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ABSTRACT 
 

This paper introduces different construction techniques of parity-check matrix H for irregular Low-
Density Parity-Check (LDPC) codes. The first one is the proposed Accurate Random Construction 
Technique (ARCT) which is an improvement of the Random Construction Technique (RCT) to satisfy an 
accurate profile. The second technique, Speed Up Technique (SUT), improves the performance of 
irregular LDPC codes by growing H from proposed initial construction but not from empty matrix as 
usual. The third and fourth techniques are further improvements of the SUT that insure simpler decoding. 
In Double Speed Up Technique (DSUT), the decoder size of SUT matrix is fixed and the size of H is 
doubled. In Partitioned Speed Up Technique (PSUT), the H size is fixed and the decoder size decreases 
by using small size of SUT matrices to grow H. Simulations show that the performance of LDPC codes 
formed using SUT outperforms ARCT at block length N = 1000 with 0.342dB at BER = 10-5 and LDPC 
codes created by DSUT outperforms SUT with 0.194dB at BER = 10-5. Simulations illustrate that the 
partitioning of H to small SUT submatrices not only simplifies the decoding process, it also simplifies the 
implementation and improves the performance. The improvement, in case of half, is 0.139dB at BER=10-

5 however as partitioning increases the performance degrades. It is about 0.322dB at BER=10-5 in case of 
one-fourth. 
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1. INTRODUCTION 
 

Low-Density Parity-Check codes (LDPC) have 
been the subject of intense research lately because 
of their capacity-achieving performance and linear 
decoding complexity by using an iterative 
decoding algorithm, the so-called belief 
propagation or sum-product algorithm [1]. They 
were originally proposed in 1962 by Robert 
Gallager [2]. In the late 90’s LDPC codes were 
rediscovered by Mackay and Neal [3-4] and also 
by Wiberg [5]. Current hardware speeds make 
them a very attractive option for wired and 
wireless systems. Gallager considered only regular 
LDPC, i.e., codes that are represented by a sparse 
parity-check matrix with a constant number of 
ones (weight) in each column and in each row. 
Later it was shown that the performance of LDPC 
codes can be improved by using irregular LDPC 
codes, i.e., both nonuniform weight per column 
and nonuniform weight per row [6-7]. 

We can define an irregular Gallager code in two 
steps. First, we select a profile that describes the 
desired number of columns of each weight and the 
desired number of rows of each weight. Second, 
we construct the parity-check matrix that achieves 
the given profile. 

 The parity-check matrix of a code can be 
viewed as defining a bipartite graph [8] with 
“variable” vertices corresponding to the columns 
and “check” vertices corresponding to the rows. 
Each non-zero entry in the matrix corresponds to 
an edge connecting a variable to a check.  

Most of the current techniques in the design of 
irregular codes are based on random sampling 
from appropriate degree distribution ensemble 
along with some simple constrains such as the 
avoidance of length-4 cycles. It is shown in [8] 
that in the limit of large block length, the 
neighborhood of a node in LDPC code tends to be 
tree-like and hence the belief propagation 
algorithm is exact. It is also shown that the 
performance of a randomly chosen code is very 
good with high probability. However at short 
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block lengths, there is considerable variation 
among codes from a given ensemble and the 
neighborhood tends to be inevitably non-tree-like. 
From practical perspective it is desirable to have 
an algorithm that is able to efficiently find good 
codes from a degree distribution at a particular 
block length. 

This paper is organized as following, definitions 
and notations are given in section 2. In section 3, 
we present the Random Construction Technique 
(RCT) and the proposed Accurate Random 
Construction Technique (ARCT). The Speed Up 
Technique (SUT) is introduced in section 4. Two 
other Simple decoding techniques based on SUT 
are described in section 5. In section 6, simulation 
results are presented. Finally, section 7 concludes 
the paper. 

2. DEFINITIONS 
 

An M×N LDPC code parity-check matrix H is 
usually represented by a Tanner graph g. Let 
g={(V,E)} be a graph, where V is a set of  vertices 
or nodes V and E is the set of edges E connecting 
the vertices. The degree of node V is the number 
of edges incident on V.  

Definition 1:  (Cycle) A cycle of length 2d in 
Tanner graph representation of a code, is a set of d 
variable nodes and d check nodes connected by 
edges such that a path exists that travels through 
every node in the set and connects each node to 
itself without traversing an edge twice. 

Definition 2:  (Girth) The girth of a graph is the 
length of its shortest cycle. 

The graph g is bipartite if the set of vertices V 
can be decomposed into two disjoint sets V1 and 
V2 such that no two vertices within either V1 or V2 
are connected by an edge. It is well known from 
graph theory that a graph with at least two nodes is 
bipartite if and only if all its cycles are even 
length. 

