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ABSTRACT 

Application of Support Vector Machine (SVM) for QRS detection in single lead and 12-lead 
Electrocardiogram (ECG) using entropy and combined entropy criterion is presented in this paper. The 
ECG signal is filtered using digital filtering techniques to remove power line interference and base line 
wander. SVM is used as a classifier for detection of QRS complexes in ECG. Using the standard CSE 
ECG database, both the algorithms performed highly effectively. The performance of the algorithm with 
sensitivity (Se) of 99.70% and positive prediction (+P) of 97.75% is achieved when tested using single 
lead ECG with entropy criteria. It improves to 99.79% and 99.15% respectively for combined entropy 
criteria. Similarly for simultaneously recorded 12-lead ECG signal, sensitivity of 99.93% and positive 
prediction of 99.13% is achieved when tested using entropy criteria and sensitivity of 99.93% and 
positive prediction of 99.46% respectively is achieved for combined entropy criteria. The percentage of 
false positive and false negative are reduced substantially when simultaneously recorded 12-lead ECG 
signal is used. The proposed algorithms perform better as compared with published results of other QRS 
detectors tested on the same database. 
 
Index Terms—ECG, Entropy, Combined Entropy, QRS complex, SVM. 
 
1. INTRODUCTION  

The electrocardiogram (ECG) is an important 
tool for providing information about functional 
status of the heart. Analysis of ECG is of great 
importance in the detection of cardiac anomalies. 
In a clinical setting, such as intensive care units, it 
is essential for automated systems to accurately 
detect and classify electrocardiographic signals. 
The correct performance of these systems 
depends on several important factors, including 
the quality of the ECG signal, the applied 
classification rule, the learning and testing dataset 
used. The ECG is characterized by a recurrent 
wave sequence of P, QRS and T- wave associated 
with each beat. The QRS complex is the most 
striking waveform, caused by ventricular 
depolarization of the human heart. Once the 
positions of the QRS complexes are found, the 
locations of other components of ECG like P, T- 
waves and ST segment etc. are found relative to 
the position of QRS, in order to analyze the 
complete cardiac period. In this sense, QRS 

detection provides the fundamental for almost all 
automated ECG analysis algorithms. 
 Numerous QRS detection algorithms such as 
derivative based algorithms, algorithms based on 
digital filters, wavelet transform, length and 
energy transform, artificial neural networks, 
genetic algorithms, syntactic methods, Hilbert 
transform etc. are reported in literature. Kohler et 
al [1] described and compared the performance of 
all these QRS detectors. Recently few other 
methods based on pattern recognition [2], Hilbert 
transform [3], wavelet transform [4], neuro-fuzzy 
approach [5], filtering technique [6], first 
derivative [7], curve length concept [8], moving-
averaging incorporating with wavelet denoising 
[9] etc. are proposed for the detection of QRS 
complexes. Christov et al [10] gave a comparative 
study of morphological and time-frequency ECG 
descriptors for heartbeat classification. Most of 
these QRS detectors are one channel detectors. A 
common technique utilized in the QRS detector 
algorithm is to employ a scheme that consists of a 

preprocessor and a decision rule [11]. The purpose 
of the preprocessor is to enhance the QRS, while 
suppressing the other complexes as well as the 

noise and the artifacts. The preprocessor consists of 
a linear filter and a transformation. The purpose of 
the decision rule is to determine 
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whether or not QRS complexes are present at a 
given instant in the signal.  
 SVMs based classification method represents a 
major development in pattern recognition research. 
Two innovations of SVMs are responsible for the 
success of this method, namely, the ability to find a 
hyperplane that divides samples in to two classes 
with the widest margin between them, and the 
extension of this concept to a higher dimensional 
setting using kernel function to represent a 
similarity measure on that setting. Both 
innovations can be formulated in a quadratic 
programming framework whose optimum solution 
is obtained in a computation time of a polynomial 
order. This makes SVMs a practical and effective 
solution for many pattern recognition and 
classification problems in bioinformatics. Brown et 
al [12] describes a successful use of SVMs applied 
to gene expression data for the task of classifying 
unseen genes. Dehmeshki et al [13] used SVM for 
the classification of lung data. Chu et al [14] 
applied SVMs for cancer diagnosis based on 
micro-array gene expression data and protein 
secondary structure prediction. SVMs are also 
applied for ECG signal analysis and arrhythmia 
classification [15, 16, 17, 18, 19, 20, 21], where in 
QRS detection is accomplished by using some 
other technique. SVM is applied in the present 
work to detect the QRS complexes in the single 
lead ECG and simultaneously recorded 12-lead 
ECG signal.  
 This paper is structured as follows. Section 2 
presents a brief description of the SVM for two-
class problem. ECG signal preprocessing is 
described in section 3. A review of the core 
algorithm is provided in section 4. The 
performance of the proposed algorithm is 
demonstrated in section 5. 
 
