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ABSTRACT 

The WHO states cardiovascular disorders are a significant health concern, emphasizing the need for technical 
advancements to provide diagnostic instruments that can identify arrhythmias or irregular heartbeats in 
electrocardiograms. As AI has grown in popularity, especially DL methods that have shown promise in 
analyzing medical data, it is imperative to apply these learning-based strategies to improve arrhythmia 
detection and classification performance. CD diagnosis is a promising use of current DL models, such as 
CNNs.  Nevertheless, these models must be improved to diagnose diseases as effectively as possible. This 
study suggests a DL-based system for automatically identifying and categorizing electrocardiogram 
arrhythmias. To further apply this framework and efficiently identify arrhythmias, we provide an approach 
called LbADC. Our empirical investigation, which used the PhysioNet 2017 Challenge dataset as a 
benchmark, showed that the suggested DL architecture successfully identifies and categorizes arrhythmias 
in ECG data. According to the experimental data, the tested CNN model outperformed several current DL 
models, including LeNet, ResNet50, and U-Net, with a maximum specificity of 96.04%. Therefore, to 
develop a clinical decision support system for the automated screening of CD disorders, the suggested 
framework, the improved CNN model, and the underlying algorithm may be included in any current 
healthcare application. 

Keywords – Healthcare, Detection of Cardiovascular Diseases, Arrhythmias Detection, Deep Learning, 
Artificial Intelligence 

1. INTRODUCTION  

The WHO has reported an increase in 
cardiovascular disorders, particularly arrhythmias 
or irregular heartbeats, worldwide. All people's 
health and well-being are prioritized in the SD 
Goals of the UN. To do this, it is crucial to use 
cutting-edge technology to create new diagnostic 
techniques that can improve the healthcare sector 
in many nations. Using DL models and AI to 
develop better diagnostic tools has become more 
crucial as these technologies emerge. These 
technologies offer a technology-driven method 

that links facts with their patient observations, 
which can help medical practitioners identify 
various ailments. Learning-based approaches are 
already being used in several arrhythmia 
identification and categorization programs. Future 
studies will concentrate on resolving time 
restrictions and further enhancing accuracy. A 
CNN-RCN model with dropout regularization 
was adopted to improve accuracy and minimize 
processing time because SCD has been 
highlighted as a serious problem [1]. With 
intentions to test more arrhythmia types and a 
more comprehensive range of datasets, a different 
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study presented a DL model for arrhythmia 
identification utilizing VMD, EMD, and DWT 
[2]. Future research will focus on examining more 
enormous datasets, as a DL method has shown 
significant accuracy in categorizing ECG 
arrhythmias [3]. Furthermore, the FRM-CNN 
model was created to overcome particular 
classification difficulties and distinguish atrial 
fibrillation from noisy ECG data [4]. For the 
diagnosis of CVD, a model that combines DL and 
a genetic algorithm was introduced; future 
iterations are expected to incorporate BiLSTM 
[5]. An HDL model was also used to detect CHF 
using ECG data; future work aims to increase the 
robustness of the model [6]. Last but not least was 
the three-layer genetic ensemble classifier for 
ECG data; further studies will focus on refining 
the system and examining other signals [7]. 

The following are the contributions we have made 
to this research. We propose a DL-based method 
for automatically detecting and classifying 
arrhythmias in ECG data. We also propose an 
algorithm, LbADC, to leverage this paradigm 
effectively. Our empirical study proved that the 
proposed DL architecture successfully detects and 
classifies arrhythmias in ECG data using the 
benchmark dataset from the PhysioNet 2017 
Challenge. Based on the experimental results, the 
enhanced CNN model achieved the highest 
specificity of 96.04% and beat other DL models, 
such as LeNet, ResNet50, and U-Net. The 
proposed framework enhanced the CNN model, 
and the underlying algorithm might be integrated 
into existing healthcare applications to provide a 
clinical decision support system for automated 
screening of CD diseases. The remainder of the 
paper is formatted as follows: Section 2 reviews 
past studies on contemporary methods for 
diagnosing and classifying CD. Section 3 outlines 
the suggested approach, which includes the 
improved CNN model, algorithm, and underlying 
framework for enhancing arrhythmia detection 
and classification performance. Section 4 
provides detailed information about our empirical 
study and compares our results with various state-
of-the-art DL models. Section 5 discusses the 
research conducted and addresses the limitations 
of the study. Finally, Section 6 concludes our 
research and offers directions for possible future 
studies. 