The relation between the parity check matrix 
and its Tanner graph is illustrated in Figure 1. the 
figure shows a 5×10 matrix, one column in the 
parity-check matrix corresponds to one variable 
node (v1 , v2 , … , v10) in Tanner graph, and one 
row corresponds to one check node (c1 , c2 , c3,, 
c4). The bold solid lines (c4, v2), (v2, c5), (c5, v9), 
and (v9, c4) depict a cycle in the Tanner graph; this 
turns out to be the shortest cycle in this graph, so 
that its girth equals 4. 
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Figure 1 parity-check matrix and Tanner graph of 
an irregular LDPC code 

 
In irregular LDPC codes, profile which 

specifies the degrees of the vertices is often 
presented in polynomial form [9]. The variable 
node degree distribution is denoted by λ(x) and it 
can be expressed as: 

∑
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Where λi is the fraction of edges emanating from 
variable nodes of degree i and dv is the maximum 
variable degree of the irregular LDPC codes. 
Similarly, the check node degree distribution 
denoted by ρ(x) and can be expressed as: 
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Where ρi is the fraction of edges emanating from 
check nodes of degree i and dc is the maximum 
variable degree of the irregular LDPC codes. The 
given degree distributions of (λ, ρ) in [9] is used in 
this paper. 
 

3. CONSTRUCTION TECHNIQUES 
 

The construction technique objective is to 
construct the parity-check matrix H of irregular 
LDPC code from a given profile for a block length 

C1 C2   C3 C4     C5 

   v1 v2   v3 v4 v5 v6    v7 v8     v9   v10
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N and M=N(1-R), where R is the rate 
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3.1 RANDOM CONSTRUCTION 
TECHNIQUE (RCT) 

 
Random construction technique (RCT) for a 

given profile by adding columns can be described 
as follow: 

1- Start with a sparse empty matrix with size 
M×N. 

2- According to a given degree distribution 
of (λ, ρ), calculate the number of ones in 
each row (from 1 to M) and in each 
column (from 1 to N). 

3- For each column, select a random row 
and assign ones to that (row, column). 

4- Check  
A. If the degree constraint for the 

corresponding row is violated. 
B. If any cycles of length four will 

be formed. 
If any of the two constrains is violated, select 
another random row and check again. 
5- Repeat the selection and check till the 

number of ones of that column equals the 
required number. 

 
The above technique leads to profile as near as 

possible to the desired; the column weights is as 
desired, but the row weights can not be controlled 
in short block lengths.  

3.2 ACCURATE RANDOM 
CONSTRUCTION TECHNIQUE (ARCT) 

 
The ARCT is proposed to force the matrix to 

have specific row weights, the technique can be 
improved as follow: construct a vector u of size e 
(number of ones in H matrix), that acts as the 
supply. The elements of u contain the row number 
where the corresponding one can be placed.  
Instead of selecting a row with the random 
generator directly, we select an element of u 
randomly after placing the one in H, we delete the 
selected element from the vector u and then the 
length of u is e-1 and so on till the u vector is 
empty. This method guarantees the desired profile. 
For example, in the case of maximum variable 
node degree distribution equals to 20, the degree 
distribution pair (profile) [9] is as follow: 

 
λ (x) = 0.2415x + 0.2663x2 + 0.0514x5 + 0.1849x6 
+ 0.2559x19 
 
ρ(x) = 0.3392x6 + 0.6388x7 + 0.0220x8   
 

The parity check matrix H using ARCT for 
block length N=1000 is shown in figure 2-a 
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Figure 2 H using a) ARCT b) SUT 

4. SPEED UP TECHNIQUE (SUT) 
 

The proposed modification on ARCT is 
presented in the following: 
For half rate as in the above degree distribution 
pair (profile) i.e. N=2M 

1- Start with a sparse empty matrix with size 
M×N.  

2- Split H to two submatrices [M×M | 
M×M] 

3- Start with two eye matrices (ensure no 
cycles) with size M×M in H submatrices. 

4- According to a given degree distribution 
of (λ, ρ), calculate the number of ones in 
each row and column. 

5- Subtract one from the number of ones of 
each column and two from the number of 
ones of each row. 

6- Calculate u vector. 
7- For each column, select randomly a row 

from u and assign ones to that (row, 
column)  
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8- check: 
A. If the degree constraint for the 

corresponding row is violated. 
B. If any cycles of length four will 

be formed. 
If any of the two constrains is 
violated, select another random row 
from vector u and check again. 

9- Continue till a row is found which 
together with that column satisfies the 
above two constrains. 

 The parity check matrix H for the above 
example using SUT for block length N=1000 is 
shown in figure 2-b. 