2. SUPPORT VECTOR MACHINE  
 SVM is a new paradigm of learning system. 
The technique of SVM, developed by Vapnik 
[22], was proposed initially for classification 
problems of two classes. SVM use geometrical 
properties to exactly calculate the optimal 
separating hyperplane directly from the training 
data. They also introduce methods to deal with 
non-linearly separable cases, i.e., where no 
separating straight line can be found as well as 
with cases in which there is noise and /or outliers 
in the training data, i.e. some of the training 
samples may be wrong.  
 Basically, the SVM is a linear machine working 
in the high dimensional feature space formed by 
the nonlinear mapping of the n -dimensional input 
vector x into a K-dimensional feature space (K > 

n) through the use of a mapping ϕ(x). The 
following relation gives the equation of 
hyperplane separating two different classes:  
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)x(0ϕ =1 and w = [w0, w 1 , …,  wk]T is the weight 
vector of the network. Fulfillment of condition y(x) 
> 0 means one class and y(x) < 0 means the 
opposite one. 

The most distinctive fact about SVM is 
that the learning task is reduced to quadratic 
programming by introducing the so-called 
Lagrange multipliers. All operations in learning 
and testing modes are done in SVM using kernel 
functions. The kernel is defined as K(x, xi) = 
φT(xi)φ(x).   
 The problem of learning SVM, formulated as 
the task of separating learning vectors x, into two 
classes of the destination values either di =1 or 
di=-1with maximal separation margin is reduced 
to the dual maximization problem of the objective 
function defined as follows: 
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where C is a user defined constant and p is the 
number of learning data pairs (xi , di). C is the 
regularizing parameter and determines the balance 
between the maximization of the margin and 
minimization of the classification error.  
 The solution with respect to Lagrange multipliers 
gives the optimal weight vector wopt as 
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 In the above equation index s points to the set of 
Ns support vectors i.e. the learning vectors xi, for 
which the relation                         
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is fulfilled with the equality sign. The variables ξi are 
non-negative scalar variables called slack variables. 
They measure deviation of a data point from the 
ideal condition of pattern separability i.e. totally 
separable patterns. The output signal y(x) of the 
SVM in the retrieval mode after learning is 
determined as the function of kernels                                   
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and the explicit form of the nonlinear function φ(x) 
need not be known. The value of y(x) greater than 0 
is associated with 1 (membership of the particular 
class) and the negative one with -1 (membership of 
the opposite class). Although SVM separates the 
data into two classes, classification into additional 
class is possible by applying either the one against 
one or one against all method in multi-class 
problems. 
 
3. PREPROCESSING OF ECG        
       SIGNAL 

 
 A raw ECG signal of a patient is acquired. It is 
often contaminated by disturbances such as power 
line interference and baseline wander. The finite 
impulse response (FIR) notch filter proposed by 
Van Alste and Schilder [23] is used to remove 
baseline wander. The adaptive filter to remove 
base line wander is a special case of notch filter, 
with notch at zero frequency (or dc). This filter 
has a “zero” at dc and consequently creates a 
notch with a bandwidth of (µ/π)*fs , where fs  is 
the sampling frequency of the signal and µ is the 
convergence parameter. Frequencies in the range 
0-0.5Hz were removed to reduce the base line 
drift. The filter proposed by Furno and Tompkins 
[24] is used to remove 50Hz power line 
interference. 

