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ABSTRACT 

 
 In digital image classification the conventional statistical approaches for image classification use only the 
gray values. Different advanced techniques in image classification like Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), Fuzzy measures, Genetic Algorithms (GA), Fuzzy support Vector 
Machines (FSVM) and Genetic Algorithms with Neural Networks are being developed for image 
classification.  Artificial neural networks can handle non-convex decisions. The use of textural features in 
ANN helps to resolve misclassification.  SVM was found competitive with the best available machine 
learning algorithms in classifying high-dimensional data sets. Fuzzy measures show the detection of 
textures by analyzing the image by stochastic properties. The fundamental stochastic properties of the 
image are isolated by different kinds of stochastic methods, by non-linear filtering and by non-parametric 
methods. Fuzzy support vector machines (FSVM) was proposed to overcome the n-class problem in 
Support Vector Machines. In this using the decision functions obtained by training the SVM, for each 
class, a truncated polyhedral pyramidal membership function was defined. The genetic algorithm searches 
a space of image processing operations for a set that can produce suitable feature planes, and a more 
conventional classifier which uses those feature planes to output a final classification. The use of a hybrid 
genetic algorithm investigates the effectiveness of the genetic algorithm evolved neural network classifier 
and its application to the image classification of remotely sensed multispectral imagery. A comparative 
study of some of these techniques for image classification is made to identify relative merits. 

 
Keywords: Image classification, neural networks, support vector machines, fuzzy measures, genetic 

algorithms. 
 

1.  INTRODUCTION 
Digital image consists of discrete picture 

elements called pixels which are associated with a 
digital number represented as DN that depicts the 
average radiance of relatively small area with a 
scene. The range of DN values is normally 0 to 
255. Digital image processing is a collection of 
techniques for the manipulation of digital images 
by computers. Classification generally comprises 
four steps: l. Pre-processing. e.g. atmospheric 
correction, noise suppression, and finding the band 
ratio, principal component analysis, etc, 2. 
Training: Selection of the particular feature which 
best describes the pattern, 3. Decision: Choice of 
suitable method for comparing the image patterns 
with the target patterns and 4: Assessing the 

accuracy of the classification. The informational 
data are classified into supervised and unsupervised 
systems. 

2. TECHNIQUES OF IMAGE CLASSIFICATION 

Image classification is an important task for many 
aspects of global change studies and environmental 
applications. Several classification algorithms have 
been developed from maximum likelihood 
classifier to neural network classifiers. This study 
emphasizes on the analysis and usage of different 
advanced classification techniques like Artificial 
Neural Networks, Support Vector Machines, Fuzzy 
Measures, Genetic algorithms and their 
combination for digital image classification. Finally 
the study depicts the comparative analysis of 
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different classification techniques with respect to 
several parameters. 

A.  Artificial Neural Network (ANN) 
ANN is a parallel distributed processor [1] that 

has a natural tendency for storing experiential 
knowledge. They can provide suitable solutions for 
problems, which are generally characterized by 
non-linear ties, high dimensionality noisy, complex, 
imprecise, and imperfect or error prone sensor data, 
and lack of a clearly stated mathematical solution 
or algorithm. A key benefit of neural networks is 
that a model of the system can be built from the 
available data. Image classification using neural 
networks is done by texture feature extraction and 
then applying the back propagation algorithm. 
 

1) Architecture of Neural Network and Texture 
Feature Extraction Algorithm: 

Texture is characterized by the spatial 
distribution of gray levels in a neighborhood. In 
texture classification the aim is to assign an 
unknown sample image to one of set of known 
texture classes. Textural features are scalar 
numbers, discrete histograms or empirical 
distributions. In the design four textural features 
namely the angular second moment, contrast, 
correlation and variance are considered. Texture 
and tone have an inexpressible relationship to one 
another. They are always present in an image, 
although on occasion one property can overlook the 
other.  In order to capture the spatial dependence of 
gray-level values, which contribute to the 
perception of texture, a two dimensional 
dependence, and texture analysis matrix is 
considered. Since, texture shows its characteristics 
by both pixel and pixel values, there are many 
approaches used for texture classification. Figure 1 
shows the architecture of NN with combined gray 
value and textural features. In this, four layers 
consisting of three inputs, seven first layer hidden 
nodes, eleven second layer hidden nodes and five 
output nodes are considered. 

The gray-tone co occurrence matrix is used for 
extracting textural features. It is a two dimensional 
matrix of joint probabilities Pd, r (i, j) between 
pairs of pixels, separated by a distance, d in a given 
direction r [2]. 

.  For finding textural features for every pixel in the 
image every pixel is considered as a centre and 
followed by a 5 × 5 window about that centre pixel. 
. The gray-tone matrix for that particular window is 
calculated and normalized. 
. The gray level co-occurrence matrix namely, Ph, 
Pv, Prd and Pld for each pixel is then obtained. 
Here, Ph, Pv, Prd and Pld are respectively the 0o , 
90o , 45o and 135o nearest neighbors to a particular 
resolution cell. 
.  Standard deviation and mean are now obtained 
for each of these matrices and the textural features 
are calculated. 
. The particular entry in a normalized gray tone 
spatial dependence matrix is calculated for further 
reference, i.e., P(i,j), Px (i), Py (j), Px + y (k) and 
Px - y (k). 
.  Then textural features, the angular second 
moment, contrast, correlation and variance are 
calculated. After extracting the textural features the 
network is trained by standard back propagation 
algorithm (BKP). 
 

2) Training the Combined Network using BKP 
The following assumes the sigmoid function f (x) 

1( )
1 xf x

e−=
+

              

   --- (1) 
The back propagation algorithm is implemented 
using following steps: 
1. Initialize weights to small random values. 
2. Feed input vectors X0, X1………., X6 through 
the network and compute the weighting sum 
coming into the unit and then apply the sigmoid 
function. Also, set all desired outputs d0,d1.. . . . . . 
d5 typically to zero except for that corresponding to 
the class the input is from. 
3. Calculate error term for each output unit as 

(1 )( )j j j j jy y d yδ = − −          

    --- (2) 
Where dj is the desired output of node j; and y j is 
the actual output. 
4. Calculate the error term of each of the hidden 
units as 

(1 )j j j k jkk
x x wδ = − δ∑          

    --- (3) 
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Where k is over all nodes in the layers above node 
j; and j is an internal hidden node. 
5. Add the weight deltas to each of 

( 1) ( )y y j iW t W t x+ = + η δ          

   --- (4) 
All the steps excepting 1 are repeated till the error 
is within reasonable limits and then the adjusted 
weights are stored for reference to the recognition 
algorithm. 

