
Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

7

REDUCTION IN RUN TIME USING TRAP ANALYSIS

1Prof. K.V.N.Sunitha 2Dr V. Vijay Kumar

1Professor & Head, CSE Dept, G.Narayanamma Inst.of Tech. & Science, Shaikpet, Hyderabad, India.
2Dr V. Vijay Kumar Professor & Head, CSE Dept, R.G.M.I.T, Nandyal, Kurnool, India E-mail:

1sunitha_kvn@rediffmail.com, 2vijayvakula@yahoo.com

ABSTRACT

“Reduction in Runtime using trap analysis “ concentrates on finding the procedure for inserting traps at
required places and optimizing runtime by moving the traps to low frequency regions. Using this, one can
benefit in two ways: (i) being able to generate efficient code (ii) being able to produce more reliable
programs by careful examination of errors in the programs. Traps are placed within a loop so as to avoid
abrupt termination on bound violations. Since these traps are placed in high frequency regions, apply
frequency reduction optimization technique to move this trap to low frequency regions. The results
clearly indicates significant reduction in number of instructions, number of machine cycles and
execution times for array bound checks applied on sorting techniques for inner loops as well as outer
loops. In the present paper, the trap analysis is performed on all sorting techniques which have nested
loops of depth two. However insertion of traps increases the run time, hence to overcome this
disadvantage,an innovative method of optimization has been proposed in the present paper which move
the checking code out of loops.

1. INTRODUCTION

Many compilers generate runtime checks
to detect errors due to array bound violations
dynamically which aid in debugging of programs.
The overhead of these checks are quite high,
resulting in inefficient code with high execution
times. Earlier investigations indicate that execution
times for programs may double if runtime checks
are performed [1]. This is true for both optimized
and unoptimized code because traditional
optimizations are inefficient in reducing the
overhead due to range checks. When the XL
family of compilers was first released for the IBM
RS/6000, they were coded in PL.8. Even though
the compilers were producing code, range
checking remained an integral part of the running
code. The net cost of the checking was in the order
of 1-2%. The aggressive optimization of range
checks decreases the costs at an acceptable
level[2]. What was found 20 years ago has become
common place for the latest research area. The
basis of our work is the work which is actually
implemented for inner loops and accepted as novel
for IBM XL family of compilers[3]. In the present
study an innovative extension based on the above
work is implemented for outer loops and it is been
implemented on some of the sorting techniques
and good optimization is obtained[6,7,8,9].
2. METHODOLOGY

The simplest and by far the most common
case of optimizable range checking code is a range
check embedded in a loop. For correctness

following assumptions are made:
i. The loop should have an iteration variable

‘i’ with an initial value ‘a’ and

 0≤ i ≤ j.
ii. ‘i’ and ‘j’ must be positive integers where j

≥ i and in every iteration ‘i’ can be
increased by ‘b’ where b ≥ 1, implies
incremental factor is i+b.

By encoding the range check as a trap instruction,
the trap has the property of not introducing
program flow under normal conditions, much in
the same way as the divide instruction does not
introduce flow under normal conditions. That is to
say, if the arguments of the trap do not indicate a
range violation, the next sequential instruction is
executed. If the divisor is non-zero, the division
completes, and the next sequential instruction is
executed. Otherwise, a divide check interrupt (and
program termination) occurs. The trap instruction
can then be subjected to code motion and common
sub expression elimination much like any other
instruction.

Consider the trap instruction as having its
operand x compared to a region constant C, and
the loop ending test which compares the induction
variable ’i’ to another region constant C′. Trap
analysis s performed only if i-x = r, where r is
some region constant. It is conceivable that i might
be modified between the instruction which
compares ‘i’ to C′ and then branches to an

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

8

instruction or exit point from the loop. The
induction variable is not incremented between the
test and the branch instructions.
Let ‘x’ represent the difference between the trap
operand t, and the induction variable value at the
loop entry point. If ‘i‘ is the induction variable at
the Block entry point then t will have the value i+x
for the next iteration (Fig. 2.1). To facilitate the
remainder of the analysis, which is inductive in
nature, the present study assumes an increasing
induction variable. Then trap instructions (and any
preceding instructions which are used to compute
the operands for the trap instruction) are copied
into the predecessor node. If a range violation is
detected after the first iteration, the present study
has taken care such that it will not occur in
subsequent iterations.

