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ABSTRACT 
 

This study compares and evaluates the performance of NHPP-based software reliability models that apply 
Pareto-type lifetime distribution characteristics and proposes the optimal model based on this analysis. To 
analyze software failure phenomena, failure time data were utilized, and the parameters of the proposed 
model were determined through the maximum likelihood estimation (MLE) method. Various analyses 
(including assessing model efficiency using MSE and 𝑅ଶ, evaluating prediction accuracy against true values 
using the mean value function, measuring failure occurrence intensity using the intensity function, and 
assessing future reliability using the reliability function) demonstrated that the Lomax model exhibited the 
best performance. Therefore, this research provides new insights into the reliability performance of Pareto-
type lifetime distributions, which have been underexplored in existing studies, and also offers fundamental 
reliability attribute data that software developers need in the early stages. 
Keywords: Goel-Okumoto, Lomax, NHPP, Pareto, Reliability Performance. 
 

                 
1. INTRODUCTION  

 
The era of the Fourth Industrial Revolution 

can be described as an information society based on 
Artificial Intelligence (AI), where data generated 
and collected through advanced information and 
communication infrastructure is combined with AI 
technologies to create new value in a software-
centric age. Therefore, the current industrial 
paradigm is converging around software, evolving 
into a digital form in conjunction with related 
industries. As a result, in this information age, which 
merges with digital technologies based on advanced 
AI software capabilities, the reliability of high-
quality software free from defects becomes the most 
critical issue. Therefore, software developers 
conduct reliability testing to verify whether user 
requirements are met during the development stage 
before releasing the software. Furthermore, to 
proceed with software development more 
efficiently, it is essential not only to perform 
reliability testing but also to predict and eliminate 
software defect occurrence characteristics in 
advance [1]. Research aimed at predicting defect 
occurrences using failure times that arise during 
software system operation is actively underway, and 
many reliability models related to this have been 
proposed to date [2]. Especially, Kim [3] 

demonstrated the efficiency of NHPP-based models 
under the premise of finite failures using a Rayleigh 
distribution model applied to Non-homogeneous 
Poisson Processes (NHPP). Additionally, Min [4] 
evaluated the characteristics of the NHPP reliability 
models using Pareto and Erlang distributions. 
Moreover, Kim [5] analyzed and presented the 
properties affecting the reliability of software 
reliability models using Lomax and Minimax 
lifetime distributions. Furthermore, Yang [6] 
examined the properties of software development 
models with infinite failures, utilizing the Lomax 
distribution, which is a generalized form of the 
Pareto-type distribution. Similarly, Satya, Sita, and 
Sridevi [7] provided analysis results of NHPP 
reliability models incorporating Pareto distribution 
characteristics. Based on these research findings, 
recent studies have focused on applying NHPP-
based reliability models to software failure times in 
order to improve the reliability performance [8]. 
         Therefore, this study aims to propose an 
optimization method for analyzing the performance 
characteristics of NHPP software reliability models 
based on the Pareto-type distribution, along with 
presenting the optimal model.  
 
2. RELATED RESEARCH 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2858 

 

2.1.1 NHPP model 
The NHPP model is a probability-based 

prediction model suitable for explaining events 
whose occurrence rate (occurrence frequency) 
randomly changes over time or under specific 
conditions, such as software failures. Therefore, it is 
widely used in fields such as software reliability and 
failure analysis.  

 
Based on this, in the method of formulating 

the NHPP model, N(t) is the accumulated failure 
count, m(t) is the mean value function, and λ(t) is the 
intensity function, implying that N(t) follows a 
Poisson probability distribution, where m(t) serves 
as the parameter. 

 
Therefore, if this is organized into a formula, 

it can be defined as Equation (1) [9]. 
  

𝑃{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]௡ ∙  𝑒ି௠(௧)

𝑛!
                         (1) 

Note that n = 0,1,2, ⋯  ∞. 

 
Furthermore, in terms of reliability performance,  
m(t) is an attribute function that reflects the expected 
number of failures, and λ(t) is an attribute function 
representing the instantaneous failure occurrence 
rate. Therefore, these attribute functions can be 
organized into relationships such as Equations (2) 
and (3). 
 

