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ABSTRACT 
  
“Reduction in Runtime using trap analysis “ concentrates on finding the procedure for inserting traps at 
required places and optimizing runtime by moving the traps to low frequency regions. Using this, one can 
benefit in two ways: (i) being able to generate efficient code (ii) being able to produce more reliable 
programs by careful examination of errors in the programs. Traps are placed within a loop so as to avoid 
abrupt termination on bound violations. Since these traps are placed in high frequency regions, apply 
frequency reduction optimization technique to move this trap to low frequency regions. The results 
clearly indicates significant reduction in number of instructions, number of  machine cycles and 
execution times for array bound checks applied on sorting techniques for inner loops as well as outer 
loops.  In the present paper, the trap analysis is performed on all sorting techniques which have nested 
loops of depth two. However insertion of traps increases the run time, hence to overcome this 
disadvantage,an innovative method of optimization has been proposed in the present paper which move 
the checking code out of loops.  
 
1. INTRODUCTION  

Many compilers generate runtime checks 
to detect errors due to array bound violations 
dynamically which aid in debugging of programs. 
The overhead of these checks are quite high, 
resulting in inefficient code with high execution 
times. Earlier investigations indicate that execution 
times for programs may double if runtime checks 
are performed [1]. This is true for both optimized 
and unoptimized code because traditional 
optimizations are inefficient in reducing the 
overhead due to range checks. When the XL 
family of compilers was first released for the IBM 
RS/6000, they were coded in PL.8. Even though 
the compilers were producing code, range 
checking remained an integral part of the running 
code. The net cost of the checking was in the order 
of 1-2%. The aggressive optimization of range 
checks decreases the costs at an acceptable 
level[2]. What was found 20 years ago has become 
common place for the latest research area. The 
basis of our work is the work which is actually 
implemented for inner loops and accepted as novel 
for IBM XL family of compilers[3]. In the present 
study an innovative extension based on the above 
work is implemented for outer loops and it is been 
implemented on some of the sorting techniques 
and good optimization is obtained[6,7,8,9].  
2. METHODOLOGY  

The simplest and by far the most common 
case of optimizable range checking code is a range 
check embedded in a loop. For correctness 

following assumptions are made:  
i. The loop should have an iteration variable 

‘i’ with an initial value ‘a’ and   
 

       0≤ i ≤  j.  
ii. ‘i’ and ‘j’ must be positive integers where j 

≥ i and in every iteration ‘i’ can be 
increased by ‘b’ where b ≥ 1, implies 
incremental factor is i+b.  

 
By encoding the range check as a trap instruction, 
the trap has the property of not introducing 
program flow under normal conditions, much in 
the same way as the divide instruction does not 
introduce flow under normal conditions. That is to 
say, if the arguments of the trap do not indicate a 
range violation, the next sequential instruction is 
executed. If the divisor is non-zero, the division 
completes, and the next sequential instruction is 
executed. Otherwise, a divide check interrupt (and 
program termination) occurs. The trap instruction 
can then be subjected to code motion and common 
sub expression elimination much like any other 
instruction.   

Consider the trap instruction as having its 
operand x compared to a region constant C, and 
the loop ending test which compares the induction 
variable ’i’ to another region constant C′. Trap 
analysis s performed only if i-x = r, where r is 
some region constant. It is conceivable that i might 
be modified between the instruction which 
compares ‘i’ to C′ and then branches to an 
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instruction or exit point from the loop. The 
induction variable is not incremented between the 
test and the branch instructions.  
Let ‘x’ represent the difference between the trap 
operand t, and the induction variable value at the 
loop entry point. If ‘i‘ is the induction variable at 
the Block entry point then t will have the value i+x 
for the next iteration (Fig. 2.1). To facilitate the 
remainder of the analysis, which is inductive in 
nature, the present study assumes an increasing 
induction variable. Then trap instructions (and any 
preceding instructions which are used to compute 
the operands for the trap instruction) are copied 
into the predecessor node. If a range violation is 
detected after the first iteration, the present study 
has taken care such that it will not occur in 
subsequent iterations.  

  
_________________________________
___________                                      
Predecessor node  
_________________________________
_____________                           
Block entry point  
t=i+x  
t ≤C      trap instruction  
i≤ C′       loop termination test  
_________________________________
_____________          
      Loop exit point  

  
Fig. 2.1 Bound Checking with Traps. 
  

In order to remove the trap instruction 
from the loop altogether an adjustment must be 
made to C′ to guarantee that i and consequently t 
will not increase to a value which will cause a trap 
to terminate the program in subsequent iterations. 
The trap condition for staying in the loop is given 
above by the following condition  

t≤ C  
Since  

t=i+x  
then the condition for the trap not terminating the 
program on the next iteration is  

i ≤ C-x  
While the original condition for staying in the loop 
had been i ≤ C′,  
replace the loop ending test with:  

 i ≤ min (C′, C-x).  
The principal advantage of above function is that 
the first argument of the minimum function 
guarantees that i will not attain larger values than 
it would have with the original loop ending 
condition and the second argument guarantees that 
in the subsequent iteration the trap will not 

terminate the program.  
It has been shown that copying a trap 

instruction inside a loop cannot cause a program to 
terminate during execution of the loop body. The 
new loop end condition guarantees that trap cannot 
cause termination in subsequent iterations since 
loop end condition ensures no abrupt termination 
in subsequent iteration. The present method 
removes the trap placed inside the loop if it no 
longer serves any function. Since check is done at 
the end of the loop which forces the loop to be 
executed even on boundary violation, the trap 
instruction is placed in a predecessor node which 
checks the boundary violations. By this the loop is 
executed within the valid boundaries which 
ensures that program gets terminated when C′ ≠ 
min (C′, C-x).  

