
Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

42

SIMULATION OF SYSTEM LEVEL DIAGNOSIS IN
DISTRIBUTED ARBITRARY NETWORK

 Lakshmi Prasad Saikia*, Kattamanchi Hemachandran**

 *Senior Lecturer, CSE, Deptt of ETE, NIT Silchar, Assam, India. Email: lp_saikia@yahoo.co.in
**Professor,CS, AssamUniversity-Silchar, Assam,India. Email: khchandran@rediffmail.com

ABSTRACT
The problem of distributed diagnosis in arbitrary network failures and repairs is considered in this paper.
The basic idea behind incorporating a fault tolerance capability to a distributed system is to provide the
system with extra (redundant) resources. A number of investigations have been attempted to extend
traditional notions of “fault-tolerant computing”, to deal with the problem of failures, which affect the
facilities of distributed systems and computer networks. as distinguish of diagnostic responsibility
requires the flow of diagnostic information through the network, and the faulty facilities themselves may
participate in this flow and may alter, destroy, or generate erroneous diagnostic information in the
process, the whole diagnostic procedure itself becomes quite complex. The purpose of this study is to
simulate a distributed system and carry out fault diagnosis under Arbitrary Network topologies. The
distributed system level diagnosis algorithms discussed in this paper give a comprehensive idea about
various issues one must keep track of while going to develop such fault tolerance algorithms. Since
“system level diagnosis” is one of the steps in the process of building “distributed fault-tolerant systems”,
reliability of such a system depends heavily on proper functioning of the diagnosis algorithm.
The distributed system has been simulated in JAVA using the Console.Java program to create multiple
windows, each one representing a different system node. Afterwards, distributed diagnosis algorithms
have been simulated using this environment.

Key Words: Distributed diagnosis, System-Level diagnosis, Arbitrary Network, failures and repairs, fault
tolerance, faulty, fault-free.

INTRODUCTION
 When a group of people work together, there is
a need to communicate with each other, to share
data and expensive resources such as high
quality printers, disk drives, etc. This requires
interconnecting of computers and resources.
Designing such systems became feasible with
the availability of cheap and powerful
microprocessors, and advances in
communication technology.

The main advantage of distributed systems is
that they have a decisive price and performance
advantage over more traditional time-sharing
system. Other significant advantages of
distributed systems over traditional time-sharing
systems are:-Resource sharing, Enhanced
performance, Improved reliability and
availability, and Modular expandability.

Figure 1: Architecture of a Distributed System

CPU

Memory

Comm. Network

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

43

 In distributed diagnosis, each working node
must maintain correct information about the
status (working or failed) of each component in
the system. A node can be either fault-free or
faulty. A fault-free node performs its specified
system computation and commutation tasks
correctly, and it has a local notion of time. A
fault-free node is assumed to know which nodes
are its physical neighbors in the network. This
information can be ascertained by the node via
external means or internally, through low-level
hardware and software methods. Proper
designing of Algorithms for System-Level
Diagnosis is one of the most important phases
in the process of building distributed fault-
tolerant systems. Consider a system consisting
of N units, which can be faulty or fault-free. The
goal of system level diagnosis is to determine
the state of these units.
In a Distributed System-level Diagnosis
algorithm for Arbitrary Network, fault-free
processors perform simple periodic tests on one
another; when a fault is detected or a newly–
repaired processor joins the network, this new
information is disseminated in parallel
throughout the network.

RELATED WORKS
 In 1991, Bagchi and Hakimi [1] presented an
algorithm for diagnosing faulty processors in
arbitrary networks. Initially, each fault-free
processor knows only about itself and its
physical neighbors. Fault-free processors start
the algorithm by waking up (multiple
processors are allowed to wake up
simultaneously) and initiating the formation of a
tree-based testing topology. Multiple trees that
are being formed simultaneously are merged
into one. Diagnosis information is sent along
with the messages that form the tree. The
authors show that the algorithm is optimal in
that it requires at most 3n log(p)+O(n+pt)
messages, where is the number of fault-free
processors that start the tree and is the number
of faulty processors. However, the algorithm