2. RELATED WORK 

Several researchers have contributed to methods 
based on learning to identify arrhythmias in ECG 

data. Kaspal et al. [1] identify SCD; the paper 
presents a CNN-RCN model with dropout 
regularization, improving accuracy and cutting 
processing time. Time constraints and residual 
accuracy might be addressed in further studies. 
Sahoo et al. [2] proposed a DL model for accurate 
arrhythmia detection utilizing DWT, EMD, and 
VMD. More arrhythmia types and a wider variety 
of data will be tested in future research. Essa et al. 
[3] offered a DL approach with several models for 
classifying ECG arrhythmias that achieve 95.81% 
accuracy. Further research will examine larger 
datasets and a greater variety of arrhythmias. Fan 
et al. [4], the FRM-CNN model achieves a better 
accuracy rate by separating atrial fibrillation from 
noisy mobile ECG data. Future research will 
tackle the constraints associated with signal 
classification. Hammad et al. [5] offered a DL and 
genetic algorithm model for ECG-based CVD 
diagnosis. The subsequent development will 
include BiLSTM integration. 

Ning et al. [6] described a hybrid deep-learning 
model that can accurately identify CHF from ECG 
data. Among the following challenges are 
improving model robustness and testing shorter 
ECG data. Plawaik and Acharya [7] provided a 
novel three-layer genetic ensemble classifier for 
ECG data that achieves substantial accuracy. 
Subsequent studies will concentrate on improving 
algorithms and assessing more signals. Sharma et 
al. [8] presented a rhythm-based ECG analysis 
technique that uses FB expansion and LSTM to 
detect arrhythmias more accurately. Testing with 
more extensive datasets and different basis 
functions will be part of future development. 
Hirsch et al. [9] related to atrial activity and the 
RR interval, this work proposes an accurate real-
time technique for detecting AF. Further studies 
will enhance feature sets and adjust each person's 
ECG rating. Mahmud et al. [10] presented 
DeepArrNet, a CNN model that uses cutting-edge 
convolution methods to identify arrhythmias. 
Upcoming projects will concentrate on improving 
application and performance. 

Ayano et al. [11] proposed a deep-learning ECG 
model with high accuracy and easily 
understandable properties to improve diagnostic 
dependability and accuracy. Din et al. [12] 
provided a CNN-LSTM-Transformer model that 
they hope will increase the accuracy of ECG-
based arrhythmia diagnosis; nevertheless, 
processing and classification limitations plague it. 
Qu et al. [13] introduced HQ-DCGAN, a method 
for producing ECG data that increases 
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classification accuracy but has issues with the 
efficiency and quality of quantum data. Al-
Shammary et al. [14], the study's Chi-square 
distance-based classifier, which detects 
arrhythmias with higher accuracy, is limited by its 
reliance on feature selection and optimization. 
Narotamo et al. [15] study results show that 1D 
ECG networks perform better for classifying 
CVD than 2D and multimodal approaches, 
indicating the need for more research on class 
imbalance and better picture quality. 

Bechinia et al. [16] addressed class imbalance 
using ACGAN and suggested a deep learning 
model that combines LC-CNN and MobileNet-V2 
for high-accuracy ECG arrhythmia identification. 
Upcoming projects will examine sophisticated 
models, test on various datasets, and do real-time 
monitoring. Sharma et al. [17] presented a hybrid 
technique for ECG classification that combines 
SVM-FFBPNN, CS, and DWT and achieves 
better accuracy. Additional arrhythmia classes 
will be included in future development. Zhou and 
Tan [18] presented the CNN-ELM technique, 
which leads to an accurate 97.50% ECG 
categorization. Subsequent research endeavors 
should focus on enhancing real-time detection and 
managing signal noise. Sabut et al. [19] improved 
VTA prediction and AED efficiency by creating 
an accurate DNN-based technique for ventricular 
tachyarrhythmia detection. Future research might 
simplify the calculations and improve accuracy. 
Petmezas et al. [20] suggested a CNN-LSTM 
model with concentrated loss for accurate atrial 
fibrillation detection with good sensitivity and 
specificity. Future studies might focus on 
improving accuracy and addressing computer 
constraints. 