Predecessor node

Block entry point
t=i+x
t ≤C trap instruction
i≤ C′ loop termination test

 Loop exit point

Fig. 2.1 Bound Checking with Traps.

In order to remove the trap instruction
from the loop altogether an adjustment must be
made to C′ to guarantee that i and consequently t
will not increase to a value which will cause a trap
to terminate the program in subsequent iterations.
The trap condition for staying in the loop is given
above by the following condition

t≤ C
Since

t=i+x
then the condition for the trap not terminating the
program on the next iteration is

i ≤ C-x
While the original condition for staying in the loop
had been i ≤ C′,
replace the loop ending test with:

 i ≤ min (C′, C-x).
The principal advantage of above function is that
the first argument of the minimum function
guarantees that i will not attain larger values than
it would have with the original loop ending
condition and the second argument guarantees that
in the subsequent iteration the trap will not

terminate the program.
It has been shown that copying a trap

instruction inside a loop cannot cause a program to
terminate during execution of the loop body. The
new loop end condition guarantees that trap cannot
cause termination in subsequent iterations since
loop end condition ensures no abrupt termination
in subsequent iteration. The present method
removes the trap placed inside the loop if it no
longer serves any function. Since check is done at
the end of the loop which forces the loop to be
executed even on boundary violation, the trap
instruction is placed in a predecessor node which
checks the boundary violations. By this the loop is
executed within the valid boundaries which
ensures that program gets terminated when C′ ≠
min (C′, C-x).

Predecessor node
t=i+x
t ≤C trap instruction

______________ Block
entry point
i≤ min (C′, C-x) loop termination test

i > C′ loop exit trap

Fig. 2.2 Bound Checking optimization with Traps.

In contrast to the approach of [82] and
[67], which implements a system that uses theorem
proving techniques to verify the absence of array
range violation in program, present approach can
reduce the run-time overhead due to bound checks
that can be eliminated at compile time. There are
two limitations of program verification
approach:(i) It often requires the programmer to
supply assertions to aid the verification proofs and
(ii) It is restricted to programs written in a
structured manner(without go to). Hence this
approach is not directly applicable to problem of
automatic range check optimization of arbitrary
programs.
3. EXPERIMENTAL RESULTS

This technique is tested on different
sorting techniques and other programs using IBM
Rational Quantify tool on Pentium IV 2.5 GHz
Processor using three different options:
Case 1: No range checking code.
Case 2: Range checking code with Traps
Case 3: Optimized range checking code with
Traps.
 The above three cases are studied in depth and as
an experimental model, they are applied on bubble
sort, insertion sort, quick sort and selection sort

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

9

techniques. The results are evaluated and
compared not only in terms of execution times but
also in terms of machine cycles and number of
assembly instructions for inner and outer loops.

Table 2.1 describes optimization in terms
of number of instructions, Table 2.2 describes
optimization in terms of execution times and Table
2.3 describes optimization in terms of memory

cycles. The results obtained are shown as bar
graphs in Fig.2.3, Fig.2.4 and Fig.2.5. For better
understanding, the same results are plotted as line
graphs, shown in Fig.2.6, Fig.2.7 and Fig.2.8
respectively.
Table 2.1(a) optimization in terms of number of
instructions- inner loop .

Inner Loop- Number of instructions

Sorting Technique Case 1 Case 2 Case 3

Selection Sort 463 515 505

Insertion Sort 443 489 479

Bubble Sort 497 521 512
Quick Sort 541 564 552

Fig. 2.3(a) Results of optimization in terms of
number of instructions for inner loop.

Table 2.1(b).Optimization in terms of number of
instructions for Outer loop.

Outer Loop- Number of instructions

Sorting Technique Case 1 Case 2 Case 3
Selection Sort 510 528 514
Insertion Sort 456 468 459
Bubble Sort 553 676 562
Quick Sort 599 621 602

Fig. 2.3(b) Results of optimization in terms of
number of instructions for outer loop.

Table 2.2(a) Optimization in terms of Execution
time for inner loop.

Inner Loop-Execution time in Micro seconds

 Sorting Technique Case 1 Case 2 Case 3
Bubble sort 27.38 31.88 30.07

Insertion sort 12.72 13.33 12.29

Selection sort 14.16 15.75 14.63
Quick sort 13.04 13.65 13.05

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

10

Fig. 2.4(a) Results of optimization in terms of
Execution times for Inner loop.