B.  Support Vector Machines 
The support vector machine (SVM) is superior of 

all machine learning algorithms. SVM employs 
optimization algorithms to locate the optimal 
boundaries between classes. The optimal 
boundaries should be generalized to unseen 

samples with least errors among all possible 
boundaries separating the classes, therefore 
minimizing the confusing between classes. The 
applicability of SVM for image classification is 
explored in this study. 

 
1)  Development of SVM 

The support vector machine (SVM) is a machine 
learning algorithm based on statistical learning 
theory. There are a number of publications 
detailing the mathematical formulation and 
algorithm development of the SVM [8, 9, and 10]. 
The inductive principle behind SVM is structural 
risk minimization (SRM). The risk of a learning 
machine (R) is bounded by the sum of the empirical 
risk estimated from training samples (Remp) and a 
confidence interval (ψ): R ≤ Remp+ ψ [8]. The 
strategy of SRM is to keep the empirical risk 
(Remp) fixed and to minimize the confidence 
interval (ψ), or to maximize the margin between a 
separating hyper plane and closest data points 
(Figure 2). A separating hyperplane refers to a 
plane in a multi-dimensional space that separates 
the data samples of two classes. The optimal 
separating hyperplane is the separating hyperplane 

that maximizes the margin from closest data points 
to the plane. Currently, one SVM classifier is able 
to separate only two classes. Integration strategies 
are needed to extend this method to classifying 
multiple classes.  
 

2)  The optimal separating hyperplane 
Let the training data of two separable classes 

with k samples be represented by(x1, y1), (xk, yk) 
where xЄRn is an n-dimensional space, and y Є 
{+1, - 1} is class label. Suppose the two classes can 
be separated by two hyperplanes parallel to the 
optimal hyperplane (Figure 2(a)): 
 

. 1iw x b+ ≥                                                               
---    (5) 

. 1iw x b+ ≤ −                                                             
---    (6) 
where w= (w1... wn) is a vector of n elements. 
Inequalities (5) and (6) can be combined into a 
single inequality: 
   [ ' ] 1i iy w x b+ ≥                                                     
---    (7) 

As shown in Figure 2, the optimal separating 
hyperplane is the one that separates the data with 
maximum margin. This hyperplane can be found by 
minimizing the norm of w, or the following 
function: 

  
1

2( ) ( ' )F w w w=                                                     
---   (8) 

The saddle points of the following Lagrange 
gives solutions to the above optimization problem: 
 

1
2

1
( , , ) ( ' ) [ ' ] 1}

k

i i
i

L w b w w y w x bι
=

α = − α + −∑
   ---   (9) 
where αi ≥0 are Lagrange multipliers [11]. The 
solution to this optimization problem requires that 
the gradient of L (w, b, α) with respect to w and b 
vanishes, giving the following conditions: 

            
1

k

i i
i

w y xι
=

= α                  ∑                           

---   (10)    

            
1

0
k

i
i

yι
=

α =             ∑                                      

---   (11) 
By substituting (10) and (11) into (9), the 

optimization problem becomes: maximize 

   Input Layer    I - H - Lay er II - H - Layer     Output Layer

Textual  
Features   

Red   
  Green   
  IR 

  

Figure:1 : Architecture of NN with combined gray v
textural features

C
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1 1 1

1( ) ( ' )
2

k k k

i j i j i j
i i j

L y y x xι
= = =

α = α − α α     ∑ ∑∑        

--- (12) under constraints, αi  ≥ 0 i=1,.. , k. 
Given an optimal solution α0= (α0

1,....,α0
k ) to 

(12), the solution w0 to (9) is a linear combination 

of training samples: 

            0

1

k

i i
i

w y x0
ι

=

= α         ∑                                       

--- (13) 
According to the Kuhn–Tucker theory [11] only 

points that satisfy the equalities in (5) and (6) can 
have non-zero coefficients αi

0 .These points lie on 
the two parallel hyperplanes and are called support 
vectors (Figure 2). Let x0(1) be a support vector of 
one class and x0(- 1) of the other, then the constant 
b0 is calculated as follows: 

10 0 0 0 02[ ' (1) ' ( 1)]b w x w x= + −                             
---   (14) 
The decision rule that separates the two classes can 
be written as: 
f(x)=sign ( 0 0

sup

( ' )i i
portvector

y x x bια −∑ )                      

---   (15) 
 

3) Handling non-separable cases 
An important assumption to the above solution is 

that the data are separable in the feature space. It is 
easy to check that there is no optimal solution if the 
data cannot be separated without error. To resolve 
this problem, a penalty value C for 
misclassification errors and positive slack variables 
ξi  are introduced (Figure 2(b)). 

These variables are incorporated into constraint (5) 
and (6) as follows: 

   ' 1i iw x b+ ≥ − ξ        for  1iy =             
--- (16) 
          ' 1i iw x b+ ≤ − + ξ     for   1iy =          

--- (17) 
            0iξ ≥              i =1,……,k                              
--- (18) 
The objective function (8) then becomes 

1
2

1

( , ) ( ' )
lk

i

F w w w C ι
=

⎛ ⎞ξ = + ξ     ⎜ ⎟
⎝ ⎠
∑                        

--- (19) 
C is a preset penalty value for 
misclassification errors. If l=1, the solution 
to this optimization problem is similar to 
that of the separable case. 
 

