
Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

COMPLEXITY OF CLASS AND DEVELOPMENT TIME: A
STUDY

KUMAR RAJNISH, VANDANA BHATTACHERJEE
Department of Computer Science and Engineering,

Birla Institute of Technology, Ranchi-834 001, Jharkhand, India

ABSTRACT

Software development time depends on various attributes of the software product. In this paper, attempt has
been made to define an empirical relation between software development time with respect to its
dependence on lines of code, variables and methods. We have attempted to analyze the various
dependencies of development time of a program upon its member functions, instance variables and the
number of non-blank, non-comment lines of code. Statistical techniques have been used to assign weights
to the independent variables to arrive at the results.

Keywords: Classes, Metrics, Complexity, Object-Oriented Design.

INTRODUCTION

Software metrics are units of measurement, which
are used to characterize software engineering
products, processes and people. By careful use,
they can allow us to identify and quantify
improvement and make meaningful estimates.
Developers in large projects use measurements to
help them understand their progress towards
completion. Managers look for measurable
milestones so that they can assess schedule and
other commitments. The metrics gathered from
historical data also provide an estimate of future
similar projects.

Program complexity plays an important role in the
amount of time spent on development of the
program. This paper presents the result of a
research conducted to study the effect of program
complexity (measured in terms of its member
functions, instance variables and lines of code,
viz., non-blank, non-comment lines) upon the
development time of various C++ classes. We
consider one metric for OO design and incorporate
our own variations in it to study its effect on the
development time of various C++ classes.
Statistical techniques have been used to assign
weights to the independent variables to arrive at
the results. An earlier version of this work has
been presented in [25].

The recent trend towards OO technology has
forced the growth of OO software metrics as
mentioned by Booch [4]. Several such metrics
have been proposed and their reviews are available
in literature such as [3][5][8][10][12-13][15][18-
19][21-22]. The metrics suite proposed by
Chidamber et al is one of the best-known OO
(object-oriented) metrics [12-13]. We shall
henceforth call them C&K metrics.

Various researchers have also conducted empirical
studies to validate the OO metrics for their effects
upon program attributes. Alshayeb and Li have
presented an empirical study of OO metrics in two
processes [1]. They predict that OO metrics are
effective in predicting design efforts and lines of
source code added, changed and deleted in one
case and ineffective in other. Emam, Benlarbi,
Goel and Rai validate the various OO metrics for
effects of class size [16]. This view is however not
agreed to by Evanco [17]. Other researchers have
also conducted empirical studies for investigating
relationship between metrics and quality factors
such as development/ maintenance effort [7][20].
Arisholm, Briand and Foyen study various Java
classes to empirically evaluate the effect of
dynamic coupling measures with the change
proneness of classes [2]. Chae, Kwon and Bae
investigated the effects of dependent instance
variables on cohesion metrics for object-oriented
programs [11]. They also proposed an approach to

 63

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
identify the dependency relations among instance
variables.

A metric may be validated mathematically using
measurement theory, or empirically by collecting
data. Measurement theory attempts to describe
fundamental properties of all measures. Weyuker
concentrated on finding desirable properties that
these measures should satisfy [24]. Weyuker
proposed nine properties that partially characterize
good software measures. We must however
mention, that not all measures satisfy all of the
nine properties as shown by Chidamber et. al. [13].
In this paper we consider a metric from the
Chidamber and Kemerer(C&K) metric suite and
use it to derive another metric to be used in our
study. We first present an analytical evaluation of
the derived metric against Weyuker’s properties
and secondly, empirical evidence that the
development time of a class (and thus of an OO
program) is highly correlated to the methods in a
class, the number of variables and the lines of code
in it.
The rest of the paper is organized as follows. In
section 2I we discuss the WMC (Weighted
Method per Class) measure of the C&K metric
suite. In section 3, we list out Weyuker’s nine
properties to make the discussion complete. In
section 4, we present the proposed metrics to be
used in our study. Section 5 presents statistical
analyses of data from different data sets. Sections
6 present the discussion and future scope
respectively.