Islam et al. [21] attention-based dilated CNN 
combined with BiLSTM allows the HARDC 
model to identify arrhythmias. Future work will 
concentrate on improving model generalization 
and real-time performance. Kumar et al. [22] 
utilized fuzzy clustering and DL, and the Fuzz-
ClustNet model enhanced arrhythmia 
identification, outperforming previous 
techniques. In the future, more cardiac illnesses 
will be detected, and signal processing will 
improve. Kumar et al. [23] showed that a DL 
model for ambulatory ECG data-based AF 
diagnosis produces many false positives 
associated with patient activity. By including 
contextual variables and investigating HDL 
models, future research seeks to minimize false 
positives. Asif et al. [24] provided a weighted 

federated learning technique for ECG arrhythmias 
to improve classification accuracy and privacy. 
Future development will improve data privacy, 
address data imbalance, and assess network 
conditions. Kumar et al. [25] proposed an IoT-
based multi-channel residual network-based ECG 
framework for real-time arrhythmia detection. 
Future initiatives to enhance data analysis and 
accuracy will use cloud platforms and state-of-
the-art hardware integration. 

Kumar et al. [26] introduced DeepAware, a hybrid 
model that blends DL with context-aware 
heuristics, to enhance atrial fibrillation detection 
by reducing false positives. Further work aims to 
strengthen model efficacy, control various 
arrhythmias, and explore enhanced data 
integration and interpretability. Sowmya and Jose 
[27] assessed DL techniques for ECG 
classification, emphasizing the superior accuracy 
of CNN-LSTM. Upcoming projects will focus on 
enhancing generalizability, managing various 
illnesses, and combining edge computing for 
instantaneous anomaly identification. Mohonta et 
al. [28] presented a DL model that achieves high 
sensitivity and accuracy for accurate arrhythmia 
identification from brief ECG segments by 
utilizing CNN and CWT. Future research aims to 
improve generalizability and real-time 
applicability. Hong et al. [29] improved ECG 
interpretation, dealt with false positives, and 
bridged the communication gap between 
cardiologists and devices by employing DL for 
accurate AF, PVC, and PAC identification. Future 
studies aim to increase precision and enhance 
handling rare ECG abnormalities. Li et al. [30] 
proposed an upgraded deep residual CNN to 
achieve excellent sensitivity and specificity for 
ECG-based arrhythmia classification. However, 
more robust generalizations for rare classes and 
additional annotated datasets are needed. 
Subsequent studies will concentrate on finding 
solutions for data imbalance and exploring semi-
supervised learning. 

Wang et al. [31] presented DMSFNet, a CNN that 
improves arrhythmia identification for multi-scale 
ECG analysis. Its uses will grow in the future. 
Yildirim et al. [32] offered a high-accuracy DNN 
model for arrhythmia detection, but it necessitates 
complex hardware; future work will look at multi-
task learning. Wang [33] offered an 11-layer 
CNN-MENN model for very accurate AF 
detection. Further integration of ENN structures is 
a task for the future. Peimanker and 
Puthusserypady [34] use the DENS-ECG model 
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to achieve high sensitivity and accuracy in real-
time heartbeat segmentation. The next endeavor 
will include a more thorough application and 
evaluation. With excellent accuracy, Rath et al. 
[35], the GAN-LSTM model performs well in 
identifying cardiac illness from ECG data. Testing 
other models and datasets is part of the effort to 
come. 

Sangaiah et al. [36], by integrating feature 
extraction, noise reduction, and HMM 
classification, the system generates an ECG 
arrhythmia with substantial detection accuracy. 
The integration of IoMT will be included in the 
following initiatives. Londhe and Atulkar [37] 
provided a hybrid CNN-BiLSTM model that 
achieves higher accuracy in ECG wave 
segmentation. Future studies will concentrate on 
diagnosing illnesses in real time. Atal and Singh 
[38] suggested a deep CNN tailored for Bat-Rider 
that achieves better accuracy in classifying 
arrhythmias. Improved algorithms and dynamic 
feature processing are areas of focus for future 
work. Tyagi and Mehra [39] proposed a hybrid 
CNN model that uses Grasshopper Optimization 
to achieve accuracy for ECG classification. Future 
studies will examine CNN and backpropagation 
for real-time detection. To improve the accuracy 
of arrhythmia detection, Murat et al. [40] 
developed a DL model that integrates deep and 
ECG data. A comparison of the twelve ECG leads 
will be done in future research. The literature 

analysis clarified that improvements were 
required for DL models to perform better 
regarding ECG data analytics. 