𝑚(𝑡) = න 𝜆(𝑠)𝑑𝑠                                                   (2)
௧

଴

 

   𝑑𝑚(𝑡)

𝑑(𝑡)
= 𝜆(𝑡)                                                           (3) 

 
 
2.1.2 NHPP software reliability model 

The NHPP software reliability model can be 
said to be a probability model that can statistically 
explain and predict the phenomenon in which the 
failure rate of a software system changes over time. 
It takes into account the changing nature of defect 
occurrences over time and is particularly useful for  
analyzing situations where defect occurrence 
intervals are not uniform. Therefore, software 
developers can use this model to predict the number 
of defects, plan the necessary testing time and 
resources, and assess the expected reliability of the 
software before its final release. 

 
This study assumes the finite failure 

condition, which posits that no further defects occur 

during fault repair. In this case, if the remaining 
detectable faults by testing time t are θ, with the 
cumulative distribution function as F(t) and the 
probability density function as f(t), the attribute 
function reflecting the model's performance is 
expressed in Equations (4) and (5).  

 
m(t|𝜃, b) = 𝜃𝐹(t)                                                      (4) 

λ(t|𝜃, b) = 𝜃𝐹(t)′ = 𝜃𝑓(𝑡)                                      (5) 

Accordingly, the likelihood function of the NHPP 
model is as shown in Equation (6). 

 

𝐿ேு௉௉൫Θห𝑥൯ = ൭ෑ 𝜆(𝑥௜)

௡

௜ୀଵ

൱ 𝑒𝑥𝑝[−𝑚(𝑥௡)]         (6) 

Note that 𝑥 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ ⋯ 𝑥௡)  

 

2.2 NHPP Goel-Okumoto Basic Model 
The Goel-Okumoto model is useful for 

evaluating reliability based on defects found in the 
software testing phase, and is used as an important 
tool for establishing reliability prediction and quality 
assurance strategies. Also, this model is also called 
the Exponential-type basic model because its life 
distribution has an exponential shape, and is treated 
as a representative basic model in the reliability 
testing field.  

 
Therefore, if the residual failure is θ, the attribute 
function expressing the reliability performance is 
defined as in Equations (7) and (8) [10]. 
 
𝑚(𝑡|𝜃, 𝑏) = 𝜃(1 − 𝑒ି௕௧)                                         (7) 

 𝜆(𝑡|𝜃, 𝑏) = 𝜃𝑏𝑒ି௕௧                                                         (8)  

 
Accordingly, after inserting Equations (7) and (8) 
into Equation (6), taking the logarithm on both sides, 
the log-likelihood function is derived as follows. 

 𝑙𝑛𝐿ேு௉௉(𝛩|𝑥) = 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 − 𝑏 ෍ 𝑥௞

௡

௞ୀଵ

− 𝜃(1 − 𝑒ି௕௫೙)                         (9) 
 
By differentiating with respect to the model 
parameters θ and b, respectively, we can calculate 
the maximum likelihood estimators 𝜃෠ெ௅ா  and 𝑏෠ெ௅ா   
that satisfy Equations (10) and (11). Thus, by 
applying the bisection method to solve the following 
equation, the model parameters can ultimately be 
determined.  
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𝜕𝑙𝑛𝐿ேு௉௉(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃෠
− 1 + 𝑒ି௕෠௫೙ = 0               (10) 

𝜕𝑙𝑛𝐿ேு௉௉(𝛩|𝑥)

𝜕𝑏
=

𝑛

𝑏෠
− ෍ 𝑥௡

௡

௜ୀଵ

− 𝜃෠𝑥௡𝑒ି௕෠௫೙ = 0    (11) 

 
 
2.3 NHPP Lomax Model 

The Lomax distribution is a special case of 
the Pareto-type Ⅱ distribution, and is mainly used in 
reliability lifetime distribution analysis. In other 
words, it is a modified form of the Pareto basic 
distribution, and is mainly useful for analyzing 
situations where the frequency of significant events 
or extreme values appear.  

 
Therefore, it has characteristics suitable for 

data where extreme values frequently occur, and is a 
distribution widely used for implementing 
optimization models in various fields, including the 
reliability field. 

 
 Therefore, the probability function of the Lomax 
distribution is as shown in Equations (12) and (13). 