WMC METRIC OF C & K

Consider a class C1 with methods M1, M2,
M3,….Mn that are defined in the class. Let c1, c2,
c3,…..cn be the complexity of the methods.
Then,

WMC = ci
∑
=

n

i 1

If all method complexities are considered to be
unity, then WMC = n, the number of methods.
Complexity of an individual as defined by Bunge
is the “numerosity of its composition” [9]. Thus it
can be said that the complexity of an object is the
cardinality of its set of properties. In object
oriented terminology, the properties of an object
include the instance variables and its methods. As
mentioned in Chidamber et al, WMC relates
directly to Bunge’s definition of complexity of a
thing, since methods are properties of object
classes and complexity is determined by the

cardinality of its set of properties. The number of
methods is therefore, a measure of class definition
as well as being attributes of a class since
attributes correspond to properties. They further
mention that the number of instance variables has
not been included in the definition of the metric
since it was assumed that methods are more time
consuming to design than instance variables [13].

WEYUKER’S PROPERTIES

The basic nine properties proposed by Weyuker’s
are as follows:

Property 1. Non-coarseness: Given a class P and a
metric µ, another class Q can always be found
such that, µ (P) ≠ µ (Q).

Property 2. Granularity: There is a finite number
of cases having the same metric value. This
property will be met by any metric measured at the
class level.

Property 3. Non-uniqueness (notion of
equivalence): There can exist distinct classes P and
Q such that, µ (P) = µ (Q).

Property 4. Design details are important: For two
class designs, P and Q, which provide the same
functionality, it does not imply that the metric
values for P and Q will be the same.

Property 5. Monotonicity: For all classes P and Q
the following must hold: µ (P) ≤ µ (P + Q) and µ
(Q) ≤ µ (P + Q) where P + Q implies combination
of P and Q.

Property 6. Non-equivalence of interaction:
∃ P, ∃ Q, ∃ R such that µ (P) = µ (Q) does not
imply that µ(P+R) = µ (Q+R).

Property 7. Permutation of elements within the
item being measured can change the metric value.

Property 8. When the name of the measured
entity changes, the metric should remain
unchanged.

Property 9. Interaction increases complexity:
∃ P and ∃ Q such that:
µ (P) + µ (Q) < µ (P + Q)

Weyuker’s list of properties has been criticized by
some researchers; however, it is a widely known
formal approach and serves as an important

 64

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
measure to evaluate metrics. In the above list
however, properties 2 and 8 will be trivially
satisfied by any metric that is defined for a class.
Weyuker’s second property “granularity” only
requires that there be a finite number of cases
having the same metric value. This metric will be
met by any metric measured at the class level.
Property 8 will also be satisfied by all metrics
measured at the class level since they will not be
affected by the names of class or the methods and
instance variables. Property 7 requires that
permutation of program statements can change the
metric value. This metric is meaningful in
traditional program design where the ordering of
if-then-else blocks could alter the program logic
and hence the metric. In OOD (object-oriented
design) a class is an abstraction of a real world
problem and the ordering of the statements within
the class will have no effect in eventual execution.
Hence, it has been suggested that property 7 is not
appropriate for OOD metrics. In our discussion,
therefore, these three mentioned properties shall
not be considered.

PROPOSED METRIC

The metric FVL (Functions, Variables and Lines
of code) that we have derived from the WMC
metric for measuring the complexity of a class is
based upon the following assumptions:
The mental exercise required to design and code a
class depends not only upon the numbers of
methods but also upon the distinct variable names.
This means when a developer needs to use a new
variable, he spends some amount of time in
framing it out.

The number of methods is a predictor of how
much time and effort is required to develop and
maintain the class.
Method names are counted as distinct variable
names.

A local variable of same name used in two
different blocks is considered to have two distinct
variable names.

To calculate FVL, we take the Lines Of Code of
the entire class (LOC), the number of Methods Per
Class (MPC) and the Distinct Variable Names
(DVN). The formula for FVL is:
FVL = k + w1*MPC + w2 *DVN + w3*LOC
Where, the weights w1, w2, w3 and the constant k
are derived at by least square regression analysis.
Note that when all method complexities are
considered to be unity, the WMC metric proposed
by C&K is obtained from MPC.

