1

  

r2 
q    ≡  .⎥⎦

⎤
⎢⎣
⎡

h
B  d2 

(Figure 2) 
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Verifiable secret sharing: To achieve robustness 

efficiently, non – interactive verifiable secret 

sharing, efficient solution for n out of n case is 

possible can apply. 

Under the q-th residusity assumption, our 

election scheme satisfies universal verifiability, 

robustness and privacy. 

 

4. SECRET BALLOT ELECTION SCHEME 

We now present our main result, a secret 

ballot election scheme. The participant in the 

election scheme are n authorities. A1, A2,…., An 

and m voters V1, V2, ….Vm. The scheme works 

as follows: Each voter Vi prepares a vote by 

randomly selecting bi ∈{1,-1}. The voter first 

encrypts bi by computing Bi = αi 
q

. ibh , where αi 

∈ Zq is chosen randomly, and post Bi to the 

bulletin board. Subsequently bi is considered as a 

secret which is to be shared among the 

authorities. The voter also posts proof (Bi). In the 

end the aggregate value T = ∑
=

n

li
ib  reduced 

module q represent the result of the election. 

Ballot Construction and Vote costing : Each voter 

Vi posts bi  ∈{1,-1}. In the following. 

1. The voter randomly chooses bi ∈{1,-1} 

and computes Bi = αi 
q

. ibh , the voter 

also computes proof of (Bi) also the 

voter computes. 

  Bin = (αin)q inbh ,     1< l < n 

2. The voter posts Bi, proof (Bi), Bi1, 

Bi2,….,  Bin to the bulletin board. 

3. All participants verify which the ballot 

Bi is correctly formed by checking proof 

of (Bi ). 

4. The voter chooses the shares (aij, bij) 

 Where ∏
=

α=
n

lj
iija

 

 

∑
=

=
n

li
iij bb  

  Sends (aij, bij) to the authority aj 

using a private channel. 

5. Each authority checks the received 

shares (aij, bij) by using that  

 (aij)q hb
ij

 = Bij. 

Tallying : Each authority Aj posts Sj,  Tj and 

sends to the bulletein 

  Sj = ∏
=

m

li
ija ,     Tj = 

∑
=

n

li
ijb  

 Each tallier checks the share (Sj, Tj) 

posted by Aj by verifying that 

 Sq
j . 

jTh  = ∑
=

m

li
ijB )(       

 The final stage is the tally itself. Let us 

denote as A = {j | Tj is correct}. The tally is the 

interpolation of the polynomial and may be 

calculated as 

  T = 

∏∑
∈∈ −}{ jAlAj

j jl
lT  

 We assume that in the successful 

election, the shares of every voter have been 

accepted by all authorities. i.e., all verification by 
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the authorities in the last step of the ballot 

construction is successful. In case an authority 

receives a false share, the authority may post the 

share so that any body can verify that share is not 

correct and that it corresponds to the posted 

encryption of step (4) in the ballot construction. 

 

Theorem: 2 Under the q-th residuosity 

assumption , our election scheme saties universial 

verifiability, robustness and privacy. 

Proof: 

To prove universal verifiability, first note that 

only ballots are contact on account of theorem 

(1). Further the final tally is correct, if the step 

(2) of the tallying holds for all authorities. This 

deals with universal verifiability and robustness. 

The privacy property can easily prove from the 

fact that the secret sharing scheme used and the 

proof of validity (protocol) are information – 

theoretical scheme. 

5. CONCLUSION 

We have shown a very efficient scheme for 

secure election based on q-th residuosity 

assumption. The scheme satisfies well-known 

requirements privacy, universal verifiability and 

robustness. 
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