requires that no processor becomes faulty and
that no processor is repaired during the
execution of the algorithm. Dissemination of the
diagnosis information proceeds sequentially
through the network due to the nature of the tree
formation process. Thereafter, Stahl et al. and
Bianchini et al. also addressed the problem of
performing distributed system-level diagnosis in
arbitrary networks [2], [3]. The strategies are
event-driven, as in their earlier work; however,
the response to an event differs. In the so-called
Adapt algorithm [2], the underlying testing
topology is strongly connected among all of the
fault-free processors; when an event occurs, a
search phase begins in which tests are added
locally as the information about the event is
disseminated to maintain the strong connectivity
of the testing topology. This phase is performed
in parallel. Afterwards, a destroy phase removes
redundant tests so that a minimal strongly
connected testing topology remains. This phase
must be performed sequentially. In the Adapt2
algorithm [3] for arbitrary networks, the
underlying testing topology is a tree. Each
processor is tested by its designated parent in
the tree, except for the designated root node,
which is tested by one of its children. When an
event is detected, the processor that detects the
event is the new designated root node. The new
information is propagated through the network
using a depth-first search (DFS) technique,
which is inherently sequential. The path the
message containing this information takes, in
traversing the network, determines the new tree-
based network topology.

Adaptive Distributed system-level diagnosis
(ADSD) algorithm is, at the same time,
distributed and adaptive. Each node must be
tested only one time per testing interval. All
fault-free nodes achieve consistent diagnosis in
at most N testing rounds. There is no limit on
the number of faulty nodes for fault-free nodes
to diagnose the system [3] [4].

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

44

 Figure 2: Example of test assignment in Adaptive-DSD

Node1, node4 and node5 are faulty, and
rests are fault-free. Node0 tests node1 and
finds it faulty, so it goes on and tests
node2, which is fault-free, and then stops
testing. Node2 then tests node3 as fault-
free, and so on.

DISTRIBUTED SYSTEM-LEVEL
DIAGNOSIS:
A distributed algorithm for system-level
diagnosis in an arbitrary network is
presented. In this algorithm, nodes test, or
monitor, one another periodically such that
each fault-free node is tested by exactly
one other node. When a node detects that a
fault-free node it is monitoring has become
faulty or that a faulty neighbor has been
repaired, it propagates this new
information to its fault-free neighbors,
which propagate the information to their
neighbors, and so on. In this way, the
system overhead due to monitoring is
minimized during periods when the status
of the nodes in the system does not
change, and new information is
disseminated as quickly as possible
throughout the network. Each fault-free

node is responsible for ensuring that exactly one of
its fault-free neighbors (if one exists) is testing it. A
procedure is described for guaranteeing that this
property holds during the execution of the algorithm.

THE ADVANTAGES OF THIS ALGORITHM
ARE AS FOLLOWS:
Nodes in the system can become faulty or can be
repaired an arbitrary number of times during the
execution of the algorithm, The detection of faulty
nodes or newly-repaired nodes and the dissemination
of this information are conceptually separate; in this
way, the dissemination stage can be parallelized to
reduce the time, henceforth called the information
latency, required for all of the other fault-free nodes
in the system to learn about the event once it is
detected, Parallelizing the dissemination stage allows
for nodes that are local to the event to, in general,
learn about the event before more distant nodes, A
newly repaired node can rejoin the system without
relying on other nodes to first detect that it has been
repaired; equivalently, faulty nodes do not have to be
periodically tested, The concept of a validating
transaction is introduced, in which the testing
process is both strengthened and simplified without
loss of information, There is no requirement for a
global clock or synchronized clocks in the system.

7

0

1

2

4

6 3 Faulty

Fault-free

5

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

45

This algorithm makes evident the tradeoff
between information latency and message
overhead. In networks consisting at least
partially of point-to-point communication
links (which is the case for the majority of
arbitrary topologies), it is argued that the
increased message overhead that leads to
an optimal information latency is tolerable.