3. MATERIALS AND METHODS 

This section explains the recommended 
methodology for developing a DL system that 
automatically detects and classifies arrhythmias in 
ECG data. The method enhances the multi-class 
classification of arrhythmias in ECG data using a 
specific algorithm and an improved CNN model. 

3.1 Method 

We created a DL framework using our enhanced 
CNN model to classify and predict arrhythmias on 
a benchmark ECG dataset. The framework's 
robust preprocessing feature, which raises the 
caliber of the training data, is combined with the 
improved CNN model for multi-class 
classification. Enhancement of the CNN model is 
advised because of its high level of effectiveness 
in identifying features in medical data. DL is well 
suited for medical data as it enhances the ability 
to identify disease. This system's ability to learn 
under supervision depends on the caliber of the 
training data. Training data quality may be 
improved by labeled dataset construction, 
exploratory data analysis, and data compilation 
into training, testing, and validation. In Figure 1, 
the proposed framework is shown. 

 

 

  

Figure 1: Proposed deep learning framework with enhanced CNN for Arrhythmia detection and 
classification 
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On the PhysioNet ECG dataset, the framework 
showcases its deep learning method for 
arrhythmia identification and classification using 
an improved CNN architecture. First, the 
PhysioNet database—renowned for offering 
standardized, superior ECG signals necessary to 
create precise detection algorithms—is used to 
gather ECG data. Preparing the data is the first 
step in the framework. This comprises many 
notable stages: EDA is used to create a labeled 
dataset that helps understand data features and 
patterns. Supervised learning is facilitated by 
labeling, which guarantees that every ECG signal 
segment either identifies as usual or is associated 
with a specific type of arrhythmia. The dataset is 
then divided into training, testing, and validation 
subsets to evaluate the model's performance and 
generalization. 

After the training set is prepared, a CNN model 
enhanced to better comprehend the complex 
patterns seen in ECG data is fed to it. Increasing 
the convolutional layers, adjusting the kernel 
sizes, or employing complex techniques like 
residual connections—which boost the model's 
ability to gather both local and global signal 
attributes—are ways to improve the CNN design. 
CNN can accurately classify a variety of cardiac 
diseases by identifying unique features in ECG 
patterns associated with different arrhythmias. 

A rigorous testing and validation procedure is 
used for the trained model to ensure accuracy and 
durability. The confusion matrix, precision, 
sensitivity, and specificity are among the metrics 
used to assess performance and determine how 
well the model detects arrhythmias. Once the 
model has been trained, it can detect arrhythmias 
in real-time ECG data, which makes it suitable for 
clinical contexts where timely diagnosis is crucial. 
The platform employs deep learning (DL) to 
enhance diagnostic capabilities in heart health 
monitoring systems and offers a complete end-to-
end pipeline for detecting and classifying 
arrhythmias.  

3.2 Enhanced CNN Model 

Figure 2 provides an overview of the proposed 
improved CNN model. A sophisticated deep 
learning system with enhanced CNN layers is 

depicted in Figure 2 to identify and classify 
arrhythmias. Before examining ECG data, the 
model must identify distinct pulse features 
associated with various arrhythmias. A series of 
pooling and convolutional layers handle ECG 
data once an input layer has received it. These 
layers let the network gradually detect essential 
patterns in the ECG data, allowing it to 
differentiate between regular and irregular 
heartbeats. The first convolutional layer receives 
the ECG data initially. It contains 32 filters and a 
5x5 kernel size. The larger kernel size of CNNs' 
convolutional layers allows them to extract 
features and identify more patterns in the ECG 
data. Since the 32 filters provide different 
perspectives on the data, the network may be able 
to detect a range of properties relevant to detecting 
arrhythmias. This first convolutional layer is 
followed by a MaxPooling layer with a pool size 
of 2x2 to reduce the computational cost and 
spatial dimensions while preserving the most 
crucial features. By lowering overfitting, pooling 
improves the model's capacity to generalize to 
new data.  