 
F(t) = 1 − (1 + 𝑏𝑡)ି௔                                       (12) 

f(x) =
𝑎𝑏

(1 + 𝑏𝑡)௔ାଵ
                                             (13) 

Note that b (> 0) is the scale parameter. 
 

That is, the attribute function expressing the 
reliability performance can be derived as in 
Equations (14) and (15) [11]. 
 
 m(t|𝜃, b) = 𝜃 [1 − (1 + 𝑏𝑡)ି௔]                          (14) 

 λ(t|𝜃, b) = 𝜃 ൤
𝑎𝑏

(1 + 𝑏𝑡)௔ାଵ
൨                                 (15) 

 
By inserting Equations (14) and (15) into Equation 
(6), setting the shape parameter a to 1, and taking the 
logarithm of both sides, the log-likelihood function 
is derived as follows. 
 
ln𝐿ேு௉௉(𝛩|𝑥) = 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏                             (16) 

                 

−2 ෍ ln (1 + 𝑏𝑥௜) − 𝜃 [1 − (1 + 𝑏𝑥௡)ିଵ]

௡

௜ୀଵ

= 0 

 
By differentiating with respect to the model 
parameters θ and b, respectively, we can calculate 

the maximum likelihood estimators 𝜃෠ெ௅ா  and 𝑏෠ெ௅ா  
that satisfy Equations (17) and (18).  Accordingly,  
if applying the bisection method to solve the 
following equation, the model parameters can 
ultimately be calculated. 
 
∂ln𝐿ேு௉௉(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃෠
−  [1 − (1 + 𝑏𝑥௡)ିଵ] = 0    (17) 

 
∂ln𝐿ேு௉௉(𝛩|𝑥)

𝜕𝑏
=

𝑛

𝑏෠
− 2 ෍

𝑥௜

(1 + 𝑏෠𝑥௜)

௡

௜ୀଵ

          

       −𝜃෠𝑥௡ ൥
1

൫1 + 𝑏෠𝑥௡൯
ଶ൩ = 0           (18) 

 
 
2.4 NHPP Pareto Basic Model 

The Pareto distribution is the Pareto-type Ⅰ, 
and is the most basic form among the Pareto-type 
lifetime distributions. This distribution is suitable for 
explaining extreme events or phenomena in which a 
small number of causes lead to a large number of 
results. Therefore, it is a useful distribution for 
analyzing unbalanced phenomena because it has 
mathematical characteristics and characteristics that 
reflect observable phenomena.  

 
Thus, a reliability analysis model using the 

Pareto distribution can be an important tool for 
identifying system failure characteristics and 
designing effective maintenance strategies. It is 
particularly useful in systems in which the 
distribution of failures is unbalanced, and through 
this, system reliability can be improved and 
operational efficiency can be improved. 

 
Also, the probability function of the Pareto 
distribution is as shown in Equations (19) and (20). 

 

𝐹(t) = 1 − ൤1 + ൬
𝑡

𝑏
൰൨

ି௔

                                        (19) 

𝑓(t) =
𝑎

𝑏
൤1 + ൬

𝑡

𝑏
൰൨

ି(௔ାଵ)

                                      (20) 

Note that b (> 0) is the scale parameter. 
That is, the attribute function representing the 
reliability performance is derived as in Equations 
(21) and (22) [12]. 
 

m(t|𝜃, b) = θ ൬1 − ൤1 + ൬
𝑡

𝑏
൰൨

ି௔

൰                      (21) 

 λ(t|𝜃, b) =  θ ൬
௔

௕
ቂ1 + ቀ

௧

௕
ቁቃ

ି(௔ାଵ)

൰                    (22)     
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Accordingly, the log-likelihood function is 
formulated by inserting Equations (21) and (22) into 
Equation (6), setting the shape parameter a to 1, and 
computing the logarithm on both sides. 

 
ln𝐿ேு௉௉(𝛩|𝑥) = 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑎 − 𝑛𝑙𝑛𝑏             (23) 

+ ෍ ln ቂ1 + ቀ
𝑥௜

𝑏
ቁቃ

ି(௔ାଵ)
௡

௜ୀଵ

− θ ൬1 − ቂ1 + ቀ
𝑥௡

𝑏
ቁቃ

ି௔

൰ 

 
Accordingly, if differentiating Equation (23) by each 
parameter (θ and b) and solving it using the bisection 
method, we can obtain the maximum likelihood 
estimators (𝜃෠ெ௅ா , 𝑏෠ெ௅ா) that satisfy Equations (24) 
and (25). 
 