SYSTEM AND DIAGNOSIS MODEL:
A system is assumed in the most general
case to consist of a collection of
heterogeneous processing elements, or
nodes, interconnected via point-to-point
communication links, broadcast busses, or
an arbitrary combination of each.
A node can be either fault-free or faulty. A
fault-free node performs its specified
system computational and communication
tasks, and it has a local notion of time. A
fault-free node is assumed to know which
nodes are its physical neighbors in the
network. This information can be
ascertained by the node via external means
or internally, through low-level hardware
and software methods.
In addition, a fault-free node is assumed to
be able to initiate a test of a neighboring
node and to be able to respond to a test
initiated by one of its neighbors. A fault-
free node, by definition, responds correctly
and within a specified time-out period to a
test. Finally, a fault-free node is able to
request that a neighboring node become its
tester when dictated by the diagnosis
algorithm.
In contrast, a faulty node is assumed to be
unable to respond to a test, to a request, or
to diagnosis information sent to it from a
neighboring node. Also, a faulty node is
assumed to be unable to format and
forward diagnosis information messages
and is assumed to be unable to generate
spurious requests fro other nodes to test it.
It is assumed that the node that issues a
message to a neighboring node receives
the corresponding reply (such as a test
response or an acknowledgement) within a
certain time period if and only if the
neighbor is fault-free; otherwise, it times-
out on the reply. In order to satisfy this
requirement, it is necessary that the
communication channels between the
nodes have a bounded delay. Time-out
periods are determined as a function of
this delay. Also, it is assumed that

message ordering is maintained within the
communication channel; equivalently, an appropriate
communication protocol can be used by the sender
and receiver to guarantee that messages are received
in the order they are delivered. A fault-free node can
become faulty at any time. A faulty node can be
repaired and reintegrated into the network at any
time. When a faulty node is repaired, it is assumed
that it regains all of the attributes of a faulty-free
node, including ascertaining who its physical
neighbors are. However, a newly repaired node has
no knowledge of the fault-free or faulty status of the
other nodes in the system.
This paper assumes no communication link faults. A
test could fail due to a faulty node or due to a faulty
communication link, without distinction. That means
it treats link faults as node faults.

ALGORITHM DESCRIPTION:
In this diagnosis algorithm, nodes detect failures in
neighboring nodes and then propagate this
information to the other nodes in the network in two
discrete steps: detection and dissemination. The
failure information the nodes propagate consists of
failure events, where a failure event is defined to be a
transition of a node from either fault-free to faulty or
faulty to fault-free.
The first step is to detect a failure event. This is
accomplished by nodes testing each other
periodically, such that each node in the network is
tested by exactly one other fault-free node. When a
failure event is detected by a node by timing-out on a
response to a test on another node, it executes the
dissemination step. In this step, the node that detects
the failure event propagates this information to all of
its neighbors in the network, which propagate the
information to their neighbors, and so on.

VALIDATING TRANSACTIONS:
Information is propagated by means of a validating
transaction. When a node i propagates information to
another node j, it is required that i determine whether
j is faulty or fault-free. In such a validating
transaction, if i have information to be sent to j, it
sends a message to j, which in turn processes this
message and sends a confirmation message back to i.
The confirmation message sent from j to i is a
function of the contents of the message. That is, j if is
faulty when it receives this message, even if it
becomes fault-free before it sends a confirmation
message back to i, i will either time out or i receive a
wrong confirmation message; and this will let i know
that j was faulty when it received the message from i.
When a fault-free node j receives a validating
transaction message from another node i, it checks to
see if the information contained in the message is the

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

46

same or old or new compared to its own
information. If the information is the same,
then j has the same information as i about
the status of all the nodes in the network.
If the information is old, then j has more
recent information than i about at least one
of the nodes and the same information
about the rest of the nodes. If the
information is new, than j has older
information than i about the status of at
least one of the nodes in the network and
has the same or new information about the
rest of the nodes. Note that incoming
messages must be same, or old, or new
relative to a node’s existing information.
If the incoming information is the same
(referred to as sameinfo), then this
message is not propagated further by the
receiving node. If the information is old
(referred to as oldinfo), then the
information contained in the message is
updated and sent back to (only) the sender
of that message. If the information is new
(referred to as newinfo), then the local
information as well as the information
contained in the message (if needed) are
updated and a validating transaction
containing this message is sent to all the
neighbors.
If a node j fails to send a correct
confirmation message when it receives a
message from i node, i will start
disseminating information regarding this
fault event (a transition of j from fault-free
to faulty) assuming that j is faulty, even
though j may have become fault-free but
could not reply with the correct
confirmation message because it was
faulty when it received the message from i.
Thus, other than direct tests, validating
transactions also serve as tests on nodes.
Given that lower level protocols that
guarantee message delivery require
acknowledgement by including a
confirmation message as described above.
Hence, it is quite natural to use validating
transactions as tests.