Like the preceding layer, the convolutional layer 
consists of a 5x5 kernel and 32 filters. The second 
MaxPooling layer comes next, and it contains a 
2x2 pool. Such recurrent layers aid the network in 
reevaluating the obtained features at different 
sizes and hierarchical levels by improving the 
feature extraction process. Through input 
compression and constant removal of noise and 
irrelevant information, the pooling technique 
allows the model to focus on the most significant 
patterns in the data. Higher layers of the model 
begin to recognize increasingly complex, high-
level features associated with arrhythmias, 
whereas lower layers understand basic patterns. 
These levels are layered to produce a feature 
hierarchy. The architecture's first layers are joined 
by two additional convolutional layers, each with 
64 filters and a smaller 3x3 kernel size, allowing 
for more complex feature extraction. The model 
may focus on more subtle elements of the ECG 
data with smaller kernel sizes, while additional 
filters enable the model to identify more intricate 
patterns. 

 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2830 

 

 

Figure 2: Architectural overview of the proposed  enhanced CNN for Arrhythmia detection and classification 

Convolutional layers are followed by a 
MaxPooling layer with a 2x2 pool size. 
Identifying subtle changes in ECG data is 
particularly useful at this network level, which 
can be essential for differentiating between 
various arrhythmia types. If the model has more 
filters and smaller kernel sizes, it can better 
analyze the data structure and identify subtleties 
that bigger kernel sizes overlook. The multi-
dimensional feature array is converted into a 
format appropriate for dense (fully connected) 
layers by flattening the data into a one-
dimensional vector once all convolutional and 
pooling layers have been completed.  

Flattening is essential in preparing the returned 
features for classification because it transforms 
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from all earlier levels, the flattened layer correctly 
records an all-encompassing depiction of the ECG 
data. Once the input has been flattened, the 512 
neurons in a dense layer learn various 
combinations of the flattened properties. This 
layer adds non-linearity to the network using the 
ReLU activation function to imitate complicated 
relationships in the data. With 512 neurons, the 
model can record patterns that might reflect both 
aberrant arrhythmia characteristics and regular 
cardiac cycles. ReLU activation addresses 
problems such as the fading gradient and ensures 
effective network learning. Following this layer is 

a thicker layer containing 64 neurons that are also 
ReLU-activated. This additional thick layer 
merges the most relevant information from the 
previous layers to improve the feature space. It 
efficiently functions as a bottleneck layer by 
decreasing the dimensionality of the learned 
features without compromising crucial 
information. By compressing feature space, this 
layer concentrates on the most discriminative 
attributes linked to the categorization of 
arrhythmias, improving the model's 
generalization and preventing overfitting.  

Twelve closely spaced neurons, each representing 
one of the twelve output classes, comprise the 
model's last layer. They exhibit a variety of heart 
rhythms, including regular heartbeats. By 
converting the outputs into probabilities using the 
softmax activation function, this layer enables the 
model to generate predictions by selecting the 
class with the highest probability. The softmax 
function facilitates the identification of each input 
ECG signal, and all output values must sum up to 
one. Therefore, the enhanced CNN architecture is 
ideal for tasks involving the identification and 
classification of arrhythmias. The model uses a 
series of convolutional, pooling, and dense layers 
to extract, smooth, and compress ECG signal 
fragments and find intricate patterns associated 
with various cardiac conditions. This framework 
manages accurate and dependable arrhythmia 
detection, which may be necessary for timely 
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clinical diagnosis and treatment, even when ECG 
data is complicated. This architecture's filter size 
selection, specific pooling algorithms, and well-
structured layer design enable it to accurately 
classify various arrhythmia types and effectively 
manage the high unpredictability of ECG data. 