 
∂ln𝐿ேு௉௉(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃෠
− ൬1 − ቂ1 + ቀ

𝑥௡

𝑏
ቁቃ

ି௔

൰ = 0  (24) 

 
∂ln𝐿ேு௉௉(𝛩|𝑥)

𝜕𝑏
= −൫𝑏෠ − 1൯ 

𝑥௡𝜃෠𝑎

𝑏෠ଶ
 ൤1 + ൬

𝑥௡

𝑏෠
൰൨

ି(௔ାଵ)

 

−
𝑛

𝑏෠
 + (𝑎 + 1) ൭

𝑛

𝑏෠
− ෍

1

𝑏෠ + 𝑥𝑖

𝑛

𝑖=1

൱ = 0                (25) 

 
 
3. RELIABILITY PERFORMANCE 
ANALYSIS OF THE PROPOSED MODEL 
 

This study focuses on assessing the 
reliability performance by analyzing the software 
failure time observed during the operation of a 
desktop computer system. 
 
The failure time is based on data collected from a 
total of 30 failures that occurred randomly over a 
total of 738.68 hours, as shown in Table 1 [13].  
Also, the failure time is presumed to be caused by 
testing mistakes and design errors made by 
developers during the initial stage of software 
development. 
 

 

To assess whether the failure time data collected in 
this study is suitable for reliability analysis, a 
simulation was carried out using the Laplace Trend 
Test with the data presented in Table 1, and the 
results are shown in Figure 1. Typically, if the 
Laplace trend test result for the referenced data falls 
within the range of '-2 to 2', it indicates that there are 

no extreme values, which means that the data are 
stable and therefore suitable for reliability analysis. 

Table 1: Software Failure Time. 

Failure  
   number 

Failure time 
(hours) 

Failure time 
(hours)× 10ିଶ 

1 30.02 0.30 

2 31.46 0.31 

3 53.93 0.53 

4 55.29 0.55 

5 58.72 0.58 

6 71.92 0.71 

7 77.07 0.77 

8 80.90 0.80 

9 101.90 1.01 

10 114.87 1.14 

11 115.34 1.15 

12 121.57 1.21 

13 124.97 1.24 

14 134.07 1.34 

15 136.25 1.36 

16 151.78 1.51 

17 177.50 1.77 

18 180.29 1.80 

19 182.21 1.82 

20 186.34 1.86 

21 256.81 2.56 

22 273.88 2.73 

23 277.87 2.77 

24 453.93 4.53 

25 535.00 5.35 

26 537.27 5.37 

27 552.90 5.52 

28 673.68 6.73 

29 704.49 7.04 

30 738.68 7.38 
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Figure 1 illustrates that the trend test analysis 

results reveal no extreme values, as all values lie 
between -2 and 2. Consequently, the failure time 
data shown in Table 1 is considered appropriate for 
this work [14]. 
Also, the NHPP model parameters ( 𝜃෠, 𝑏෠ ) were 
estimated via the MLE method, and the findings are 
summarized in Table 2. 

 
For reference, among the parameters presented in 
Table 2, 𝜃෠  represents the residual failure of the 
software, and 𝑏෠ represents the shape parameter that 
creates the form of the lifetime distribution. 
 

3.1. Selection of an Efficient Model                                                            
The efficiency of the proposed model was 

confirmed through the analysis of the 𝑅ଶ property, 
used for selecting a suitable and efficient model 
based on prediction, and the MSE property, which 
helps identify an accurate and efficient model. 

𝑅ଶ is an indicator of the explanatory power of 
the model, called the coefficient of determination, 

 

and has a value between 0 and 1. This value shows 
how well the model explains the variability of the 
data, so it is used as a reference value that explains 
the error between the actual value and the observed 
value. Therefore, 𝑅ଶ is defined as in Equation (26). 
 