FAULTY AND FAULT-FREE
ORPHANS:
A node is called an orphan if no other
node is testing it. A node can become
either a fault-free orphan or a faulty
orphan. If a fault-free node becomes
faulty, its tester detects this failure event
by timing out on a test response; it then

disseminates the failure event information and stops
actively testing the node any further. Therefore, all
faulty nodes, once they are detected by their tester,
become faulty orphans. When a faulty node is
repaired, it requests one by one for its neighbors to
test it until it finds a fault-free neighbor that
acknowledges its request. Then it is no longer an
orphan. The neighbor that has acknowledged to test
the node starts disseminating information about the
failure event (faulty orphan becoming fault-free) to
the rest of the nodes in the network by sending a
validating transaction to all of its neighbors. If a
fault-free node’s tester becomes faulty, then the node
becomes a fault-free orphan because each node is
tested by only one other node. In this case, the orphan
will not necessarily realize immediately that no one is
testing it. Eventually, one of its fault-free neighbors,
if any, sends the orphan new information about the
status of the nodes in the network. Once this happens,
the orphan realizes that it is not being tested by
anyone and requests one by one for its neighbors to
test it until it finds a fault-free neighbor that
acknowledges the request. A fault-free orphan can
become faulty before information about its tester’s
failure reaches it. If this happens, the failure event
(fault-free orphan becoming a faulty orphan) is not
detected immediately. Eventually, the neighbor who
sends information about the status of the network to
the faulty orphan notices this fault event when it
receives a wrong confirmation message from the
faulty orphan or times out because it does not receive
the confirmation message on time, and will then start
disseminating information about the failure event.

DATA STRUCTURES:
Data needed for the execution of the algorithm is
maintained in local data structures at the individual
nodes and also in the data structures carried by the
messages propagating through the network. From
now on, we will refer to these as local data and
message data, respectively.
Let N represent the total number of nodes
(processors) in the network. Consider a node j. The
local data stored at node j consists of the following:
1)An array of event-counters, denoted by event
j[1…N], where eventj[i] contains a counter
value for the most recent failure event that was
detected at node I by the node that was testing node i
at that time, as per the information that has reached
node j so far. These events are measured in terms of
the number of fault event changes. Thus, if a node k
detects a fault event at node i that it tests, then it
increments eventk[i] by one. The event-counters are
updated such that after the update, if event-counter
eventj[i] is even, then node i is considered fault-free
by node j, and if is eventj[i] odd then node i is

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

47

considered faulty by node j, as per the
information that has reached node j so far.
2)A test/neighbor array denoted by
testnbj[1...N] where testnbj[i] is 0,1,2,3, or
4, depending on whether node i (0) is not a
neighbor of j, 1) is tested by j, 2) is testing
j,
3) neither i nor j is testing each other but
they are neighbors, or 4) i tests j and j tests
i. Assuming that only neighbors can test
one another, this means if testnbj[i] is
1,2,3,or 4, then i is a neighbor of j and if
testnbj[i] is 0, then i is not a neighbor of j.
The message data consists of the
following:
1)An array of event-counters
msg.event[1…N], where msg.event[i]
contains the counter value
for the most recent failure event that was
detected at node i by some other node in
the network, as per the information that the
message has gathered so far through its
transit through the network. Similar to the
event-counter in the local data, an even-
counter value (after it has been updated as
a result of the failure event) denotes a
fault- free node, and an odd event-counter
value denotes a faulty node.
2)An array of bits intrapath[1…N], where
intrapath[i] is a 1 if the message has
already visited node i.This is used to
reduce the number of redundant messages
that would otherwise be sent, as explained
later. The intrapath array is initialized to 0
when a node forms a message with new
information to be sent out.
In both the local data and the message
data, it is redundant to carry information
about the status (faulty/fault-free) of the
nodes, since this can be deduced from the
event-counter, as described earlier.

Specification of the Algorithm: A
complete specification of the fault
diagnosis algorithm for arbitrary network
topologies has been given. The diagnosis
algorithm is continually run as a
background task in each of the nodes in
the system.
A node can be in one of five states with
respect to the execution of the diagnosis
algorithm. In state 1 a node is idle, which
means that it has not sent out a test to any
neighbor. State 2 is the wait state, where
the node has sent out a test to a neighbor
and is waiting for a response to this test. In

this model a node has at most one outstanding test
request at a time, though this need not be the case in
general. State 3 (idle-orp) and 4 (wait-orp) are
similar to states 1 and 2, respectively, except in this
case the node is a fault-free orphan. That is, the node
is not being tested by anyone. State 5 (fail) denotes
the state where the node has failed.