3.3 Algorithm Design 

The LbADC algorithm uses DL to detect and 
classify arrhythmias from ECG data 
automatically. To properly diagnose and treat 
arrhythmias or irregular heartbeats, which can 
vary from benign to lethal, early and accurate 
identification is crucial. Conventional methods 
for identifying arrhythmias in situations that need 
close or extended observation sometimes depend 
on the subjective assessment of medical 
professionals. Human error is possible, and this 
method might be time-consuming and 
inconsistent. Using machine learning, LbADC 

develops an automated, reliable, and efficient 
ADS to overcome these limitations. To train a DL 
model that can identify intricate patterns in ECG 
signals, the program uses a sizable and varied 
dataset from the PhysioNet 2017 Challenge. The 
algorithm can now categorize different 
arrhythmias with great accuracy, consistency, and 
speed, which helps medical personnel diagnose 
patients more quickly and accurately. The 
secondary goal of the method is to produce 
performance measures that aid in evaluating the 
accuracy and dependability of the model and 
provide information for future model 
improvement and validation in clinical situations. 
Through the automation of arrhythmia detection, 
LbADC hopes to facilitate proactive and 
preventative healthcare by promoting early 
diagnosis and intervention, eventually leading to 
better patient outcomes and more efficient clinical 
processes. 

Algorithm: Learning-based Arrhythmia Detection and Classification (LbADC) 
Input: PhysioNet 2017 Challenge dataset D 
Output: Arrhythmia detection results in R, performance results P 
 

1. Begin  
2. D'ExploratoryDataAnalysis(D) 
3. (T1, T2, T3)DataPreparation(D') 
4. Configure deep learning model m (as in Figure 2) 
5. Compile m 
6. m'ModelTraining(T1, m) 
7. Persist m' 
8. Load m' 
9. RArrhythmiaDetectionAndClassification(m', T2) 
10. PFindPerformance(ground truth, R) 
11. Print R 
12. Print P 
13. End 

Algorithm: Learning-Based Arrhythmia Detection And Classification (Lbadc) 

The LbADC method (method 1) analyzes ECG 
data and uses ML techniques, particularly DL, to 
identify and categorize arrhythmias. The process 
uses the publicly accessible PhysioNet 2017 
Challenge dataset, which consists of ECG records 
with arrhythmia class labels as input. The results 
of arrhythmia identification and performance 
metrics that assess the correctness of the model 
are its two outputs. Initial insights are obtained, 
and raw data is examined during the EDA phase 
of the process. This study uses an updated dataset 
to identify essential data patterns, potential 
anomalies, and missing values, laying the 
foundation for practical model training. Three 
subsets of the data are created after processing: T1 
for testing, T2 for validation, and T1 for training. 

In data preparation processes, missing data may 
be addressed, features may be scaled or 
normalized, and labels may be converted into 
suitable formats with supervised learning. 

After data preparation, a DL model's architecture 
is configured using the method depicted in Figure 
2. Convolutional and RNN layers may be used in 
this model, mainly to detect arrhythmias and find 
spatial and temporal patterns in ECG data. Key 
hyperparameters, including the optimizer, loss 
function, and evaluation metrics, are modified to 
meet the arrhythmia classification condition 
before the model is built. By repeatedly training 
on the T1 training set, the model can eventually 
identify patterns linked to other arrhythmias. 
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Reducing the disparity between the actual and 
predicted arrhythmia classes is the goal of 
updating weights during training. To guarantee 
consistency and for assessment in subsequent 
stages, the model—which has been adjusted to 
detect arrhythmias—is kept after training. The 
stored model is subsequently applied to the 
validation dataset T2, yielding detection results 
(R) to identify and classify arrhythmias. 
Performance measurements, including accuracy, 
precision, recall, and F1-score, compare these 
findings to the ground truth labels to produce a 
performance summary (P). Lastly, the model's 
efficacy and potential areas for development are 
demonstrated via performance metrics and 
arrhythmia detection outcomes. 

3.4 Dataset Details 

The empirical study uses ECG data from the 
PhysioNet 2017 Challenge dataset [41], including 
regular and pathological cardiac rhythms. These 
are crucial for studies on arrhythmia diagnosis. 
This dataset is widely used across research 
communities to investigate various conditions 
based on the ECG data. 

3.5 Evaluation Methodology  

Since we used a learning-based approach 
(supervised learning), metrics derived from the 
confusion matrix, shown in Figure 3, evaluate our 
methodology.   

 

Figure 3: Confusion matrix 

Based on the confusion matrix, the predicted 
labels of our method are compared with the 
ground truth to arrive at performance statistics. 
Eq. 1 to Eq. 4 express different metrics used 
in performance evaluation.  

 

Precision(p)=
்௉

்௉ାி௉
                                     

(eq. 
1) 

Recal(r)=
்௉

்௉ାிே
 (eq. 