_________________________________
_____________                
Predecessor node  
t=i+x  
t ≤C      trap instruction  
_________________________________
______________               Block 
entry point  
i≤ min (C′, C-x)     loop termination test  

 
i > C′       loop exit trap  

Fig. 2.2 Bound Checking optimization with Traps. 
 

In contrast to the approach of [82]  and 
[67], which implements a system that uses theorem 
proving techniques to verify the absence of array 
range violation in program, present approach  can 
reduce the run-time overhead due to bound checks 
that can be eliminated at compile time. There are 
two limitations of program verification 
approach:(i) It often requires the programmer to 
supply assertions to aid the verification proofs and 
(ii) It is restricted to programs written in a 
structured manner(without go to). Hence this 
approach is not directly applicable to problem of 
automatic range check optimization of arbitrary 
programs.  
3. EXPERIMENTAL RESULTS  

This technique is tested on different 
sorting techniques and other programs using IBM 
Rational Quantify tool on Pentium IV 2.5 GHz 
Processor using three different options:  
Case 1: No range checking code.  
Case 2: Range checking code with Traps  
Case 3: Optimized range checking code with 
Traps.  
 The above three cases are studied in depth and as 
an experimental model, they are applied on bubble 
sort, insertion sort, quick sort and selection sort 
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techniques. The results are evaluated and 
compared not only in terms of execution times but 
also in terms of machine cycles and number of 
assembly instructions for inner and outer loops.  

Table 2.1 describes optimization in terms 
of number of instructions, Table 2.2 describes 
optimization in terms of execution times and Table 
2.3 describes optimization in terms of memory 

cycles. The results obtained are shown as bar 
graphs in Fig.2.3, Fig.2.4 and Fig.2.5. For better 
understanding, the same results are plotted as line 
graphs, shown in Fig.2.6, Fig.2.7 and Fig.2.8 
respectively.  
Table 2.1(a) optimization in terms of number of 
instructions- inner loop .  

 
Inner Loop- Number of instructions  

Sorting Technique Case 1  Case 2 Case 3 

Selection Sort  463  515  505  

Insertion Sort  443  489  479  

Bubble Sort  497  521  512  
Quick Sort  541  564  552  

 

  
 
 
 
 
 
 

 
Fig. 2.3(a) Results of optimization in terms of 
number of instructions for inner loop.  

Table 2.1(b).Optimization in terms of number of 
instructions for Outer loop.  

 
Outer Loop- Number of instructions  

Sorting Technique Case 1  Case 2 Case 3 
Selection Sort  510  528  514  
Insertion Sort  456  468  459  
Bubble Sort  553  676  562  
Quick Sort  599  621  602  

 
     

 
 
 
 
 
 

 
Fig. 2.3(b) Results of optimization in terms of 
number of instructions for outer loop.  

Table 2.2(a) Optimization in terms of Execution 
time for inner loop.  

 
Inner Loop-Execution time in Micro seconds  

 Sorting Technique  Case 1  Case 2 Case 3 
Bubble sort  27.38  31.88 30.07 

Insertion sort  12.72  13.33  12.29 

Selection sort  14.16  15.75  14.63 
Quick sort  13.04  13.65  13.05 
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Fig. 2.4(a) Results of optimization in terms of 
Execution times for Inner loop.  

  
Table 2.3(b) Optimization in terms of Execution 
time for outer loop.  

 

Outer Loop - Execution Time in Micro seconds. 
  
   Case 1  Case 2 Case 3 
Bubble sort  32.06  34.77  32.82  

Insertion sort  13.27  14.38  13.41  

Selection sort  15.16  16.88  15.68  
Quick sort  14.83  15.63  14.93  

 
  

  
 
 
 
 
 
 

 
Fig. 2.4(b) Results of Optimization in terms of 
Execution times for Outer loops.  
  

Table 2.3(a) Optimization in terms of Machine 
Cycles for inner loop.  
  

 
Inner Loop- Machine cycles.  

   Case 1  Case 2  Case 3 
Bubble sort  80293  93503  93055 

Insertion sort  30316  30436  30338 

Selection sort  38600  40030  39734 
Quick sort  34684  37033  36983 
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Fig. 2.5(a) Results of optimization in terms of  
Machine Cycles for inner loops.  

Table 2.3(b) Optimization in terms of Machine 
Cycles for outer loop.  

 
   
    Outer Loop- Machine cycles  
    
   Case 1  Case 2  Case 3 

Bubble sort  80393  94350  94938 

Insertion sort  30436  31836  30538 

Selection sort  38797  41506  40210 
Quick sort  35704  39033  38983 

 
  
 
 
 
 
 
 

 
Fig. 2.5(b) Results of Optimization in terms of 

Machine Cycles for Outer loops.  

 

    
 
Fig. 2.6 Results of Optimization in terms of 

number of instructions.   
  

 

  
Fig. 2.7 Results of Optimization in terms of 
Execution times for outer loop.  
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Fig. 2.8.Results of Optimization in terms of 
Machine Cycles for outer loop.  
 
4. CONCLUSION  
The above results clearly indicate significant 
reduction in number of instructions, number of 
machine cycles and execution times for array 
bound checks applied on sorting techniques for 
inner loops as well as outer loops when case 2 is 
compared with case 3.  
 In the present study, the trap analysis is 
performed on all sorting techniques which have 
nested loops of depth two. Had this analysis been 
carried out for the regions of high execution 
frequency, the results would have been capable of 
yielding impressive gains. Since the insertion of 
traps increases the run time, there is scope for 
applying other optimizations like redundancy 
elimination, common sub expression elimination.  
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