The messages that are sent/ received are as follows.
• test and resp refer to a test and a response to
the test, respectively. If a response is not
received by the node issuing the test, then it times
out, denoted by the internal event to(resp).
• sameinfo, oldinfo, and newinfo refer to the status
of the information that is being sent in a message that
is part of a validating transaction. ackinfo is the
acknowledgment message that is sent out by a node
when it receives information through a validating
transaction. If this message is not received within a
specified time by the sender of the validating
transaction then it times out, denoted by the internal
event to(ackinfo).
• testme is a message that is sent by a fault-
free orphan to one of its neighbors asking that
neighbor to test it.
• tmj stands for “testme-join” and is a
message sent by a newly repaired node requesting
one of its neighbors to test it as it joins the system.
Note that both testme and tmj are used by nodes to
request that they be tested; however, tmj also notifies
that the sender of the message has just been repaired
so that the corresponding failure event (faulty to
fault-free) can be detected by the receiver of this
message, which disseminates the new information.
• join is a message sent when a node joins the
system to all of its neighbors except the one to which
it sent a tmj. This message, in addition to informing
the neighbors that the node has been repaired, serves
to remove any old test links that may exist from a
neighbor to the node, so that each node is tested by
no more than one other node. In this case, the only
tester of the node is the neighbor that receives (and
acknowledges) a tmj.
• acktmj and acktm are acknowledgment
messages that are sent if a node that receives a tmj or
testme, respectively, agrees to test the sender. If these
messages are not received by the node requesting a
tester, then it times out, denoted by the internal
events to(acktmj) and to(acktm), respectively. When
such time-outs occur, the node that wishes to be
tested sends a tmj or testme to another neighbor. This
process is repeated until a neighbor that
is willing to conduct the test is found.

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

48

1) Every node i should proceed as follows:

Process REPAIR/INITIALIZATION (i)
1.1 Process_MSG_READER (i) /* msg_reader receives most
 messages and starts appropriate processes */
1.2 j := neighbor
1.3 Process_ORPHAN(i, j) /* find parent to test i */

2) Process_MSG_READER(i)

2.1 REPEAT /* do until i is faulty */
2.2 wait_MESSAGE(j) /* wait for message from node j */
2.3 If j is fault-free
2.4 switch (type of message)

2.5 case TEST-message: /* respond to test message */
2.6 send RESP-message(j)
2.7 case INFO-message: /* Disseminate INFO-message */
2.8 Process_INFO(i, j) /* Acknowledge INFO-message */
2.9 send ACKINFO-message(j)

2.10 case TESTME-message:
2.11 set to test_j
2.12 Process_TEST(i, j) /* start testing node j */
2.13 send ACKTM-message(j) /* Acknowledgement testme */

 2.14 case TESTMEJOIN-message:
2.15 remove test-by_j /* remove j’s test on i if any */
2.16 set to test_j /*start testing node j */
2.17 Process_TEST(i, j)
2.18 send ACKMJ-message(j) /* Acknowledge TMJ-message */
2.19 event_counter_i[j]++ /* increment EC to next even */

2.20 for k := first to last neighbor do /* Disseminate INFO-msg */
2.21 Procedure_SEND_INFO(i, k)
2.22 If ORPHAN /* if i is ORPHAN then find node*/
2.23 Process_ORPHAN(i, 1) /* to test i (1 <>j<>k) */

2.24 case JOINNOTEST-message:
2.25 remove test-by_j /* remove j’s test on i if any */
2.26 remove test_j /* and i’s test on j if any */
2.27 If ORPHAN /* if i is ORPHAN then find node*/
2.28 Process_ORPHAN(i, j) /* to test i, first try j */
2.29 FOREVER

3) Process_ORPHAN(i, j)

3.1 If event-counter_i [j] even /* if j is thought to the fault-free ask j */
3.2 send TESTME-message(j) /* to test node i */
3.3 timed-wait_ACKTM-message(j)
3.4 If to(ACKTM) /* since time-out, j is faulty now */
3.5 event_counter_i [j] ++ /* increment EC to next odd */
3.6 for k := first to last neighbor do /* disseminate INFO to all nbs */
3.7 Procedure_SEND_INFO(k)
3.8 Process_ORPHAN(i, mod_n(j + 1)) /*try to find another one to test I */
3.9 Else add test-by_j /* update testing array */
3.10 Else Process_ORPHAN(i, mod_n(j + 1))/*try to find another one to test i */