4)  Implementation of Support vector 
machines 

To generalize the above method to non-
linear decision functions, the support vector 
machine implements the following method: 
it maps the input vector x into a high-

dimensional feature space H and constructs the 
optimal separating hyperplane in that space. 
Suppose the data are mapped into a high-
dimensional space H through mapping function Φ: 

             : nR HΦ →                                           
---   (20) 
A vector x in the feature space can be represented 
as Φ(x) in the high-dimensional space H. Since the 
only way in which the data appear in the training 
problem (8) are in the form of dot products of two 
vectors, the training algorithm in the high 
dimensional space H would only depend on data in 
this space through a dot product, i.e. on functions 
of the form Φ(xi )´ Φ(xj). Now, if there is a kernel 
function K such that 

,( ) ( ) ' )i j i jK x x x x= Φ Φ(                                     

---     (21) 
then K is used in the training program without 
knowing the explicit form of Φ. Thus if a kernel 
function K can be found, a classifier can be used in 
the high-dimensional space without knowing the 
explicit form of the mapping function for training.. 
The optimization problem (12) is rewritten as: 

1 1 1

1( ) ( , )
2

k k k

i j i j i j
i i j

L y y K x xι
= = =

α = α − α α     ∑ ∑∑
          (22)  

Figure 2: The optimal separating hyperplane between 
 (a) separable samples and (b) non-separable data samples. 
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and the decision rule expressed in equation (11) 
becomes: 

0

sup
( ) ( , )i i

port vector
f x sign y K x x b0

ι
 

⎛ ⎞
= α −     ⎜ ⎟

⎝ ⎠
∑           

(23) 
By the systematic development of SVM, the 

kernel function plays a major role in locating 
complex decision boundaries between classes. By 
having input data into dimensional space, the 
kernel function converts non-linear boundaries in 
the original data space into linear ones in the high 
dimensional space. Hence the selection of kernel 
function and appropriate values for corresponding 
kernel parameters, affect the performance of the 
SVM. 

C.  Fuzzy Measures 
There are several image processing algorithms for 

the detection of information in the form of sound 
defined features such as edges, skeletons, and 
contours etc as in [13, 14, and 15]. In Fuzzy 
measures, different stochastic relationships are 
identified to describe properties of an image. The 
different types of stochastic are collected is a set of 
properties, where the members of this set are fuzzy 
in their contribution. The fuzzy measure gives the 
possibility to describe different types of stochastic 
properties in the same form. If the fuzzy property is 
more related to a region, then a fuzzy measure is 
used. Fuzzy function is used if a stochastic property 
is to be described by a particular distribution of 
gray values. The fusion of these two stochastic 
properties is represented as a fuzzy measure and 
fuzzy function defines on an area which is achieved 
by a fuzzy integral. The result of fuzzy integral is a 
new fuzzy measure. 
 

1)  Stochastic Properties of the Image 
For the extraction of stochastic properties 

different methods are used, because the stochastic 
properties are a composite and decomposition is 
only possible, if the composed properties are 
calculated by different aspects. The different 
composed properties will be mapped on different 
spaces and isolated. The filtering is adapted for 
stochastic changing of the grey values related to the 
neighbor pixels. The regions with different 
stochastic variations are well selected by 
application of wavelet transforms with selected 
constants. The dynamic of the stochastic between 
the pixel-points describes many relevant properties 
of the textures. Consequently, the stochastic 
properties are modulated by a system of coupled 
stochastic differential equations of the form: 

1 1 1 2 1

2 2 1 2 2

1 2

( ) ( , ,..., ) ( )
( ) ( , ,..., ) ( )

............
( ) ( , ,..., ) ( )

n

n

m m n m

dy x F y y y dx G n x
dy x F y y y dx G n x

dy x F y y y dx G n x

= +
= +

= +

 

Here, y1, y2 ,….,yn the m components of the 
stochastic and F are the m non-linear matrices for 
the relationships between the components. The m 
coefficients G are the gain factors for the noise n 
and x represents the pixel-point or the region in the 
image. From these equations the expectation values 
for y are be obtained by Martingale technique [16]. 
The difference of the measure values and the 
calculated expectation values represents the 
stochastic structure of the region within the image. 
This set of stochastic characteristics is a 
contribution to the basis of properties for the 
separation of textures. These obtained stochastic 
properties have to be represented in a special 
manner for a better estimation by the fuzzy measure 
and the fuzzy function and is applied in [17, 18]. 
 

2)  Stochastic Information by Fuzzy Measures 
The mathematical basis for including the 

importance of a stochastic property is the fuzzy 
measure. By the fuzzy measure the properties 
described by different kinds of relationships are 
mapped into the closed interval [0, 1]. The fuzzy 
measure, as defined in [19], has a term with the 
combination of all elementary fuzzy measures 
multiplied by a factor λ. The factor λ has an effect 
similar to a weight factor for the interaction 
between the properties. If λ= 0 then g can be used 
as a probability measure. 
The coupling of the elementary fuzzy measures 
(densities) g1(x1) over the elementary region x1 with 
another elementary fuzzy measure g(x2) over the 
other elementary region x2 is defined by: 

 

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )g x x g x g x g x g xλ λ λ λ λ∪ = + + λ
 -- (24) 

where λ= (1+ λg(x1)) (1+ λ g(x2) + λ gλ(x1) gλ(x2))-1 
is a coupling constant used as a substitution for the 
loss of additivity. For a set of elements A= {xi} the 
relationship above is used recursively to give: 

1
1

1
1 1 1

( ) ( ) ( ) ( ) .. ( ).. ( )
n n n

n
i i j n

i i j i

g A g x g x g x g x g x
−

−

= = = +

= +λ + +λ∑ ∑∑
                    
  --- (25) 
This is written as product 
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1( ) (1 ( ) 1
j

ix X
g X g x

∈ 

⎡ ⎤= Π + λ −⎢ ⎥λ ⎣ ⎦
     where   λ ≠ 

0    --- (26) 
 
The coupling parameter λ is obtained by solving the 
equation 

1 (1 ( ))
j

ix X
g x

∈ 

⎡ ⎤+ λ = Π + λ⎢ ⎥⎣ ⎦
                                        

--- (27) 
The mathematical concept for calculating the 
measure for the coupled elementary properties for 
small areas is shown here.  
 