𝑅ଶ = 1 −

෍ ൫m(𝑥௜) − mෝ (𝑥௜)൯
ଶ

୬

୧ୀଵ

෍ ൫m(𝑥௜) − ∑ 𝑚(𝑥௝
௡
௝ୀଵ )/𝑛)൯

ଶ
୬

୧ୀଵ

 (26) 

 
Note that mෝ (𝑥௜) is the cumulative number of failures 
estimated from the m(t) up to time 𝑥௜.    
 

Therefore, when selecting an efficient model 
among the proposed models, the larger the 𝑅ଶ value, 
the smaller the error, so the model is considered a 
relatively useful model.  

 
MSE is calculated by squaring the average error 

between the model’s actual observed values and 
predicted values, making it an important metric for 
evaluating model efficiency. Therefore, MSE can be 
defined as shown in Equation (27). 

 

𝑀𝑆𝐸 =

෍ ൫m(𝑥௜) − mෝ (𝑥௜)൯
ଶ

୬

୧ୀଵ

𝑛 − 𝑘
                        (27) 

Note that n is the number of observed failures. 
 
Figure 2 shows the results of analyzing the 
performance of the proposed model using MSE. In 
this work, the results of MSE analysis will be used 
as reference data to determine an efficient model. 

 

 
Figure 1:  Analysis Results of Laplace Trend Test. 

Table 2:  Parameter Solution using MLE. 
 

Type 
NHPP 
model 

    MLE 

𝜃෠ 𝑏෠  

Basic   
Goel- 
Okumoto 

33.4092 0.3090 

Pareto-type 
   lifetime 
distribution 

   Lomax 44.1466 0.2848 

Pareto 31.8150 0.4468 

 

Figure 2:  Property Analysis of MSE. 
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Therefore, when selecting an efficient model among 
the proposed models, the smaller the MSE, the better 
the model's predictive performance can be evaluated.  
That is, the MSE value represents how accurately the 
predicted values match the actual values, with a 
lower MSE corresponding to a smaller prediction 
error. Hence, a lower MSE value indicates superior 
model performance. 
 
Table 3 shows the data that compares and analyzes 
in detail the changes in MSE values according to 
each failure in order to select an efficient model 
among the proposed models [15]. 

 

In general, if the value of  𝑅ଶ is greater than 
0.8 (80%) and the value of MSE is smaller, it is 
considered efficient. Therefore, based on the data 
analyzed in Table 4, it can be judged that the Goel-
Okumoto and Lomax models are efficient among the 
proposed models. In addition, the Lomax model 
among the models can be evaluated more efficient 
and useful than the Goel-Okumoto model. 

 
 
3.2.   Analysis of the Mean Value Function (m(t)) 

The NHPP reliability model utilizes m(t) as a 
key function to describe the expected number of 
software failures by time t. As a result, m(t) 
represents not only the expected failure rate but also 
serves as a key parameter in estimating the true 
value.  
 
 Table 5 summarizes and compares the equations for 
calculating m(t) of the proposed model. 

 
 
 Figure 3 shows the trend of the m(t) function, which 
indicates the ability to predict the true value [16]. 
Therefore, when analyzing the simulation results, 
the Pareto model shows a pattern of not accurately 
predicting the true value, but the Lomax and Goel-
Okumoto models show results of roughly predicting 
the true value.  
 

Table 3: Transition Analysis Data Using MSE. 
 

Failure 
number 

MSE 

Goel- 
Okumoto 

Lomax Pareto 

1 0.1371 0.2191 4.9607 

2 0.0428 0.0949 4.4365 

3 0.1617 0.2957 7.4053 

4 0.0555 0.1436 6.6016 

5 0.0105 0.0627 6.0985 

6 0.0154 0.0809 6.6288 

7 0.0002 0.0319 6.1659 

8 0.0133 0.0025 5.5764 

9 0.0000 0.0308 6.1450 

10 0.0000 0.0278 5.9483 

11 0.0345 0.0002 5.0845 

12 0.0844 0.0149 4.5318 

13 0.1885 0.0711 3.8896 

14 0.2542 0.1158 3.4739 

15 0.4425 0.2523 2.8661 

16 0.4356 0.2557 2.6288 

17 0.2994 0.1691 2.5302 

18 0.4968 0.3262 2.0070 

19 0.7612 0.5481 1.5321 

20 1.0319 0.7870 1.1448 

21 0.2603 0.1974 1.3289 

22 0.3052 0.2516 1.0232 

23 0.5016 0.4368 0.6939 

24 0.0507 0.0284 0.8800 

25 0.1447 0.0976 0.6797 

26 0.0399 0.0174 0.4061 

27 0.0045 0.0000 0.2119 

28 0.0551 0.0372 0.1204 

29 0.0137 0.0076 0.0300 

30 0.0000 0.0002 0.0000 

Table 4: Selection Criteria for Efficient Model. 