The slope at every sampling instant of the 
filtered ECG signal is calculated for each lead and 
these are clustered into two classes, namely QRS 
and non-QRS classes using K-means of clustering 
algorithm [25]. Slope is used as an important 
feature because slope of the ECG signal was 
much more in the QRS region than in the non-
QRS region. The probability, Pi(x) of slope at 
each sampling instant belonging to each of the 
two classes is calculated using (7). 
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                                     i = 1, 2; x = 1,2,…..,5000     
where σi and mi are the standard deviation and 
mean of ith class. 
 Entropy is a statistical measure of uncertainty. 
A feature, which reduces the uncertainty of a 
given situation are considered more informative 
than those, which have opposite effect. Thus a 
meaningful feature selection criterion is to choose 
the features that minimize the entropy of the 
pattern class under consideration.  
 The entropy hi(x) at each sampling instant for 
QRS and non QRS classes is calculated using (8). 
These entropies are then normalized. 
    
                        hi(x)=-Pi(x)logePi(x)                 (8) 
                                                                                 
                                      i = 1, 2; x = 1,2,….,5000         
 
The combined entropy is then calculated by using 
(9). Thereafter it is also normalized. 
   
               hc(x)=(1-h2n(x))*h1n(x)            (9) 
where, h1n(x) and h2n(x) are normalized entropies 
belonging to the QRS and non-QRS class 
respectively. The combined entropy is also 
normalized to obtain normalized combined 
entropy hcn(x).      
 The same procedure is applied for remaining 
leads. In this way, a set of twelve combined 
entropy curves, one for each lead is obtained. 

 In order to demonstrate the algorithm used in 
the present work, consider lead V5 of record 
MO1_020 of CSE ECG database shown in Fig. 
1(a). Fig.1 (b) shows the results of the 
preprocessing stage of lead V5 of record 
MO1_020 of CSE ECG database. As depicted in 
Fig.1 (b), the preprocessor removes power line 
interference and base line wander present in the 
raw ECG signal. Fig. 1(c) shows h1n(x), entropy 
curve for QRS region. It can be seen from this 
curve that it has lower values in the QRS region 
and higher values in the non-QRS region. The 
low value of entropy in the QRS region indicates 
lower uncertainty or in other words higher 
certainty of that region belonging to QRS region. 
Similarly, higher values of entropy in the non-
QRS region indicate higher uncertainty or in other 
words lower certainty of that region belonging to 
QRS region. Thus the entropy h1n(x) curve 
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provides critical information about the degree of 
certainty of a region belonging to QRS region. 
 Fig. 1(d) shows h2n(x), entropy curve for non-
QRS region. It can be seen from this curve that it 
has lower values in the non-QRS region and 
higher values in the QRS region. The low value 
of entropy in the non-QRS region indicates lower 
uncertainty or in other words higher certainty of 
that region belonging to non-QRS region. 
Similarly, higher values of entropy in the QRS 
region indicate higher uncertainty or in other 
words lower certainty of that region belonging to 
non-QRS region. Thus the entropy h2n(x) curve 
provides critical information about the degree of 
certainty of a region belonging to non-QRS 
region. 

Now if [1- h2n(x)] curve is seen, it also provides 
similar information as that of h1n(x) i. e. [1- 
h2n(x)] gives lower values in the QRS region and 
higher values in the non-QRS region as shown in 
Fig.1 (e). Now if the curve, showing the product 
hcn(x) = (1-h2n(x))* h1n(x), called combined 
entropy is obtained, it has much lower values in 
QRS region and much higher values in non-QRS 
region thus giving even better information 
compare to h1n (x) and h2n (x), curves shown in 
Fig.1 (c) and (d). This can be seen in the 
combined entropy curve shown in Fig.1 (f). 
Therefore both entropy and combined entropy 
criteria are used in the present work to obtain the 
transformed signal for the detection of QRS 
complexes. 