3)  Stochastic Information By Fuzzy Functions 
The fuzzy functions are mostly values over 

single pixel points. The values of the neighbor 
pixel are of stochastic nature and normally not 
directly correlated with this value. These fuzzy 
functions are described normally by a 
characterization over a threshold. Outside of such a 
characteristic threshold the values depend very 
weakly on the real value. Inside the interval the 
values generate fuzzy properties for the adapted 
condition. These fuzzy functions are also 
normalized and mapped on an interval given by a 
boundary. Whereas the fuzzy measure is better 
adapted for effects represented in special regions, 
the fuzzy function characterizes the stochastic 
change over a region of a fuzzy measure. The 
values are combined in the similar manner as with 
the fuzzy measure.  
 

4)  Fusion of Fuzzy Properties by Fuzzy 
Integrals 

The values over the possible region of textures 
represented by a fuzzy measure g(x k, l) are 
connected with the values h (xi,j) at the pixels 
representing the strength of the properties for a 
texture. The value h (xi,j) is described by a fuzzy 
function where the values are normalized to 1. The 
functional relationship between the fuzzy measure 
and the fuzzy function is represented by the fuzzy 

integral. For the fuzzy integral the definition of a 
fuzzy integral of [19] is used, because it is well 
adapted to the problem of detection of textures. By 
[19] the fuzzy measure is combined with the fuzzy 
function in the form  

( )Af h xα ⊕

)
[0,1]

sup {min[ , ( ]},dg g A Hα
α∈

= α ∩  

{ }H x hα α= ⏐ ≥ α                      
--- (28)           
Here hα is the cut of h at the constant α. For hα (x), 
the values at the pixel-points are used, representing 
the property of a texture. α is the threshold where 
the assumption is fulfilled, that the property is used 
in the minimal condition. The region A is given as 
the image region where surely a specific texture is 
expected. It may be also the whole image for the 
pixel region and the whole possible range for a 
fuzzy function. The important property of a fuzzy 
measure is that its value is mapped on the closed 
interval [0, 1]. This is given by the calculated value 
of the fuzzy integral. This gives the possibility to 
use the result of a fuzzy integral as a new fuzzy 
measure g2 
  

,2 1( ) ( )
i j Ag A h x dgf α= ⊕            

  --- (29) 
This newly produced fuzzy measure is linked with 
the region obtained by another stochastic property 
for the texture so that f2 obtained 

 '
2 ' 2( )Ah x dgf f α= ⊕           

  --- (30) 
In the next step the next region of another property 
of the contrail is combined with this fuzzy function 
f2. In such away a set of fuzzy functions {f1, 
f2,…fn} is obtained by fuzzy measures {g1,g2,…g3 }. 
The summation of all combinations of fuzzy 
measures with fuzzy functions makes sure, that all 
possible properties in all combinations, which 
should be considered, are used. In such a way an 
image is obtained, where the (grey) values 
represent a measure for the membership to the 
texture. In this way different elementary stochastic 
properties are combined in many ways for the 
extraction of relevant information. In order to 
achieve this different approaches have to be applied 
for the elimination of the elementary stochastic 
properties within an image. 

D.  Fuzzy Support Vector Machines 
In support vector machines, the original input 

space is mapped into a high dimensional dot 
product space called feature space and in the 

 
 

Fig. 3 mapping nonlinear data to a higher dimensional 
feature space 
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feature space the optimal hyper plane is determined 
to maximize the generalization ability [8, 9]. To 
overcome the problem of misclassification regions 
in multiclass support vector machines, fuzzy 
support vector machines are proposed in this study. 
In training the support vector machines, an n-class 
problem is converted into n two-class problems. 
For each two-class problem, the decision function 
that maximizes the generalization ability is 
determined. For a two-class problem, the m-
dimensional input x is mapped into the 1-
dimensional (l ≥ m) feature space z. Then in the 
feature space z the quadratic optimization problem 
is solved to separate two classes by the optimal 
separating hyperplane.  
 

1)  Multiclass Support Vector Machines 
In conventional support vector machines, an n 

class problem is converted into n two-class 
problems and for the ith two-class problem, class i 
is separated from the remaining classes. Let the ith 
decision function that classifies class i and the 
remaining classes be  

( ) t
i i iD x w x b= +                                                     

---   (31) 
The hyperplane Di(x) = 0 forms the optimal 
separating hyperplane and the support vectors 
belonging to class i satisfy Di(x) = 1 and to those 
belonging to the remaining class satisfy Di(x) = -1. 
For conventional support vector machine, if for the 
input vector x  

( ) 0iD x >                                                               
---   (32) 
is satisfied for one i, x is classified into class i.  
But if (32) is satisfied for plural i’s, or there is no i 
that satisfies (32), x is unclassifiable (see Fig. 3).               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To solve this problem, pairwise classification [20] 
is proposed.  
In this method, the n-class problem is converted 
into n(n - 2)/2 two-class problems, which cover all 
pair of classes. Let the decision function for class i 
against class j, with the maximum margin, be  

( ) ( )ij jiD x D x= −                                                      

--- (33) 
 where  ( ) ( )ij jiD x D x= − . For the input vector x 

calculate 

                      
1,....

( ) ( ( ))
n

i ij
i n

D x sign D x
=

=      ∑            

--- (34) 
and classify x into the class   
 

1,...,
arg max ( )ii n

D x
=

                                                       

--- (35) 
In this formulation, however, unclassifiable regions 

remain, where some D(xi) have the same values. In 
order to resolve unclassifiable regions, fuzzy 
support vector machines are used. 
 