Type 
NHPP 
model 

 𝑅ଶ MSE 

Basic  
Goel- 
Okumoto 

0.9814 5.8424 

Pareto-type 
lifetime 

distribution 

   Lomax 0.9854 4.6059 

Pareto 0.6988 95.031 

Table 5: Mean Value Function (𝑚(𝑡)). 

Type 
NHPP 
model 

m(t) 

Basic Goel- 
Okumoto 𝜃(1 − 𝑒ି௕௧) 

Pareto-type 
lifetime 

distribution 

   Lomax 𝜃[1 − (1 + 𝑏𝑡)ି௔] 

Pareto 𝜃 ቀ1 − [1 + ቀ
௧

௕
ቁ]ି௔ቁ  
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Therefore, it was confirmed that these models had 
efficient performance [16]. In particular, it can be 
judged that the Lomax model, which showed the 
smallest error in predicting the true value, is the best.  

 
3.3.   Analysis of the Intensity Function (λ(t)) 

In the NHPP reliability model, λ(t) represents 
the conditional failure rate of software at a given 
time. Hence, λ(t) indicates the instantaneous failure 
rate at time t. Consequently, along with m(t), λ(t) 
functions as a key performance metric for assessing 
reliability properties. 

 
Table 6 summarizes and compares the equations for 
calculating λ(t) of the proposed model [17]. 
 

 
Figure 4 shows the results of analyzing the 
performance of the proposed model with the λ(t) 

function, which represents the occurrence intensity 
for instantaneous failures over the entire failure time.  

 

 
According to the simulation, the Lomax and Goel-
Okumoto models initially display a low failure rate, 
which gradually decreases over time as failures are 
repaired. This finding indicates that the proposed 
models achieve efficient performance in terms of 
model fitness. But, the intensity function of the 
Pareto model shows the largest failure rate in the 
initial stage compared to other models, which shows 
that the model is inefficient in terms of model fitness.  
 
Therefore, this work aims to analyze the occurrence 
of system failures over time specifically using the 
results of the intensity function and to help 
developers establish design and maintenance 
strategies in the early stage of software development. 

 
So far, based on the analyzed data, it can be 
confirmed that the m(t) function can predict the 
occurrence of a failure, and λ(t) can evaluate the 
possibility of occurrence of a failure. Thus, if the two 
functions are utilized appropriately, the reliability of 
the proposed model can be effectively analyzed and 
the software system can be optimized. 
 

Table 7 shows the data analyzed by 
comparing the result values in detail according to the 
failure occurrence time using the attribute function 
(m(t), λ(t)) that has the greatest influence on the 
reliability performance. Therefore, in this work, the 
data presented in Table 7 will be applied to 
determine the optimal model.  

 

 

 

Figure 3: Property Analysis of 𝑚(𝑡). 

Table 6: Intensity Function (𝜆(𝑡)). 

Type 
NHPP 
model 

λ(t) 

Basic 
Goel- 
Okumoto 𝜃b𝑒ି௕௧ 

Pareto-type 
lifetime 

distribution 

  Lomax 𝜃 ൤
𝑎𝑏

(1 + 𝑏𝑡)௔ାଵ
൨ 

Pareto θ ቆ
𝑎

𝑏
൤1 + ൬

𝑡

𝑏
൰൨

ି(௔ାଵ)

ቇ 

 

Figure 4:  Property Analysis of 𝜆(𝑡). 
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Table 7: Transition Analysis Data of Reliability Performance Attributes.   