 

 
Fig.1 (a) Raw ECG of lead V5 of record MO1_20 of CSE ECG database, (b) Filtered ECG Signal, (c) 

Entropy QRS, (d) Entropy non-QRS, (e) [1- h2n(x)] curve, (f) Combined Entropy 
 

4.  QRS DETECTION       
     ALGORITHM 

4.1 Single Lead Algorithm 

For single lead QRS detection using entropy 
criteria, the input vector xi to the support vector 
classifier is a set of normalized entropy values. 
During the training of SVM, two synchronizing 
sliding windows of size of ten sampling instants 
are moved over both the entropy values from the 
training set. A window size of 10 is selected 
because too small and too large size of the 
window leads to under-capturing and over-
capturing of the ECG signal respectively. The 
first pattern vector is formed by taking twenty 
normalized entropy values ( ten belonging to QRS 

and ten belonging to nonQRS) from first to tenth 
sampling instant. The windows are then moved 
forward by one sampling instant and the second 
pattern vector is formed by taking another set of 
twenty normalized entropy values but now from 
second to eleventh sampling instant. This way, 
sliding windows of size ten sampling instant and 
a jump size of one sample are moved over the 
normalized entropy values from the training set. 
When the window lies in the QRS region, the 
desired output of the SVM is set to 1 and when it 
lies in the nonQRS region, the desired output is 
set to -1. 
 During testing, a set of twenty calculated 
normalized entropy values (ten belonging to QRS 
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and ten belonging to nonQRS) of a particular lead 
of a subject, from a standard CSE ECG database, 
are used at an instant to form the input vector for 
the SVM. The first pattern vector is formed by 
taking twenty normalized entropy values ( ten 
belonging to QRS and ten belonging to nonQRS) 
from first to tenth sampling instant. The windows 
are then moved forward by one sampling instant 
and again a set of twenty entropies, are taken to 
form next input pattern vector. In this way, two 
synchronizing sliding windows of size of ten 
sampling instants are moved over both the 
entropy curves. A train of 1’s is obtained at the 
output of SVM, when the windows traverse 
through the QRS region and -1 for the nonQRS 
region. Those trains of 1’s whose duration turns 
out to be more than the average pulse duration are 
detected as QRS regions and the other ones are 
detected as non-QRS regions. 
 The algorithm for single lead QRS detection 
using combined entropy criteria is same as that of 
entropy criteria except the size of the input vector. 
In combined entropy algorithm, we obtain a 
normalized combined entropy curve. A sliding 
window of size of ten sampling instances is 
moved over the normalized combined entropy 
curve. Thus, input to the support vector classifier 
is a set of vectors xi containing ten normalized 
combined entropy values. 
 
4.2 Twelve- Lead Algorithm 

 The input to the support vector classifier is 
formed by taking a set of vectors xi, each 
comprising of twelve QRS and twelve non-QRS 
normalized entropy values, in all twenty four 
values at a particular sampling instant, from each 
of the twelve leads of ECG. During the training of 
SVM, a sliding window is moved over the 
normalized entropy curves with a jump size of 
one sampling instant. When the window lies in 
the QRS region, the desired output of the SVM 
was set to 1 and when it lies in the non-QRS 
region, the desired output was set to -1. The SVM 
was trained on a set of training data covering a 
wide variety of ECG signals, picked from CSE 
ECG database. 

 On testing, normalized values of QRS and 
non-QRS entropies, from each of the twelve leads 
of ECG at a sampling instant was taken to form 
the input vector for the SVM. Then the window 
was moved forward by one sampling instant and 
again a set of QRS and non-QRS normalized 
entropy, from each of the twelve leads of ECG 
were taken to form next input pattern vector. A 
train of 1’s is obtained at the output of SVM, 

when the window traverses through the QRS 
region and -1 for the non-QRS region. The 
continuous train of 1’s is clubbed to form a pulse 
of unit amplitude. The trains of 1’s are picked and 
using their duration, average pulse duration of 1’s 
is evaluated. Those trains of 1’s whose duration 
turns out to be more than the average pulse 
duration are detected as QRS regions and the 
other ones are detected as non-QRS regions.  
 The algorithm for QRS detection in 12-Lead 
simultaneously recorded ECG using combined 
entropy criteria is same as that of entropy criteria 
except the size of input vector. In the case of 
combined entropycriteria, the input to the support 
vector classifier is a set of vectors xi comprising 
of twelve normalized combined entropy values, 
one from each of the twelve leads of ECG at a 
particular sampling instant.  
 In some cases, when the P or T waves are 
peaky in nature, the SVM gives a train of 1’s but 
of smaller duration as compare to that of QRS 
complex. In order to differentiate between trains 
of 1’s for QRS complex and that for P or T 
waves, an average duration of all the trains of 1’s 
is calculated. Those trains whose duration is 
greater than average pulse duration are picked up 
as QRS complexes by the algorithm and those 
whose duration is smaller than the average pulse 
duration are discarded. Thus, false positive 
detection of QRS complexes can be reduced. 
 