2)  Fuzzy Support Vector Machines 
In fuzzy support vector machines, fuzzy 

membership functions are given for the same 
classification results for the data that satisfy (32). 
To do this, for class i one-dimensional membership 
functions mij(x) are defined on the directions 
orthogonal to the optimal separating hyperplanes 
Dj (x) = 0 as follows: 
1.   For  i=j 

 
1 ( ) 1,

( ) .
( ) {ii

i

i

for D x

D x otherwise
m x

                  >

      
=                              

---   (36) 
2. For  i≠j 

1 ( ) 1,

( ) .
( ) {ij

j

i

for D x

D x otherwise
m x

                     >−

 −      
=                       

--- (37) 
Since only the class i training data exist when Di ≥ 
1, that the degree of class i is assumed to be 1, and 
otherwise, Di(x). Here the negative degree of 

 
 

nclassifiable region by the two-class formulation 
 

 
 Class i 

Class  j   
Class k 

Figure 5: Class Boundary with membership function
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membership is allowed. For i≠ j, class i is on the 
negative side of Dj(x) = 0. In this case, support 
vectors may not include class i data but when Di(x) 
≤ -1, we assume that the degree of membership of 
class i is 1, and otherwise, - Dj (x). 
 The class i membership function of x is defined 
using the minimum operator for mij(x) (j = 1, . . . , 
n): 
 

1,...,
( ) min ( )i ijj n

m x m x
=

=                                                

--- (38) 
 In this formulation, the shape of the membership 
function is a polyhedral pyramid (see Figure 4).  
Now the datum x is classified into the class 

1,...,
arg max ( )ii n

D x
=

                                                          

--- (39) 
If x satisfies 

0

0 , 1,...,
( ){k

for k i

for k i k n
D x

>                 =

≤                 ≠ =
                         

--- (40) 
from (36) and (37), mi(x) > 0 and mj(x) ≤ 0 (j ≠i, j = 
1, . . . , n) hold. Thus, x is classified into class i. 
This is equivalent to the condition that the 
condition that (32) is satisfied for only one i. Now 

suppose (32) is satisfied for i1,. . . ,il (l > 1). Then, 
from (36) to (38), mk(x) is given as follows. 
1. 1,...., lk i i∈  

                 
1, ..., ,

( ) min ( )
l

k jj i i j k
m x D x

= ≠
= −                      

--- (41) 
2. 1( ...., )lk j j i i≠ =  

                
1, ...,

( ) min ( )
l

k jj i i
m x D x

=
= −                             

--- (42) 
Thus the maximum degree of membership is 
achieved among mk(x), k = i1, . .,il. Namely, Dk(x) is 
maximized in k Є (i1,.    ,il}. 
Let (32) be not satisfied for any class. Then  

( ) 0iD x <          for    j=1,….,n.                                
--- (43) 
 Then (38) is given by 
 ( ) ( )i im x D x=                                                           
--- (44) 
 
According to above formulation, the unclassified 
regions shown in Figure 3 are resolved as shown in 
Figure 5 and generalization ability of FSVMs is the 

TABLE I 
THE GENES USED IN GENETIC PROGRAMMING SYSTEM AND THEIR DESCRIPTION 

Gene 
Abbre- 
viation 

Image 
Processing 
Operation 

Inputs/ 
Outputs/ 
Params 

Notes 

ADDP 
ADDS 
SUBP 
DIFF 
NDI 

MULTS 
NEG 

MULTP 
SQRT 

LINCOMB 

Add planes 
Add scalar 

Subtract planes 
Absolute diff. 

Normalized diff. 
Multiply by scalar 

Negate plane 
Multiply planes 

Square root 
Linear comb. 

2/1/0 
1/1/1 
2/1/0 
2/1/0 
2/1/0 
1/1/1 
1/1/0 
2/1/0 
1/1/0 
2/1/1 

Basic mathematical operations. ADDS adds a scalar, which may be 
negative, to its input. DIFF is like SUBP but outputs the absolute 
values. LINCOMB outputs a linear combination of its two inputs, in 
proportion specified by its one parameter, which takes a value 
between 0 and 1. 

MIN 
MAX 

Minimum 
Maximum 

2/1/0 
2/1/0 

Logical operations. 

CLIP HI 
CLIP LO 

Clip high 
Clip low 

1/1/1 
1/1/1 

Thresholding operations. CLIP HI truncates any pixel values above a 
value set by its param. 

SAVAR 
 

SADIF 
 

Spectral angle variance 
Spectral angle 

difference 
 

2-16/1/2 
 

2-16/1/2 
 
 

Spectral angle operations. SAVAR and SADIST look at two circular 
neighborhood regions around each pixel, of size defined by their two 
params. SADIF returns the difference between the mean spectral 
angle of both regions. 

LAWB 
 

LAWD 
 

LAPLAC5 
SD 

EROD 
DIL 

OPEN 
CLOS 
OPCL 

 

Lawe’s texture 
measure 

Lawe’s texture 
measure 

5x5 Laplacian 
Standard deviation 

Erode 
Dilate 
Open 
Close 

Open-close 
 

1/1/0 
1/1/0 
1/1/0 
1/1/1 
1/1/0 
1/1/1 
1/1/1 
1/1/1 
1/1/1 
1/1/1 
1/1/1 

 

Neighborhood operations. All these operations take a single plane as 
input and produce a single output plane. LAWB, LAWD, are widely-
used texture measures, developed by Lawe, that return zero if the 
neighborhood contains all the same value of pixel, and some other 
value otherwise, depending upon the distribution of pixel values. 
Most of the other operators are familiar image processing or 
morphological operators, whose description can be found in any 
good book on image processing. 
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same with or better than that of the conventional 
SVMs. It was found that fuzzy support vector 
machines for classification is superior to 
conventional support vector machines. 

E.  Genetic Algorithms 
The techniques of image classification ranging 

from maximum likelihood to neural networks 
depend on feature vectors formed by the intensity 
values in each spectral channel for each pixel. But 
the spectral information alone is not sufficient to 
exactly identify a pixel. The features of its 
neighborhood, like texture, or the average value of 
nearby pixels are necessary to get good spectral 
information. The different kinds of spatial content 
information could also be added into the pixel 
feature vector as additional feature dimensions. So 
there are a large number of choices for additional 
feature vectors that could make classification better 

than just having the raw spectral values as feature 
vectors. Hence to choose these features 
automatically a new evolutionary hybrid genetic 
algorithm is used. 