As we will explain later, simulation shows that 
there is an improvement of LDPC code formed by 
SUT over ARCT. So, we will use SUT matrix in 
the reminder of this paper. 

5. SIMPLE DECODING USING SUT  
 

The decoding process and implementation are 
simplified by the following two proposed 
techniques 

 
 
 
5-1 Double Speed Up Technique (DSUT) 
 

In this technique the decoder size is fixed and 
the H size is increased to improve the 
performance as follow 

1- Start with SUT matrix with size M×N as 
in Fig. 2-b. 

2- Create an empty sparse large matrix HL 
with size 2M×2N. 

3- Construct HL as follow 
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Where [0] is a zero matrix of size M×N. 
This construction will use decoder of H size 

without any more complexity. An example for 
N=1000 is shown in figure 3 
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Figure 3 DSUT for N=1000 

 
5-2 Partitioned Speed Up Technique (PSUT) 

 
In this technique H size is fixed and the 

decoder size is decreased to simplify the 
implementation. This is accomplished as follow 

1- Start with an empty sparse matrix 
with M×N. 

2- Divide the parity-check matrix H to 
submatrices Hi each of size equals 
Mi×Ni, where          
       And  
i is the degree of 
portioning. 

3- Construct the submatrix Hi using 
SUT for the given degree distribution 
(λ, ρ). 

4- Construct the parity-check matrix H 
as follow 
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where [0]i is a zero matrix of size Mi×Ni. Example 
for N=1000 and His partitioned to 2, 3, 4, and 10 
is shown in figure 4. 

i
MMi = i

NNi =
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Figure 4 The partitioned parity-check matrix H 

i=2, 3, 4, 10 using SUT 
 

6. SIMULATION RESULTS 
 

Simulations were conducted to compare the 
performance of the two random construction 
algorithms, ARCT and SUT. The case of irregular 
LDPC code with rate 0.5 and block length N=1000 
for the given degree distribution pair (profile) was 
considered. We always assume Binary-Input 
AWGN channel. The SUT has initially two eye 
matrices which satisfy no cycles (not only no cycle 
4) and the adding ones in H satisfies the above 
mentioned constrains for good performance. The 
simulation shows that SUT outperforms ARCT 
with 0.342dB at BER = 10-5 as shown in figure 5. 

The performance of LDPC codes formed by 
using the DSUT is shown in figure 6. There is an 
improvement of 0.19dB at BER = 10-5 using the 
same small decoder size.  

The performance of the PSUT which simplify 
the decoding process and implementation is shown 
in figure 7. Simulation shows that partitioning H 
with i=2 does not only simplify the decoding 

process (where decoder for codeword length  
2
N  

can be used), it also improves the performance by 
0.139dB at BER=10-5. For i=3, the performance is 
nearly the same as without partitioning but this is 
achieved with even simpler decoder (for codeword 

length
3
N ). 
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Figure 5 the performance of LDPC code formed 
by ARCT and SUT 
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Figure 6 the same decoder for N=1000 and 

N=2000 
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Figure 7 the performance of partitioned parity-

check matrix i=2, 3, 4, 10 using SUT 
To conclude, as the size of the submatrices in H 

gets smaller the performance degrades as the 
performance of each submatrix degrades and H 
matrix has more regular form. On the other side, 
the decoder is simpler and the degree of simplicity 
is the degree of partitioning. For further 
partitioning, e.g., i= 4, or 10, the performance 
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degrades by 0.322dB at BER=10-5 and 0.5dB at 
BER = 2*10-5 respectively. 
 

7. CONCLUSIONS 
 

Different construction techniques of parity-
check matrix H for irregular Low-Density Parity-
Check codes (LDPC) have been introduced. 
ARCT aims to modify the traditionally RCT to 
satisfy an accurate profile. Speed up technique 
SUT, growing H from proposed initial 
construction ensures no cycles not from empty 
matrix as usual, improves the performance of 
irregular LDPC at block length N = 1000 with 
0.342dB at BER = 10-5. Finally, two techniques 
having simple decoding process are proposed 
based on SUT. Double speed up technique 
(DSUT) is used to fix the decoder size of SUT 
matrix and double the size of H lengthening the 
block length. This technique improves the 
performance of DSUT over SUT by 0.194dB at 
BER = 10-5. Partitioned speed up technique 
(PSUT), fix H size and decrease the decoder size 
by using small size of SUT matrices to grow H. 
This improves the performance in case of half by 
0.139dB at BER=10-5 but as partitioning increases 
the performance degrades by 0.322dB at BER=10-

5 in the case of one-fourth. This can be explained 
by the fact that the performance of the submatrices 
themselves degrades and H matrix has more 
regular form. 
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