2) 

F1-score=2∗
(௣∗ ௥)

(௣ା௥)
 (eq. 

3) 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(eq. 
4) 

  

The outcome of the performance evaluation 
metrics is a number between 0 and 1. ML research 
extensively uses these measures. 

 

4. EXPERIMENTAL RESULTS 

This section presents the results of our empirical 
study conducted using a prototype implemented 
in Python. The proposed DL framework improves 
upon the CNN model, and the algorithm we 
developed could serve as a decision support 
system to assist healthcare professionals in 
screening for CVD. We utilized a benchmark 
dataset, the Physionet Challenge 2017 dataset, for 
our experiments. The experimental results of the 
proposed system were observed and compared 
with various state-of-the-art deep learning 
algorithms. Notably, our system supports multi-
class classification, enabling it to detect and 
classify arrhythmias, which adds significant value 
to its application in healthcare. Table 1 shows 
different classes of Arrhythmias.   

Table 1: Different Classes Of Arrhythmias Found In The Dataset 

Class Label Description 
AF Atrial Fibrillation 
AVB Atrioventricular Block 
BIGEMINY Premature ventricular contractions (PVCs) occur every other beat. 
EAR Early Atrial Repolarization 
IVR Idioventricular Rhythm 
JUNCTIONAL Junctional Rhythm 
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 NOISE ECG noise or artifact 
SINSUS Normal sinus rhythm 
SVT Supraventricular Tachycardia 
TRIGEMINY Premature ventricular contractions (PVCs) occur every third beat. 
VT Ventricular Tachycardia 
WENCKEBACH Wenckebach Phenomenon (a type of atrioventricular block)  

Using ECC data, the proposed system can analyse 
and detect various types of Arrhythmias, 
categorized by class label and description. 

Table 2: Performance Of The Enhanced CNN Model In Arrhythmias Detection And Classification 

Class Label Precision  Recall Specificity NPV F1 

AF 79.63 89.21 93.61 97.63 84.14 
AVB 81.26 85.32 95.12 98.84 83.24 

BIGEMINY 92.13 86.56 96.86 99.63 89.25 

EAR 56.62 80.21 95.12 98.21 66.38 
IVR 86.21 80.26 93.61 90.23 83.12 
JUNCTIONAL 89.72 81.6 94.16 98.21 85.46 
NOISE 95.61 79.32 95.13 98.36 86.7 
SINUS 87.63 93.64 96.32 98.41 90.53 
SVT 56.21 58.32 98.12 98.75 57.24 
TRIGEMINY 85.26 93.21 97.86 98.12 89.05 
VT 45.61 87.23 98.15 98.23 59.9 
WENCKEBACH 75.32 71.15 98.46 98.03 73.17 

 

Table 2 displays the performance of a 
classification model across many classes using 
metrics like F1-score, NPV, Precision, Recall, and 
Specificity. Overall, the model does well in most 
classes. It detects affirmative cases accurately and 
generates minimal false positives because of its 
high recall and accuracy scores. Additionally, 
there are very few false negatives and an adequate 
identification of negative instances, as indicated 
by the excellent NPV and specificity scores. The 

model does not perform in other classes, such as 
SVT and WENCKEBACH. This might imply that 
it is challenging to classify these specific 
groupings accurately. Additional study and model 
improvement would be necessary to enhance 
performance for these classes. Notwithstanding 
its efficacy, the model still needs improvement to 
increase classification accuracy for some 
problematic classifications. 
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Figure 4: Performance Of The Proposed Enhanced CNN Model In Arrhythmia Detection And Multi-Class 
Classification In ECG Data 

The performance of a classification model over 
several classes is shown graphically in Figure 4. 
The model's performance is evaluated using 
several metrics, including the F1-score, NPV, 
Precision, Recall, and Specificity. Even though 
every class performs differently, the model can 
often identify positive and negative examples. 
Several classes, such as SVT and 

WENCKEBACH, performed poorly on several 
measures, suggesting they would be difficult to 
classify correctly. More research and optimization 
may improve the model's overall performance, 
such as modifying hyperparameters, enhancing 
the model's architecture, or gathering more data 
for underrepresented classes. 