 
1) The Genetic Programming System 

The genetic programming system based on a 
linear chromosome [22] manipulates image 
processing programs that take the raw pixel data 
planes and transform them into a set of feature 

planes. This set of feature planes is in effect just a 
multi-spectral image of the same width and height 
as the input image, but perhaps having a different 
number of planes, and derived from the original  

image via a certain sequence of image processing 
operations. The system then applies a conventional 

supervised classification algorithm to the feature 
planes to produce a final output image plane, which 
specifies for each pixel in the image, whether that 
feature is there or not. Figure 6 illustrates this 
hybrid scheme. In this structure finally raw data 
planes are transformed into a set of feature planes 
by an image processing program that is evolved by 
genetic algorithm. 
In the system a fixed-length linear chromosome and 
standard one-point crossover are used. According 
to [23], these two are significantly better than more 
flexible crossover schemes. A single chromosome 
is made up of a string of genes, each one of which 
corresponds to a particular image processing 
operation. Each gene has one or more inputs, and 
one or more outputs. An input can be taken from 
any one data plane in the original image (there are 
as many data planes as there are spectral channels), 
or from any one ‘scratch plane’. Scratch planes are 
temporary holding places where a single image 
plane can be held. The gene performs some image 
processing operation on its inputs and produces one 
or more planes of output data. Each of these planes 
is written to a different scratch plane. The whole 
chromosome is evaluated by starting with the gene 
at the left end, and sequentially stepping through 
the genes in order, one-by-one. It is a requirement 
when chromosomes are created that no gene is 
allowed to read from a scratch plane that has not 
been written to by at least one gene to the left of it. 
In addition, the requirement imposed is that all 
scratch planes must be written to at least once 
during a chromosome’s execution. The feature 
planes which are passed on to the supervised 
classifier are specified by the user as a subset of the 
scratch and data planes. Figure 7 shows the genome 
representation translation into an image processing 
pipeline. It is quite possible that a gene will write 
its output to a scratch plane, which is then 
overwritten by another gene before it is ever used. 

Figure 4: Contour lines of the class i membership function 

       Image    
processing   

    
Feature    
plan   es   

    
Supervised  
classifier  

  

Data    
planes   

    
G   A      Output  

Plane 
  

Fig ure  6:        T he Structure of Genetic programming System  

 
Scratch1

CLIP_HI[0.1] 

Scratch2

SQRT

OPCL 

ADDS[0.

Data1
Data3 

NDI 

 
Figure 7: Three Equivalent views of a chromosome 

First and second shows the raw linear genome representation 
and Lines of code version of the genome. Third one shows the 

graph representation of the same genome. 

ADDS,Rd1, 
Ws1,0.2 
 

NDI,rD3, 
rS1,wS1 
 

OPCL, 
rS1,wS2 
 

SQRT, 
rS1,wS1 
 

CLIP_HI, 
rS2,wS2,0.1 
 

Scratch1 <= ADDS(Data1, 0.2) Scratch1 <= NDI(Data3, Scratch1) 
Scratch2 <= OPCL(Scratch1) Scratch1 <= SQRT(Scratch1) 
Scratch2 <= CLIP_HI(Scratch2, 0.1)  
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In this case that gene is irrelevant, as they are any 
genes that write data to scratch planes that are only 
read by irrelevant genes before being overwritten. 
Hence, although the chromosome length is fixed, 
the effective program length can vary significantly. 
In this system, an efficient graph analysis of the 
chromosome is performed and irrelevant genes are 
determined. Those genes are kept in the 
chromosome, but for efficiency, are never actually 
executed. Table I lists some of the genes used and 
their description. 

Each gene corresponds to a different image 
processing operation, but the details of that 
operation can be influenced by gene parameters. 
Different genes have different numbers of 
parameters, and each parameter is associated with a 
fixed set of attributes that determine such things as 
what range it is randomly initialized within when 
that gene is first created, what range of values it can 
possibly take, and how it is affected by mutation. 
There are three kinds of parameters:1) float 
parameters are initialized to a random floating point 
number in the initialization range, and are mutated 
by a floating point offset that is Gaussian 
distributed with a standard deviation given by that 
parameter’s delta attribute; 2) integer parameters 
are initialized to a random integer in the 
initialization range, and are mutated by an integer 
offset that is uniformly distributed in a range given 
by plus or minus the delta attribute; 3) symbolic 
parameters are like integers, but when mutated are 
simply re-initialized randomly. In general, genes 
produce output that is roughly on the order of the 
same scale as their input. Thus by using GA a 
robust classifier is developed. 

F.  Genetic Algorithms and the Neural Network 
The most widely used neural network is the 

multilayer perception (MLP), in which the 
connection weight training is done by a back 
propagation learning algorithm [25]. Despite its 
popularity as an optimization tool for neural 
network training, this gradient descent technique 
has several problems like premature convergence 
and efficiency of differential operation. Genetic 
algorithms [26] have an efficient search method for 
a complex problem space and are used as powerful 
optimization tools. With genetic algorithm the 
neural network connection weights are determined 
by the architecture and the learning task. 
 

1)  Combination of Neural Network and 
Genetic Algorithm 

A three-layer feed-forward neural network with 
m inputs (channels) and k outputs (categories), and 

l hidden nodes is assumed in this study. Each 
neuron in the hidden layer uses sigmoid function 
f(x) as its threshold function, and each neuron in the 
output layers uses Purelin function p(x) as its 
threshold function. The neuron output of hidden 
node h (1 ≤ h ≤ l) and output node q (1 ≤ q ≤ k) can 
be expressed as:  

1

( )
m

T
h i i n

i

z f W X f w x
=

⎛ ⎞= = − δ    ⎜ ⎟
⎝ ⎠
∑                       

--- (45) 

1

( )
l

T
q i i q

i

o p V Z p v z
=

⎛ ⎞=  =  − δ  ⎜ ⎟
⎝ ⎠
∑                           

--- (46) 
 
 respectively, where the superscript T stands for a 
vector transpose, W = [ ω1, ω2, …, ωi , …, ωm] is 
the weight connection vector between the input 
nodes and hidden node h, V = [v1, v2, …, vi, …, vk] 
is the weight connection vector between the hidden 
nodes and output node q, X= [x1, x2, …,xi, …,xm] is 
the input vector for each hidden node, and Z= [z1, 
z2, …,zi, …,zm] is the output vector of the hidden 
nodes. δh and δq are the corresponding biases for 
hidden node h and output node q. zh and oq are the 
output neuron responses for node h and node q, 
respectively. The Sigmoid function f(x) is defined 
as: 

1( )
1 xf x

e−=                               
+

          

--- (47) 
 where x Є[-∞, +∞].And the Purelin function p(x) is 
defined as: 
 ( )p x x= α + β                                 
  --- (48) 
where α is a non-zero constant, β is the bias; and α, 
β Є [-∞, +∞]. 