 
Failure 
Time 

(hours) 
× 10ିଶ 

Reliability  Performance  Attributes 
 

m(t) λ(t) 

Goel- 
Okumoto Lomax      Pareto 

Goel-
Okumoto      Lomax       Pareto 

0.3002 2.95970 3.47711 12.7856 9.40889 6.02875 25.4744 

0.3146 3.09488 3.63019 13.1455 9.36712 6.01692 24.5199 

0.5393 5.12827 5.87780 17.3996 8.73881 5.83812 14.6185 

0.5529 5.24687 6.00586 17.5957 8.70216 5.82764 14.2235 

0.5872 5.54377 6.32506 18.0674 8.61041 5.80138 13.2955 

0.7192 6.65748 7.50519 19.623 8.26628 5.70246 10.4556 

0.7707 7.07983 7.94588 20.1394 8.13578 5.66477 9.58975 

0.809 7.38959 8.26681 20.4955 8.04006 5.63707 9.01372 

1.019 9.02439 9.93003 22.1172 7.53491 5.48986 6.61600 

1.1487 9.98234 10.8823 22.9056 7.23890 5.40272 5.58408 

1.1534 10.0163 10.9158 22.9317 7.22839 5.39962 5.55132 

1.2157 10.4623 11.3538 23.2646 7.09057 5.35878 5.14306 

1.2497 10.7021 11.5880 23.4360 7.01647 5.33676 4.93898 

1.3407 11.3317 12.1987 23.8625 6.82192 5.27869 4.44890 

1.3625 11.4800 12.3416 23.9584 6.77612 5.26496 4.34234 

1.5178 12.5074 13.3237 24.5794 6.45863 5.16922 3.68296 

1.775 14.1043 14.8234 25.4170 5.96520 5.01810 2.87962 

1.8029 14.2700 14.9773 25.4964 5.91399 5.00223 2.80864 

1.8221 14.3832 15.0824 25.5498 5.87901 4.99137 2.76131 

1.8634 14.6245 15.3057 25.6618 5.80446 4.96817 2.66346 

2.5681 18.3002 18.6488 27.1001 4.66867 4.60312 1.56387 

2.7388 19.0765 19.3452 27.3527 4.42880 4.52262 1.40076 

2.7787 19.2521 19.5026 27.4079 4.37453 4.50421 1.36632 

4.5393 25.1923 24.8920 28.9640 2.53901 3.81832 0.57177 

5.35 27.0131 26.6536 29.3627 1.97638 3.56813 0.42303 

5.3727 27.0578 26.6983 29.3723 1.96257 3.56159 0.41973 

5.529 27.3573 27.0000 29.4362 1.87003 3.51724 0.39806 

6.7368 29.2423 29.0208 29.8362 1.28756 3.20849 0.27546 

7.0449 29.6207 29.4623 29.9175 1.17063 3.13822 0.25327 

7.3868 30.0005 29.9230 30.0003 1.05327 3.06376 0.23164 
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3.4.   Analysis of the Reliability Function (𝑹෡(𝝉)) 
R̂(τ) is a crucial attribute used to assess the 

reliability performance of software systems with 
failure rates that vary over time. Together with the 
previously analyzed functions (m(t), λ(t)), it 
provides essential data for forecasting the model's 
reliability. Thus, this study seeks to forecast future 
reliability performance by utilizing arbitrary mission 
times in the proposed model. 

 
 The function 𝑅෠(τ) represents the likelihood that a 
failure happens at the testing point t but does not 
occur within the confidence interval throughout the 
mission time τ. This means that the reliability 
function is intended to assess future reliability trends 
by introducing a randomly assigned mission time 
following the final failure time ( 𝑥௡ = 738.68 ×
10ିଶ).  Accordingly, reliability ( R෡(τ)) can be 
defined as shown in Equation (28) [18]. 

 

 𝑅෡ (𝜏|𝑥௡) = 𝑒𝑥𝑝[−{𝑚(𝑥௡ + 𝜏) − 𝑚(𝑥௡)}]            (28) 

 
As Figure 5 demonstrates, the analysis of 

reliability trends over mission time (145H) shows a 
continuous decline in reliability for the proposed 
models. That is, all of the proposed models showed 
a property of decreasing stability as the mission time 
passed, but among them, the Pareto model, which 
showed relatively high reliability, can be evaluated 
as relatively efficient. 

 

Table 8 presents a detailed dataset on reliability 
performance trends derived by applying future 
mission times to the NHPP model proposed in this 
study. In reliability performance analysis, R෡(τ) 
takes a value of "1 or less," where higher values 
indicate greater model reliability. Consequently, the 
model is ultimately considered efficient. 