Table 3: Performance Comparison Of Deep Learning Models In Arrhythmia Detection And Classification 

Model Precision  Recall Specificity NPV F1 

Unet 73.06 80.63 89.63 89.21 76.65 

ReseNet-50 70.26 79.23 90.53 90.54 74.74 

LeNet 75.61 81.2 93.62 92.03 78.81 

Enhanced CNN 77.6 82.16 96.04 97.72 79.015 

Table 3 compares the performance of Unset, 
ResNet-50, LeNet, and Enhanced CNN based on 
several measures, including F1-score, NPV, 
Precision, Recall, and Specificity. The Enhanced 
CNN model performs better than the other 
methods when correctly recognizing negative 

instances, detecting positive cases, and reducing 
false positives. Moreover, ResNet-50 outperforms 
Unet and LeNet overall. Due to its balanced 
performance on all measures, the improved CNN 
model is the best option for the classification 
assignment overall. 
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Figure 5: Performance Comparison Among Deep Learning Models In Arrhythmia Detection And Multi-Class 
Classification In ECG Data 

Various metrics, such as F1-score, NPV, Precision, 
Recall, and Specificity, are used in Figure 5 to assess 
the performance of four classification models: UNet, 
ResNet-50, LeNet, and Enhanced CNN. The 
Enhanced CNN model continuously beats the others 
in every metric, showing better accuracy in detecting 
positive instances, reducing false positives, and 
accurately categorizing negative cases. ResNet-50 
also indicates strong performance in most metrics, 
while UNet and LeNet exhibit lower performance. 
Overall, the Enhanced CNN model is the most 
suitable choice for the classification task due to its 
well-balanced performance across all metrics. 

5. DISCUSSION 

This study focused on enhancing DL models. 
Specifically, CNN improves performance in 
automatically detecting and classifying arrhythmias 
using ECC data. Given that DL models, particularly 
CNNs, have demonstrated superior performance in 
analyzing medical data, we aimed to enhance the 
architecture of the CNN model. Our empirical study 
revealed that the improved CNN model performed 
better than many DL models. With the rise of CVD 
globally, as reported by the WHO, it is crucial to 
emphasize the use of technology in disease diagnosis. 
The AI-enabled approach discussed in this paper 
could deliver enhanced performance compared to 
state-of-the-art methods. This paper also addresses 
the limitations of general DL models by appropriately 
enhancing the CNN model. Utilizing a benchmark 
dataset allowed us to gain valuable insights through 

the proposed DL framework, which contributes to 
improving the CNN model and the underlying 
algorithms presented herein. The proposed system 
has the potential to be integrated with healthcare 
applications, ultimately supporting clinical decision-
making for doctors in screening for CVD. However, 
the proposed system does have certain limitations, 
which are discussed in section 5.1. 

5.1 Limitations 

The proposed system has certain limitations. The 
detection of CVD is conducted using ECG data, and 
the system does not currently support multiple data 
modalities. Supporting various data types could 
potentially enhance the system's utility. Additionally, 
the proposed system utilizes a dataset for training and 
then detects vascular diseases in the provided test 
samples. While this approach is efficient, there is 
room for improvement in the future. Specifically, 
incorporating federated learning could allow the 
system to leverage data from other healthcare service 
providers collaboratively. 

6. CONCLUSION AND FUTURE WORK  

We propose a DL-based framework for automatically 
detecting and classifying arrhythmias in ECG data. 
Additionally, we introduce an algorithm called 
LbADC to implement this framework successfully. 
Our empirical study, conducted using the benchmark 
PhysioNet 2017 Challenge dataset, demonstrated that 
the proposed deep learning framework effectively 
detects and classifies arrhythmias in ECG data.  The 
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experimental results indicated that the enhanced 
CNN model achieved the highest specificity of 
96.04%, surpassing several existing deep learning 
models such as LeNet, ResNet50, and U-Net. 
Consequently, the proposed framework, along with 
the enhanced CNN model and the underlying 
algorithm, can be integrated into any healthcare 
application to develop a clinical decision support 
system for the automatic screening of CVD.  
Furthermore, the proposed system could be 
enhanced to support processes that assist numerous 
healthcare organizations in extracting knowledge 
from diverse datasets while maintaining privacy, 
ultimately leading to improved performance in 
detecting and classifying arrhythmias. 
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