4) Procedure_SEND_INFO(i, j)

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

49

4.1 send INFO-message(j) /* disseminate INFO to j */
4.2 If event-counter_i [j] even /* if j is thought to be fault-free */
4.3 timed-wait_ACKINFO-message(j) /* Timed wait for Ack */
4.4 If to(ACKINFO) /* if node j is faulty */
4.5 event-counter_i [j] ++ /* increment EC to next odd */
4.6 for k := first to last neighbor do /* disseminate INFO to all nbs */
4.7 Procedure_SEND_INFO(k)
4.8 If i is an ORPHAN
4.9 Process_ORPHAN(i, k) /* find a node k <> j to test i */

5) Process_INFO(i, j)

5.1 If “sameinfo” exit() /* if msg has sameinfo as i’s, then exit process */
5.2 If “oldinfo” /* if only oldinfo, send INFO-message */
5.3 Process_SEND_INFO(i, j) /* to node j only */
5.4 If (“newinfo”) or (“newinfo” and “oldinfo”) /* if info is new or mixed */
5.5 update event-counter to “newest” info /* update EC to maximum */
5.6 for k := first to last neighbor /* values and send to all neighbors */
5.7 Procedure_SEND_INFO(i, k)

 6) Process_TEST(i, j) /* procedure for node i to test node j. Do until node i */

6.1 REPEAT /* receives JOIN from node j */
6.2 If (i tests j)

6.3 If (j is fault-free)
6.4 send TEST-message(j)
6.5 timed-wait_RESP-message(j) /* wait a “timeout” period */
6.6 If to(RESP) /* timeout indicates failure of node j */
6.7 event-counter_i [j] ++ /* increment EC to next odd value */

6.8 for k := first to last neighbor do /*send INFO to all neighbors */
6.9 Procedure_SEND_INFO(i, k)

6.10 If ORPHAN process_ORPHAN(i , 1) /* if ORPHAN find new par*/
6.11 sleep(periodic test delay)
6.12 Else sleep(short time delay) /* node j is faulty, just wait a short time */
6.13 Else stop periodically testing j /* if i not to test j then end process */

The diagnosis algorithm uses two fault
detection mechanisms. One mechanism
uses a test sent from one node to another
to detect failures; the other mechanism
uses time-out on an acknowledgement that
is expected when a message is sent from
one node to another (as part of a validating
transaction). It should be clear that if the
last failure event is the failure of a node
that is being tested by one of the nodes in
the fault-free connected component, then
this will be detected. If the last event is the
simultaneous failure of multiple nodes (all
neighbors of the given fault-free connected
component), then all of these failures will
be detected if at least one of these nodes is

tested by a node in the connected component. This is
because of the fact that

the node that is tested from within the fault-free
connected component will be detected by the test and
the other failures, which are neighbors of the
connected component, will be detected by the time-
out on the acknowledgement to the newinfo that is
sent to all of these nodes by nodes within the fault-
free connected component. There is the possibility of
the last failure event being a set of multiple failures
leading to a jellyfish faulty node configuration.

ALGORITHM EXECUTION STEPS AT A
NODE:
Consider a fault-free node j in the system. Node j will
periodically test a neighbor i if testnbj[i] = 1 or 4. In