5. PERFORMANCE         
    EVALUATION  
 
 The performance evaluation of the proposed 
algorithms for QRS detection is done using 1500, 
single-lead ECG records and simultaneously 
recorded 125, 12-lead ECG records of dataset 3 of 
CSE multi-lead measurement library [26]. This 
library contains original 12-lead simultaneous 
ECG recordings of 125 patients covering a wide 
variety of pathological cases. It should be noted 
here that the CSE library contains a high 
percentage of pathological ECG’s, and there are 
some QRS’s which are hardly recognized even 
visually. Every record picked from CSE ECG 
database is of 10s duration sampled at 500Hz thus 
giving 5000 samples.  
 The software used in the present work is 
LIBSVM [27]. LIBSVM is an integrated software 
package for support vector classification, 
regression and distribution estimation. It uses a 
modified sequential minimal optimization 
(SMO) algorithm to perform training of SVMs. 
SMO algorithm breaks the large quadratic 
programming (QP) problem in to a series of 
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smallest possible QP problems. These small QP 
problems are solved analytically, which avoids 
using a time-consuming numerical QP 
optimization problem as an inner loop [28].  
 Detection is said to be true positive (TP) if the 
algorithm correctly identifies the QRS complex 
and it is said to be false negative if the algorithm 
fails to detect the QRS complex. False positive 
(FP) detections are obtained if non-QRS wave is 
detected as a QRS complex. The two parameters, 
sensitivity (Se) and positive prediction (+P) are 
calculated using the following equations 
respectively [29]: 

                           
FNTP

TPSe +
=                        (9) 

             
FPTP

TPP
+

=+                    

(10) 
 The best generalization performance is achieved 
with the sigmoid kernel function. The kernel 
parameters γ and C, which provided the best 
classification, are fixed by experiments before 
learning. The value of C =2 make the balance 
between the maximization of the margin and 
minimization of the classification error. The error on 
the training and testing data are identical. An 
optimal value of γ = 0.2 is obtained which gives 
Se of 99.7% and +P of 97.75% for single lead 
QRS detection using entropy criteria and Se of 
99.79% +P of 99.15% using combined entropy 
criteria. Improved performance is obtained for 
QRS detection in simultaneously recorded 12-
lead ECG signals with Se=99.93% and +P=99.13 
using entropy criteria and Se=99.93% and 
+P=99.46 using combined entropy criteria. 
Various values of γ ranging from 0.05 to 1 have 
been tried in the present work. The number of 
false positive detections increases for γ > 0.2 and 
the number of false negative detections increases 
for γ <0.2. When entropy criteria is used, the 
percentage of false negative detection is 0.32 and 
false positive detection is 2.28 in the single lead 
QRS detection and it is 0.06 and 0.87 respectively 
for QRS detection in simultaneously recorded 12-
lead ECG signals. Similarly, when combined 
entropy criteria is used, the percentage of false 
negative detection is 0.21 and that of false 
positive detection is 0.86 in the single lead QRS 

detection and it is 0.06 and 0.54 respectively for 
QRS detection in simultaneously recorded 12-
lead ECG signals. The false positive detections 
are mainly due to prominent slope of P and T 
wave in some cases. The window size of twenty 
four containing twelve normalized QRS entropy 
values, one from each of the twelve leads of ECG, 
at a given sampling instant and twelve normalized 
non-QRS entropy values has been used, for 12-
lead QRS detection algorithm using entropy 
criteria. For 12-lead QRS detection algorithm 
using combined entropy criteria, window size is 
twelve containing twelve normalized combined 
entropy values, one from each of the twelve leads 
of ECG, at a given sampling instant. However, 
QRS detection in single lead, various window 
sizes ranging from 4 to 25 has been tried in the 
present work. A window size of 10 is found to be 
optimal to give the best results because too small 
and too large size of the window leads to under-
capturing and over-capturing of the ECG signal 
respectively. The sensitivity and positive 
prediction of proposed algorithm for QRS 
detection is found to be better than the 
corresponding figures (98.49% to 99.6% for Se 
and 99.43% to 99.6% for +P) of the algorithms 
reported in literature and tested on the same 
database [11, 30, 31, 32, 33, 34]. 
 Fig.2 shows results obtained at the 
preprocessing stage and QRS detection of lead L1 
of record MO1_075 using combined entropy 
criteria. As depicted in Fig.2 (b), the preprocessor 
removes power line interference and base line 
wander present in the signal. Some of the P and 
T- waves are prominent in this case. Pulse 
duration in the prominent T-waves is smaller than 
average pulse duration and hence rightly not 
picked up as QRS complex by the algorithm as 
shown in Fig. 2 (d). Fig.3 shows QRS detection 
of lead aVF of record MO1_036 using entropy 
criteria. In this case the P and T- waves are not 
prominent; hence all the QRS complexes have 
been correctly detected by SVM. 