We give an outline of our approach. The variables
of interest in our study are: MPC, DVN, LOC and
the Development Time DEV in minutes, which is
to be modeled by our metric. The above-
mentioned four values were collected for classes
from four different categories. The first data set
was collected by sampling classes from third year
Post Graduate students’ projects and will be called
Set A. The second data set was from samples of
classes from laboratory exams of second year Post
Graduate students and is called Set B. The data of
Set C was from miscellaneous applications. The
fourth data set was collected by sampling classes
from second year Post Graduate M.SC (IT)
students and second year Post Graduate MCA
student’s of Birla Institute of Technology, and will
be called Set D.

RESULTS

Multivariate regression analysis was applied on all
the five data sets, and correlation coefficients were
calculated. In each case 75% of the data was used
to derive at parameter values and 25% was used
for validation. The statistical analysis of the data in
the following tables has been generated with the
aid of MATLAB [23]. The statistical distribution
of different data sets is given in Appendix.

 65

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org
Table 1. Data from classes of set A Table 2. Data from classes of set B

 MPC DVN LOC DEV
Mean 3.1795 3.6410 67.102 2.64
Median 3.0 3.0 35.0 1.9
Std. Dev. 1.4667 2.3674 87.870 2.270
Max 8 13 400 12
Min 1.0 1.0 14.0 0.5

 MPC DVN LOC DEV

Mean 2.9167 5.833
3 52.1667 0.815

6

Median 2.5000 5 37.5000 0.788
5

Std. Dev. 1.8320 3.459
7 39.3327 0.388

0

Max 7 15 166 1.750
0

Min 1 3 20 0.250
0

Table 3. Data from classes of set C Table 4. Data from classes of set D

 MPC DVN LOC DEV

Mean 13.556 28.889 341.07 42.7
3

Median 5 10 116 4.50
0

Std. Dev. 35.9694 45.980 471.26 95.9
2

Max 191 175 1867 360
Min 1 3 20 0.25

 MPC DVN LOC DEV

Mean 3.0702 4.0526 66.543
9

32.596
5

Median 3 4 53 30

Std. Dev. 1.5337 2.3408 36.543
1

18.236
4

Max 7 11 177 90
Min 1 1 14 12

Table 5. Values of the coefficients for the Three Independent Variables used in FVL Metric from four
different data sets by Least Square Regression Analysis

 w1 w2 w3
SET A 0.2846 -0.0102 0.0287
SET B 0.0113 0.1662 -0.0044
SET C 1.9193 0.4535 -0.0122
 SET D 1.5287 0.5800 0.3797

Table 6. Correlation coefficient with respect to development time (DEV).

 MPC DVN LOC FVL
SET A 0.5538 0.9312 0.9427 0.9288
SET B 0.9936 0.9231 0.8330 0.9484
SET C 0.9575 0.9411 0.6818 0.9677

SET D 0.5295 0.3944 0.7049 0.7177

 66

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

DISCUSSION AND FUTURE SCOPE

We first present an analytical evaluation of our
measure against Weyuker’s axioms. Properties 1
(Non-coarseness) and 3 (Non-uniqueness) are
satisfied because we assume a statistical
distribution of methods and variables amongst the
classes. Property 4 (Design details are important)
is satisfied because the choice of methods and
attributes is design implementation dependent.
When two classes are combined, the number of
methods and variables can never exceed that of the
individual classes. The same is true for LOC.
Hence, property 5 (Monotonicity) is satisfied.
Consider three classes P, Q and R. Let the metric
values for P and Q are the same. Also let R have
common methods and variables with class P but
not with class Q. Thus a combination of P and R
will have a smaller metric value than a
combination of Q and R. Thus, property 6 (Non-
equivalence of interaction) is satisfied. Let MPC,
DVN and LOC values for class P be m, v and l, for
class Q be m’, v’ and l’, and for class P+Q be m’’,
v’’ and l’’.