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

50

the algorithm, only fault-free nodes are
tested, and so node i, in node j’s view,
have to be fault-free. If node j detects a
failure event (in this case, node i goes
from fault-free to faulty), then node j will
do the following: 1.increment eventj[i] by
one.2.set testnbj[i] to 3, which means that
node j will not actively test node i any
more. That is, node i becomes a faulty
orphan.
Node j will then start the disseminate step.
In the disseminate step, a validating
transaction is created with a message. The
message is updated with the event-counter
information as msg .event [i] = eventj[i],
for all i, 1≤ i ≤ N and intrapath
information as intrapath[j] = 1. The rest
of the entries in the intrapath[] array are
initialized to zero. This means that this
message has visited only node j, the
initiator of this message, so far. This
transaction is sent to all the fault-free (as
per the information that j currently has)
neighbors of j. This is done by executing a
send-transaction procedure, invoked as
{ ∀k | eventj[k] is even and testnbj[k] = 1,
2, 3, or 4: send-transaction(k) }.
When a message was sent by a fault-free
node k, then node j uses the contents of the
message to produce the confirmation
message and sends it to k. It then checks to
see if it is a fault-free orphan (if it is not
already one). Each node is tested by
exactly one node. So, node i for which
testnbj[i] = 2 or testnbj[i] = 4 is the node
that tests j. Node j will check to see if
msg.event[i] is even. If it is odd, j
determines that it is a fault-free orphan as
its tester has become faulty. Also, it
checks to see if according to the
information that j had, k is fault-free; that
is, if eventj[k] is even. If not, it increments
eventj[k] by 1 (deem k fault-free). Then, j
checks to see if the message carries the
same, or old, or new information. If the
information is the same, the message is
discarded. If it is old, then the message
information is updated using the local
information and this message is sent out to
(only) node k. The update is made as ∀i ,
if, eventj[i] > msg.event[i], msg.event[i] =
eventj[i]. If the message is new, then the
appropriate message data and local data
updates are made. That is, ∀i , if
msg.event[i] > eventj[i], eventj[i] is
updated to msg.event[i] and if, eventj[i] >

msg.event[i] , msg.event[i] is updated to eventj[i].
Then, a message is created and forwarded to all the
neighbors. If it finds that it is a fault-free orphan, it
repeatedly sends a message to one of the neighbors
requesting it to become its tester until it finds a
willing neighbor, as described earlier.
When a faulty node j receives an information
message from one of its neighbors (say k), it cannot
produce a correct confirmation message. Even if
node j becomes fault-free before sending the
confirmation message, it can only send a wrong
confirmation message back to k. In either case, node
k will realize that node j was faulty when it received
the transaction from k. The local information at node
k shows that node j was fault-free (because k would
have sent this transaction to j only if it had
information that said that j was fault-free). In this
case, it is possible that the failure of node j was not
noticed because it was a fault-free orphan and then
failed. So, node k updates this information in its local
data by incrementing eventk[j] to odd, configures a
new message with this information, and forwards it to
all of its neighbors.
When a faulty orphan j becomes fault-free, it has no
one testing it. It requests (by sending a tmj; it sends a
join to the other neighbors), one by one, for its
neighbors to test it until it finds a willing fault-free
neighbor, say node k, which acknowledges this
request by issuing an acktmj. Node k updates
testnbk[j] to 1 and then checks to see if node k has
local information that node j was faulty (eventk[j] is
odd). If so, node k increments eventk[j] by 1. If not, it
increments eventk[j] by 2. It then starts disseminating
information about this fault event by forwarding a
transaction to all its neighbors. Note that if node k
has information that node j is fault-free when the
testme-join request came in, that means information
about j’s failure has not reached k yet. Therefore, k
increments eventk[j] by 2 to record that j is still fault-
free but has gone through a transition from fault-free
to faulty that was not known to k. If node j had failed
and been repaired a multiple number of times, all of
this information will be in transit and will eventually
reach k. In this case, node k updates its event-counter
to the appropriate even value once all of the messages
arrive at k.

SIMULATION:
In simulation of the network, the following programs
and classes are used.

1. systemgraph.class: It has event_counter and testnb
arrays (the purpose of these arrays was
explained in the previous section). It also contains the
following methods which manipulate its arrays:

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

51

 1.1 public void proc_ORPHAN();
//implements listing (3) of Pseudo-Code.
 1.2 public void

proc_SEND_INFO(info
_msg img,int
m_r_node);
//implements listing (4)
of Pseudo-Code.

 1.3 public void
proc_INFO(info_msg
img); // implements
listing (5).

 2. The nodei.java (for any i=1, 2…, N): It

runs 2 infinite threads, server thread
(which waits for messages from other
nodes), and Decisionmaking thread
(which periodically diagnoses the
status of other nodes in the network
based on the information stored in
event_counter array).

 3. The tester .class is a thread that tests a

node to get status of that and
broadcasts the test results to its
neighbors.

 4. The server.class is a thread that is

waiting at each node i for messages
from other nodes in the system. For
each such message it is receiving, it
runs a w_r_thread thread that
processes that message. The
w_r_thread.class is a thread for
processing the messages received by
node i from other nodes in the system.