Assuming a set of pattern samples X={X1, X2, …, 
Xn}, where n is the number of samples, and each 
sample Xi in set X is a m-dimensional feature 
vector; let T={T1, T2, …, Ti, …, Tn} as set X’s 
corresponding output classes, Ti = [t1, t2, …, tj, …, 
tk] is a k-dimensional class vector. If the target class 
for a specific sample is j (1 ≤ j ≤ k), then we have tj 
=1, otherwise tj = 0. For simplicity, denote oij as 
the jth actual neuron output for the input training 
sample Xi at the output layer, while tij as its desired 
response. The mean square error function for this 
neural network could be described as:  

2

1 1

1( ) ( )
n k

ij ij
i j

net t o
n k = =

ε = −                      
. ∑∑       

--- (49) 
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 where ε is mean square error, net is the neural 
network. 

The combination of genetic algorithm and neural 
network for weight training consists of three major 
phases. The first phase is to decide the 
representation of connection weights, i.e., whether 
we use a binary strings form or directly use a real 
number form are to represent the connection 
weights. The second step is the evaluation on the 
fitness of these connection weights by constructing 
the corresponding neural network through decoding 
each genome and computing its fitness function and 
mean square error function. The third one is 
applying the evolutionary process such as selection, 
crossover, and mutation operations by a genetic 
algorithm according to its fitness. The evolution 
stops when the fitness is greater than a predefined 
value or the population has converged.  

The technical design of the evolutionary strategy 
of connection weights training can be described as:  
1) Decode each individual (genotype) in the current 
generation into a set of connection weights. The 
choice of real coded genotype representation can 
search the potential solutions more precisely in 
feature space than binary representation.  
2) Evaluate each set of the connection weights by 
constructing the corresponding neural network 
structure and computing its total mean square error 
between actual and target outputs. The higher the 
error, the lower the fitness. The fitness function δ is 
defined as: 

( ) min( ( ))( )
max( ( )) min( ( ))

i i
i

i i

net netnet
net net

∗ ε − ε
ε =   

ε − ε
        

--- (50) 
( )( ) i

i
netnet e

∗−ψε  δ =               
--- (51) 
Here, Eq (50) is a MSE normalization operation 
applied on each MLP represented by a 
chromosome. Eq (51) is the actual fitness function. 
In Eq (51), ψ is a positive constant. A fine choice 
from our experience is to set ψ to 6.0.  
3) Select parents for reproduction based on their 
fitness. A roulette wheel selection scheme is 
adopted as in [26, 27]. The population of current 
generation is mapped onto a roulette wheel, where 
each chromosome is represented by a space that 
proportionally corresponds to its fitness. 
 
4) Apply search operators in conjunction with the 
crossover and/or mutation operators like 
arithmetical crossover operator [29] and a non-
uniform mutation operator to parent chromosomes 

to generate offspring, which form the next 
generations.  
Crossover operator: For the arithmetical crossover 
operator, it was assumed that 

2 2 2
2 1( ,..., ,..., )i nC c c c=  and 

2 2 2
2 1( ,..., ,..., )i nC c c c= are two chromosomes 

that have been selected to apply the crossover 
operator, then two offspring, Hk, k=1,2, are created 
according to the following equations: 

1 2

1 1 2

2 2 1

( ,..., ,..., ) 1, 2

(1

(1

k k k
k n

i i i

i i i

H h h h k

h c c

h c c

=     =

= λ + − λ)

= λ + − λ)                      

         

  --- (52) 
  Where λ is a user specified positive constant. In 
our experiments, λ is set to 0.28. 
Mutation operator: Let us suppose C = 
(c1,….c2,….cn) is a parent chromosome, C Є [ai,bi]  
is a gene to be mutated, and ai and bi are the lower 
and upper ranges for gene ci. A new gene in the 
offspring chromosomes, ci

' may arise from the 
application of two different mutation operators 
respectively. The first mutation operator is single 
point random mutation, in which a single gene ci

' 
randomly chosen number from range [ai,bi] to 
replace ci and to form new chromosome C '.This 
mutation operator is sometimes called uniform 
mutation. Another mutation operator is the non-
uniform mutation operator. Assuming this operator 
is applied in a generation t, and gmax the maximum 
numbers of generations are described as: 

     
max

( , )
( , )

(1 )
( , ) (1 )

{ i i i
i i i

b

c t b c if
i c t c a if

t
gt y y r

c +∆ −        τ=0′
−∆ −        τ=1

−

=

∆ = −                   

  

 --- (53)  
 
Where τ is a random binary number having value 0 
or 1, and b is a parameter chosen by the user, which 
determines the degree of dependency on the 
number of iterations. This function gives a value in 
the range [0, y] such that the probability of 
returning a number close to zero increases as the 
algorithm advances. The size of the gene 
generation interval shall be lower with the passing 
of generations. In the algorithm, b is set to 0.5. The 
property of combining these crossover and 
mutation operators reduces the risk of premature 
convergence. 
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2)  Weight connections optimization using 
conjugate gradient descent algorithm 

 
Genetic algorithm is used effectively in the 

evolution to find a near-optimal set of connection 
weights globally without computing gradient 
information and without weight connections 
initialization. Hence a local search procedure into 

the evolution using the conjugate gradient descent 
algorithm to find the best connection weights at the 
local error surface is incorporated. This procedure 
is completed by applying a BP algorithm on the GA 
established initial connection weights. The overall 
framework of the proposed method could be 
summarized as Figure 8. First, at the initialization 
stage, the neural network structure, including 
number of input nodes, hidden nodes, and output 
nodes are specified according to the specific 
classification application. Connection weights 
corresponding to this MLP structure are encoded in 
GA’s chromosomes; each chromosome represents 
one MLP structure with given connection weights 
contained in its genes. Second, at the GA-based 
weight connection training stage, these initialized 
chromosomes which may belong to different 
populations are evolved generation to generation by 
using GA according to the fitness and MSE 
performance of the correspondent MLP. Finally, at 
the stage of local optimization of the error surface 
with BP, best connection weights matrix contained 
in the chromosome with best fitness is chosen. 