 Because of the common methods, m’’ ≤ m+m’,
v’’ ≤ v+ v’ and l’’ ≤ l+l’.
Hence property 9 (Interaction increases
complexity) is not satisfied. Properties 2
(Granularity) is trivially satisfied by any metric
defined for a class, so will be property 8, namely,
when the name of the measured entity changes, the
metric should remain unchanged.

The reason for our metric not satisfying the one
property of Weyuker is that by splitting a class,
there is an overall increase in the MPC, DVN and
LOC value for all the sub classes created. In other
words, complexity has increased.

We make certain observations from Table 6. The
first three columns list out the correlation
coefficient (CORRCOEF) obtained when MPC,
DVN and LOC are independently related with
DEV. The fourth column lists out the correlation
coefficient (CORRCOEF) obtained when all the
three (MPC, DVN, LOC) are combined for
regression with DEV. In the first case (Data Set
A), the data had been collected from a well-
defined similar group of programmers (with very
similar programming experiences), and the FVL
metric turned out to be a better predictor of
development time than MPC and slightly less

predictor of development time than DVN and
LOC, but still the correlation value of FVL metric
is shown high. In the second case (Data Set B),
since the allotted time was small (duration of
laboratory exam varied from 50 minutes to a
maximum of 1 hour 40 minutes), FVL metric is a
better predictor of development time than DVN
and LOC but less predictor of DEV than MPC. In
the third and fourth cases (Data Set C and Data Set
D), FVL metric has turned out to be the best
predictor of development time than any of the
three parameters (MPC, DVN, LOC) taken
individually.

We have attempted to define a generalized metric
based upon the number of functions, variables and
the lines of code, to measure the complexity of a
class. In the work presented here, the goal was to
find the effect of the number of methods, number
of distinct variables and the lines of code in a class
upon the development time of the class. The
approach taken was empirical. The WMC metric
of C&K was used to derive at our FVL metric. The
OO (Object-Oriented) language used in all the
cases was C++.

The high correlation of FVL with DEV (Table 6)
shows that it may be used as an effective predictor
of development time. For any system, once the
data for a representative set of classes have been
analyzed to arrive at the FVL value, this could be
used to predict the development time for similar
classes.

Reusability of a given class is another attribute
which needs to be investigated upon in relation to
our complexity metric. The larger the number of
methods in a class, the greater the potential impact
on children; children inherit all the methods
defined in the parent class. Classes with large
numbers of methods are likely to be more
application specific, limiting the possibility of
reuse. The same is being studied upon as our
ongoing work.

We must nevertheless mention that the programs
used for the study were very small compared to
large industry systems. For very large systems, the
dependency of development time upon FVL and/
or any other factors needs further verification, and
is also the future scope of our ongoing work.

 67

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

APPENDIX

Figure 1. Observation of methods per classes, distinct variable names & Lines of code from various C++
classes for the data set A

Figure 2. Observation of methods per classes, distinct variable names & Lines of code from various C++
classes for the data set B

 68

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

Figure 3. Observation of methods per classes, distinct variable names & Lines of code from various C++
classes for the data set C

Figure 4. Observation of methods per classes, distinct variable names & Lines of code from various C++
classes for the data set D

REFERENCES

[1] M. Alshayeb and W. Li, “An Empirical
Validation of Object – Oriented Metrics
in Two Different Iterative Software
Processes”, IEEE Trans. on Software
Engineering, 29, 11(2003),1043 – 1049.

[2] E. Arisholm, L. C. Briand and A. Foyen ,

“Dynamic Coupling Measures for Object-
Oriented Software”, IEEE Trans. on
Software Engineering, 30, 8(2004), 491 –
506.

[3] J. M. Bieman and B. K. Kang , “Cohesion
and Reuse in an Object–Oriented
System”, in Proceedings of Symp.
Software Reliability,1995, 259 – 26.

[4] G. Booch , Object Oriented Design with

Applications, Benjamin/ Cummings,
Menlo Park, CA, 1995.

[5] L. C. Briand, J. W. Daly and J. K. Wust,

“A Unified Framework for Cohesion
Measurement in Object – Oriented
Systems”, Empirical Software Eng., 1,
1(1998) , 65 – 117.