Fig.4 shows QRS detection of lead V2 of 
record MO1_106 using combined entropy 
criteria. T-waves are peaky in this case. Though 
the entropy in the T-wave region is lower, these 
T-waves are not detected as QRS complexes by 
the SVM due to smaller pulse duration. 
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Fig.2 QRS detection of record MO1_075 of CSE database (a) Raw ECG, (b) Filtered ECG, (c) Entropy 

QRS, (d) Entropy non-QRS, (e) Combined Entropy, (f) QRS Detection by SVM 
 
 
 
 
 

 
Fig.3 QRS detection of record MO1_036 of CSE database, (a) Raw ECG, (b) Filtered ECG, (c) Entropy 

QRS, 
(d) Entropy non-QRS, (e) QRS Detection by SVM 
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Fig. 4 QRS detection for record MO1_106 of CSE ECG database, (a) Raw ECG, (b) Filtered 
ECG, (c) Entropy QRS, (d) Entropy non-QRS, (e) Combined Entropy, (f) QRS Detection by 

SVM 
 

 
Fig.5 shows 12-lead ECG signal of record 

MO1_005 of CSE ECG database and beneath it a 
square wave representing the locations of the 
QRS complexes as detected by the SVM using 
combined entropy criteria. It can be seen clearly 
that the morphology of QRS complexes in the 
respective leads of ECG signal is consistent; 
hence all the QRS complexes have been 
successfully identified by the SVM. 

Fig. 6 displays the QRS detection of the record 
MO1_123 using entropy criteria. In this case, T-
waves are of larger amplitude in some leads. 
These T-waves are not detected as QRS 
complexes by the algorithm due to their smaller 
pulse duration. All the QRS complexes in this 

case are correctly identified by SVM indicating 
the effectiveness of the proposed algorithm. 

In Fig.7, QRS detection of record MO1_045 
using combined entropy criteria is displayed. In 
this case, SVM fails to detect the eighth QRS 
complex because of the lower amplitude of the R-
wave and smaller pulse duration compare to 
others. There were total 1487 QRS complexes in 
the database. The proposed algorithm fails to 
detect only one QRS complex of record 
MO1_045. Any further attempt to 
identify/remove this false negative by way of 
adjusting the parameters of the SVM detracts the 
over all detection rate of the algorithm. 
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Fig. 5 QRS detection for record MO1_005 of CSE ECG database 

 
 
 

 
Fig. 6 QRS detection for record MO1_123 of CSE ECG database 
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Fig. 7 QRS detection of record MO1_045 of CSE database 
 

6. CONCLUSION 
   
 In this paper, a novel QRS detector using SVM 

is proposed and evaluated on the standard CSE 
database. SVM gave very encouraging and 
consistent results for both single lead as well as 12-
lead algorithms as compare to the methods reported 
earlier in the literature for the given problem of 
QRS detection. Due to high generalization ability of 
the SVM, the percentage of false positive and false 
negative detections is very low. The performance of 
the algorithms depends strongly on the selection 
and the variety of the ECGs included in the training 
set, data representation and the mathematical basis 
of the classifier. The information about the QRS 
complexes obtained by this method is very useful 
for ECG classification and cardiac diagnosis. This 
information can also serve as an input to a system 
that allows automatic cardiac diagnosis. 
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