Table 2.3(b) Optimization in terms of Execution
time for outer loop.

Outer Loop - Execution Time in Micro seconds.

 Case 1 Case 2 Case 3
Bubble sort 32.06 34.77 32.82

Insertion sort 13.27 14.38 13.41

Selection sort 15.16 16.88 15.68
Quick sort 14.83 15.63 14.93

Fig. 2.4(b) Results of Optimization in terms of
Execution times for Outer loops.

Table 2.3(a) Optimization in terms of Machine
Cycles for inner loop.

Inner Loop- Machine cycles.

 Case 1 Case 2 Case 3
Bubble sort 80293 93503 93055

Insertion sort 30316 30436 30338

Selection sort 38600 40030 39734
Quick sort 34684 37033 36983

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

11

Fig. 2.5(a) Results of optimization in terms of
Machine Cycles for inner loops.

Table 2.3(b) Optimization in terms of Machine
Cycles for outer loop.

 Outer Loop- Machine cycles

 Case 1 Case 2 Case 3

Bubble sort 80393 94350 94938

Insertion sort 30436 31836 30538

Selection sort 38797 41506 40210
Quick sort 35704 39033 38983

Fig. 2.5(b) Results of Optimization in terms of

Machine Cycles for Outer loops.

Fig. 2.6 Results of Optimization in terms of

number of instructions.

Fig. 2.7 Results of Optimization in terms of
Execution times for outer loop.

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

12

Fig. 2.8.Results of Optimization in terms of
Machine Cycles for outer loop.

4. CONCLUSION
The above results clearly indicate significant
reduction in number of instructions, number of
machine cycles and execution times for array
bound checks applied on sorting techniques for
inner loops as well as outer loops when case 2 is
compared with case 3.
 In the present study, the trap analysis is
performed on all sorting techniques which have
nested loops of depth two. Had this analysis been
carried out for the regions of high execution
frequency, the results would have been capable of
yielding impressive gains. Since the insertion of
traps increases the run time, there is scope for
applying other optimizations like redundancy
elimination, common sub expression elimination.

REFERENCES:

[1]. Chow.F 1983. A portable
machine-independent global optimizer
Design and measurements.Tech. Rep.
83-254, Ph.D. thesis, Computer Systems
Labs, Stanford Univ., Calif.

[2]. XL Fortran for AIX Users’ Guide, IBM
Corp. Form SC09-4946

[3]. Kevin O’Brien, Bill Hay, Joanne Minish,
Hartmann Schaffer, Bob Schloss, Arvin

Shepherd, Matthew Zaleski, Advanced

Compiler Technology for the RISC
System/6000 Architecture, IBM RISC
System/6000 Technology, IBM

[4]. Suzuki. N. and Ishihata. K. 1977.
Implementation of array bound checker.
In Proceedings 4th ACM Symposium on
Principles of Programming Languages.
ACM, New York, 132-143.

[5]. S.M.German., Automating proofs of
absence of common run time errors.
Conference Record of the 5 th ACM
Symposium on principles of
programming languages, 105- 116,
January, 1978.

[6]. Sunitha .K.V.N.and Vijay Kumar.V,
Study of optimization on bubble sort
using trap analysis. Published in the
proceedings of International
Conference on Systemics, Cybernetics
and Informatics (ICSCI), Dec 2005,
Hyderabad, January 2006.

[7]. Sunitha .K.V.N.and Vijay Kumar.V,
Optimizing array range checks. Published
in proceedings of International

Journal of Theoretical and Applied Information Technology

 © 2006 JATIT. All rights reserved.

www.jatit.org

13

conference on current trends of
information Technology, MERG,
S.R.K.R. Engg. College, Bhimavaram,

Oct 2005.

[8]. Sunitha .K.V.N.and Vijay Kumar.V,
Study of optimization on different sorting
Techniques using trap analysis. Published
in the proceedings of National Conference,

Erode , 20-23
rd

 December 2005.

[9]. Sunitha .K.V.N.and Vijay Kumar.V,
 Study of optimization on quick sort
 using trap analysis.
 Published in the proceedings of
 National Conference