 
Therefore, genetic Algorithms handle large, 

complex, non differentiable and multi model spaces 
for image classification and many other real world 
applications. 
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Figure 8: Classification using combined Neural Network and GA 

TABLE II 
BENEFITS AND LIMITATIONS OF   VARIOUS MACHINE   LEARNING ALGORITHMS 

Machine 
Learning 
Algorithm 

Benefits Assumptions 
and / or 
Limitations 

Neural 
Network 
 

•can be used for classification or regression 
•able to represent Boolean functions (AND, OR, NOT) 
•tolerant of noisy inputs 
•instances can be classified by more than one output 

•difficult to understand structure of algorithm 
•too many attributes can result in over fitting 
•optimal network structure can only be determined 
by experimentation 

Support  
Vector 
Machine 
 

•models nonlinear class boundaries 
•over fitting is unlikely to occur 
•computational complexity reduced to quadratic optimization 
problem 
•easy to control complexity of decision rule and frequency of 
error 

•training is slow compared to Bayes and Decision 
trees 
•difficult to determine optimal parameters when 
training data is not linearly separable 
•difficult to understand structure of algorithm 

Fuzzy logic • different stochastic relationships can be identified to 
describe properties 

•Priori knowledge is very important to get good 
results. 
•precise solutions are not obtained if the direction of 
decision is not clear. 

Genetic 
Algorithm 
 

•can be used in feature classification and feature selection 
•primarily used in optimization always finds a “good” 
solution (not always the best solution) 
• can handle large, complex, non differentiable and 
multimodal spaces. 
• Efficient search method for a complex problem space. 
• good at refining irrelevant and noisy features selected for 
classification. 

•computation or development of scoring function is 
nontrivial 
•not the most efficient method to find some optima, 
rather than global 
•complications involved in the representation of 
training/output data 
 

No vertical lines in table. Statements that serve as captions for the entire table do not need footnote letters. 
aGaussian units are the same as cgs emu for magnetostatics; Mx = maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second,  
T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry. 
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3. COMPARATIVE  ANALYSIS  OF  
VARIOUS  MACHINE  LEARNING 
ALGORITHMS 

The advanced image classification techniques 
like artificial neural networks, support vector 
machines, fuzzy logic, genetic algorithms and their 
combination are analyzed and compared with 
respect to several parameters. The benefits and 
limitations of these classification techniques are as 
given in Table II. Artificial neural networks have 
the advantages mainly of more tolerance to noise 
inputs and representation of boolean function apart 
from others. But too many attributes may result in 
over fitting. In support vector machines over fitting 
is unlikely to occur.  The computational complexity 
and complexity of decision rule are reduced in 
SVM. Fuzzy measures have the benefit of 
identification of various stochastic relationships to 
describe the properties of the image. But priori 
knowledge is very important to get good results. 
Genetic algorithms are primarily used in 
optimization and always have a good solution. But 
the computation of scoring function is non trivial. 

The comparative analysis of different image 
classification algorithms with respect to several 
parameters is as given in Table III. The artificial 
neural networks and support vector machines 
follows non-parametric approach whereas fuzzy 
measures use stochastic properties for image 
classification. The selection of non-linear boundary 
is efficient when the data have only few input 
variables in ANN and vice versa in SVM. In fuzzy 
logic it depends on priori knowledge whereas in 
genetic algorithms it depends on the direction of 
decision. The training speed in the neural networks 
depends on network structure, momentum rate, 

learning rate and converging criteria. In SVM it 
depends on training data size and class separability. 
Fuzzy logic incorporates the training speed 
depending on the isolation of the relevant 
information by iterative application of the fuzzy 
integral. The training speed could be improved by 
refining irrelevant and noisy genes in genetic 
algorithms. Along with these the parameters 
accuracy and general performance are tabulated in 
Table III. 

4. CONCLUSIONS 
This paper attempts to study and compare 

artificial neural networks and other methods of 
machine learning algorithms for image 
classification. The study concluded that the neural 
network approach of classification improves the 
accuracy and the finer information from the 
individual class is obtained by using textures. This 
study emphasizes that that kernel type and kernel 
parameter affect the shape of the decision 
boundaries as located by the SVM and thus 
influence the performance of the SVM. It is found 
that the optimum results are obtained if the 
stochastic information is fused by the fuzzy 
integral. Fuzzy support vector machines resolve 
unclassifiable regions caused by conventional 
support vector machines and its generalization 
ability is superior. The combined genetic algorithm 
plus conventional classifier system achieves higher 
performance than either the conventional classifier 
or the GA alone. This paper has showed that 
carefully designed genetic algorithm-based neural 
network outperforms gradient descent-based neural 
network. This has been supported by the analysis of 
the changes of connection weights and biases of the 
neural network. The neural network topology 

TABLE III 
COMPARATIVE ANALYSIS OF DIFFERENT IMAGE CLASSIFICATION TECHNIQUES WITH RESPECT TO VARIOUS PARAMETERS 

Parameter Artificial Neural 
Networks 

Support Vector 
Machines 

Fuzzy logic 
 

Genetic 
Algorithms 

Type  
of approach 

Non-parametric Non-parametric with 
binary classifier 

Stochastic  Large time series data 

Non-linear decision 
boundaries 

Efficient when the data 
have only few input 
variables. 

Efficient when the data 
have more input 
variables. 

Depends on 
priori 
knowledge for 
decision 
boundaries. 

Depends on the direction of 
decision 

Training speed Network structure, 
momentum rate, 
learning rate, 
converging criteria. 

Training data size, 
kernel parameter, class 
separability 

Iterative 
application of 
the fuzzy 
integral 

Refining irrelevant and noise 
genes 

Accuracy Depends on number of 
input classes. 

Depends on selection of 
optimal hyper plane. 

Selection of 
cutting 
threshold 

Selection  of genes 

General performance Network structure. Kernel parameter Fused fuzzy 
integral 

Feature selection 
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described in this study is determined manually. A 
substitute method is to apply the genetic algorithm 
for neural network structure optimization, which 
will be a part of the future work. 
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