  
 

 

 
Figure 5: Property Analysis of 𝑅෠(𝜏). 

 

 

 

Table 8: Transition Analysis Data of 𝑅෠(𝜏). 

Mission 
Time 
(hours) 

R෡(τ) 

Goel- 
Okumoto 

Lomax  Pareto 

0.1 0.90148 0.87868 0.97738 

0.5 0.61387 0.53582 0.89684 

1 0.40410 0.30256 0.81430 

1.5 0.28242 0.17891 0.74704 

2 0.20777 0.11019 0.6913 

2.5 0.15972 0.07036 0.64467 

3 0.12749 0.04640 0.60501 

3.5 0.10510 0.03150 0.57099 

4 0.08907 0.02195 0.54151 

4.5 0.07730 0.01565 0.51578 

5 0.06840 0.01140 0.4931 

5.5 0.06169 0.00847 0.47306 

6 0.05642 0.00640 0.45518 

6.5 0.05227 0.00492 0.43916 

7 0.04896 0.00383 0.4247 

7.5 0.04629 0.00303 0.41165 

8 0.04410 0.00242 0.3997 

8.5 0.04233 0.00196 0.38894 

9 0.04086 0.00160 0.37901 

9.5 0.03965 0.00132 0.36989 

10 0.03863 0.00110 0.36148 

10.5 0.03778 0.00093 0.35371 

11 0.03707 0.00078 0.34650 

11.5 0.03647 0.00067 0.33981 

12 0.03597 0.00057 0.33357 

12.5 0.03550 0.00050 0.32774 

13 0.03518 0.00043 0.32229 

13.5 0.03487 0.00038 0.31717 

14 0.03461 0.00033 0.31230 

14.5 0.03438 0.00029 0.30785 
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3.5. Evaluation of Reliability Performance 
In this work, we included reference indices 

(MSE, 𝑅ଶ) that can determine a relatively efficient 
model in terms of accuracy and fitness of the 
reliability model, and also used attribute functions 
(m(t), λ(t),  𝑅෠(𝜏)) that can evaluate performance in 
terms of reliability. Accordingly, we evaluated the 
performance using the analyzed results and 
presented the optimal model [19].  

 
Table 9 presents the outcomes of a thorough 

comparison and assessment of the attribute data 
concerning the performance, based on the study 
findings. The evaluation results confirm that the 
Lomax model demonstrates the best performance.  

 
Therefore, the findings of this study are anticipated 
to be beneficial in the early stages of software 
development, providing developers with essential 
design data and key attributes necessary for 
enhancing reliability. 
 
4. CONCLUSION 

Software developers can design reliability 
prediction models by utilizing failure time data 
collected during the early stages of program design 
and testing. This enables them to predict failure 
times in advance and improve product reliability 
based on these predictions. As a result, developers 
can effectively enhance the software quality they 
strive to achieve. In this study, we applied an NHPP-
based model incorporating Pareto distribution 
characteristics, which is widely recognized as 
suitable for reliability analysis. Through software 
failure time data analysis, we assessed the 
performance of the proposed model and identified 
new properties. 

 
The results of this study are as follows.    
First, an analysis of the reference data (MSE,  𝑅ଶ) 
for selecting an efficient model revealed that the 

Lomax and Goel-Okumoto models exhibited high 
levels of goodness-of-fit. 
Second, an analysis of the attribute data (m(t), λ(t)) 
related to model performance showed that the 
Lomax model demonstrated superior true value 
prediction accuracy and a low error rate, making it 
the most efficient model. 
Third, an analysis of the future reliability R෡(τ) of the 
models indicated that while the proposed models 
tended to show a decline in reliability over time, the 
Pareto model maintained relatively higher 
reliability, confirming its effectiveness. 
Accordingly, among the proposed models, the 
Lomax distribution model was identified as the 
optimal model. 
 
As a result, this study proposes a methodological 
solution process and key design data to help 
developers evaluate and predict attribute data in the 
early stages of software development. Furthermore, 
future research should aim to identify an industry-
specific optimized model and explore additional 
reliability performance attributes based on the 
findings of this study. 
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