 5. The Decisionmaking.class is an

independent thread that periodically

diagnoses the status of other nodes in the
network based on the information stored in
even_counter array (i.e. For any node k <> i, if
even_counter[k] is even, then k is fault-free else
faulty).

 6. The t_msg.class is used to compose

request/acknowledgement messages.

 7. The info_msg.class is used to compose messages

based on test results for broadcasting purpose.
These messages are composed from the data
stored in local data structures. It has event and
intrapath arrays for that.

SIMULATION OUTPUT:
As per implementation of the algorithm for arbitrary
networks concerned, 9 nodes have been considered as
9 consoles. It is interesting to see visually each of the
nodes running on a respective Console. In each of the
Console, multiple threads are running by which
execution of the respective algorithm’s output can be
viewed. As there is scrolling facility in each of the
Console, we can view each of the steps running in a
particular node.

As node. java program is concerned, no need to run
simultaneously each of the nodes; rather it
automatically runs specific number of nodes
simultaneously as specified in that program. For each
of the node, respective Console is executed.

In figure 3, system level diagnosis algorithm for
arbitrary network is running on multiple windows
shown execution of the event counter list and
diagnosis information of each of the node.

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

52

Figure 3. Here Consoles of node 1, 2, 3, 6 and 9 are running on its own window. Each of the console,
there are different threads are running. Console for node 6 shows the diagnosis information as running
nodes are fault-free where node 4, 5, 7 and 8 are shown faulty ; also even counter list (counter value
against node).

CONCLUSION:
The distributed system level diagnosis
algorithm discussed give a comprehensive
idea about various issues one must keep
track of while going to develop such fault
tolerance algorithms. Since “system level
diagnosis” is one of the steps in the
process of building “distributed fault-
tolerant systems”, reliability of such a
system depends heavily on proper
functioning of the diagnosis algorithm.

In this paper distributed algorithm for fault
diagnosis that uses parallel dissemination
of fault event information to minimize the
information latency in the network is
presented. Even though it works for
arbitrary networks, it assumes no link

failures. A newly repaired node can rejoin the system
without relying on other nodes to first detect that it
has been repaired; equivalently, faulty nodes do not
have to be periodically tested.

REFERENCES
1. A.D. Singh, Sigaravel Murugesan, “Fault

Tolerant Systems”, IEEE Computer, July

1990.

2. A. Bagchi and S.L. Hakimi, “An optimal

algorithm for distributed system level

diagnosis “, in proc. 21st Int. Symp. FT

computing, June 1991.

Journal of Theoretical and Applied Information Technology

© 2007 JATIT. All rights reserved.

www.jatit.org

53

3. P. Bianchini and R. Buskens, “An

adaptive distributed system level

diagnosis algorithm and its

implementation,” Proc. FTCS-21,

pp222-229, 1991.

4. M.Stahl, R.Buskens, and R.

Bianchini, “The Adap2 on line

diagnosis algorithms for general

topology networks”, in proc.

Globecom, pp610-614, 1992.

5. M.Stahl, R.Buskens, and R.

Bianchini,”On line diagnosis in

general topology networks”, in

proc. Workshop Fault-Tolerant

Parallel and Distributed systems,

July 1992.

6. P. Bianchini and R.

Buskens,”Implementation of on-

line distributed system-level

diagnosis theory,”IEEE Trans.

Computers, vol. 41, pp.616-626,

1992.

7. S. Rangarajan, A. T. Dahbura,

and E. A. Ziegler, “A distributed

system-level diagnosis algorithm

for arbitrary network topologies”,

IEEE Trans. Computers, vol.44,

No.2, pp. 312-333, Feb. 1995.

8. A.K Somani and N H Vaidya,

“Understanding Fault-Tolerance

& Reliability”, IEEE Computer

,Vol. 30,No. 4, pp 45-50,April

1997.

9. E.P. Duarte Jr. and T.Nanya, “A

Hierarchical adaptive distributed

system-level diagnosis

algorithm,” IEEE Trans.

Computers, vol.47, No.1, pp.34-45, 1998.

10. A. Subbiah, D.M. Blough, “Distributed

Diagnosis in Dynamic Fault Environments”,

IEEE trans. on Parallel and Distributed

Systems, Vol. 15, No.5, May 2004.

11. Saikia L. P., “Java based simulation on
distributed diagnosis”, 15th IASTED proc.
on Applied Simulation and Modeling 2006,
pp. 406-411, June 2006.