 69

Journal of Theoretical and Applied Information Technology

© 2005 JATIT. All rights reserved.

www.jatit.org

[6] L. C. Briand, J. K. Wust, J. W. Daly and
D. V. Porter, “Exploring the Relationship
between Design Measures and Software
Quality in Object Oriented Systems”, J.
Systems and Software, 51, 3(2000), 245
– 273.

[7] L. C. Briand and J. K. Wust, “Modeling

Development Effort in Object – Oriented
Systems Using Design Properties”, IEEE
Trans. Software Eng., 27, 11 (2001), 963
– 986.

[8] F. Brotoeabreu, “The MOOD Metrics

Set”, in Proceedings of ECOOP ’95
Workshop Metrics, 1995.

[9] M. Bunge, Treatise on Basic Philosophy:

Ontology 1: The Furniture of the World,
Boston: Riedel, 1997.

[10] H. S. Chae, Y. R. Kwon and D. H. Bae,

“A Cohesion Measure for Object –
Oriented Classes”, Software practice and
Experience, 30, 12 (2000), 1405 – 1431.

[11] H. S. Chae, Y. R. Kwon and D. H. Bae,

“Improving Cohesion Metrics for Classes
by considering Dependent Instance
Variables”, IEEE Trans. on Software
Engineering, 30, 11 (2004) , 826 – 832.

[12] S. R. Chidamber and C. F. Kemerer,

“Towards a Metrics Suite for Object
Oriented Design”, in Proeedings of Sixth
OOPSLA Conference, 1991, 197 – 211.

[13] S. R. Chidamber and C. F. Kemerer , “A

Metrics Suite for Object Oriented
Design”, IEEE Trans. on Software
Engineering, 20, 6(1994) , 476 – 493.

[14] S. R. Chidamber, D. P. Darcy and C. F.

Kemerer, “Managerial Use of Metrics for
Object Oriented Software: An
Exploratory Analysis”, IEEE Trans.
Software Eng., 24, 8 (1998) , 629 - 639.

[15] N. I. Churcher and M. J. Shepperd,

Comments on “ A Metrics Suite for
Object Oriented Design”, IEEE Trans. on
Software Engineering, 21, (1995) , 263 –
265.

[16] K. EL. Emam, S. Benlarbi, N. Goel and
S. N. Rai , “The Confounding Effect of
Class Size on the Validity of Object –
Oriented Metrics”, IEEE Trans. Software
Eng., 27, 7 (2001) , 630 – 650.

[17] W. M. Evanco, Comments on “The

Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics”,
IEEE Trans. on Software Engineering,
29, 7 (2003) , 670 – 672.

[18] B. Henderson Sellers and J. M. Edwards,

Book Two of Object oriented Knowledge:
The Working Object, Prentice Hall,
Sydney, 1994.

[19] M. Hitz and B. Montazeri,

“Correspondence, Chidamber and
Kemerer’s Metrics Suite: A Measurement
Theory Perspective”, IEEE Trans. on
Software Engineering, 22, 4(1996) , 267 –
271.

[20] H. Kabaili, R. K. Keller and F. Lustman ,

“Cohesion as Changeability Indicator in
Object – Oriented Systems”, in
Proceedings.of Fifth European Conf.
Software Maintenance and Reeng,2001.

[21] W. Li and S. Henry, “Maintenance

Metrics for the Object Oriented
Paradigm”, Proc. First Int’l. Software
Metrics Symp.,(May 21-22, 1993), 52-60.

[22] M. Lorenz and J. Kidd , “Object –

Oriented Software Metrics: A Practical
Guide”, 1994.

[23] R. Pratap, Getting Started with

MATLAB – V,Oxford University Press,
1998.

[24] E. J. Weyuker, “Evaluating Software

Complexity Measures”, IEEE Trans. on
Software Engineering, 14, (1998),1357-
1365.

[25] V. Bhattacherjee and K. Rajnish, “ Class

Complexity- A Case Study”, in
Proceedings of First International
Conference on Emerging Applications of
Information Technology(EAIT-2006),
Kolkata,India,2006, pp. 253-258.

 70

