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ABSTRACT 

 
This study introduces an innovative approach, Adaptive Fish Swarm Optimization-Inspired Recurrent Neural 
Network (AFSO-RNN), to optimize sentiment interpretation of Coursera course reviews. The AFSO-RNN 
model combines the adaptive capabilities of fish swarm optimization with the power of recurrent neural 
networks. The recurrent neural network component processes the textual data of course reviews by capturing 
semantic meaning and context. It learns from sequential dependencies to extract relevant features for 
sentiment analysis. The adaptive fish swarm optimization component enhances the learning process of the 
recurrent neural network. Inspired by collective behaviour in fish swarms, it dynamically adjusts network 
parameters during training. The optimisation process explores and exploits optimal solutions by mimicking 
fish swarm movement and communication patterns, improving sentiment interpretation accuracy. Extensive 
experiments on a large dataset of Coursera course reviews demonstrate the superior performance of AFSO-
RNN compared to traditional sentiment analysis techniques. The model’s optimized sentiment interpretation 
provides valuable insights into learner sentiments, enabling informed decision-making for instructors, 
administrators, and learners regarding course selection and improvement. This research contributes to 
sentiment analysis in online learning environments by showcasing the effectiveness of the AFSO-RNN 
model. By combining recurrent neural networks with adaptive fish swarm optimization, AFSO-RNN offers 
a promising avenue for enhancing the accuracy and efficiency of sentiment analysis for Coursera course 
reviews 

Keywords:  Adaptive, Courseera, Fish Swarm optimization, Recurrent Neural Network, Sentiment Analysis, 
Optimization 

 
1. INTRODUCTION  
 

Online learning has disrupted traditional 
educational models, leveraging technological 
advancements to create an innovative and flexible 
learning ecosystem [1]. Through Learning 
Management Systems (LMS) and cloud-based 
platforms, online learning provides learners a wide 
range of educational resources, including 
multimedia content, e-books, and interactive 
learning modules. Incorporating Artificial 
Intelligence (AI) and machine learning algorithms 
within online learning platforms enables 
personalized learning experiences through adaptive 
assessments and intelligent tutoring systems [2]. 
Learners can receive immediate feedback, track their 

progress, and access supplementary materials 
tailored to their learning needs. The asynchronous 
nature of online learning allows for self-paced 
learning, granting learners the freedom to set their 
schedules and progress at their preferred speed. 
Online learning fosters a global community of 
learners, connecting individuals from different 
backgrounds, cultures, and geographic locations 
through virtual classrooms and online discussion 
forums [3]. The availability of massive open online 
courses (MOOCs) further democratizes education, 
making high-quality educational content accessible 
to a vast audience. Embracing online-learning 
empowers learners to develop digital literacy, 
adaptability, and lifelong learning skills required in 
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today’s rapidly evolving knowledge-based society 
[4]. 
 

In the digital age, where information is at 
our fingertips, understanding the sentiment behind 
textual data has become crucial. Sentiment analysis, 
also known as opinion mining, is a field that focuses 
on extracting emotions, attitudes, and opinions 
expressed in a text [5]. By applying computational 
techniques and machine learning algorithms, 
sentiment analysis enables us to analyse and 
interpret the sentiment conveyed in large volumes of 
text data. One of the primary applications of 
sentiment analysis is customer feedback analysis [6]. 
With the rise of e-commerce platforms and online 
reviews, businesses can collect valuable customer 
feedback. Sentiment analysis allows companies to 
automatically process and categorize this feedback, 
providing insights into customer satisfaction levels, 
common pain points, and areas for improvement. 
This information can guide businesses in enhancing 
their products, services, and overall customer 
experience [7]. Another significant application of 
sentiment analysis is in social media monitoring. 
Social media platforms serve as a rich source of 
public opinion and sentiment. By analysing tweets, 
posts, comments, and other user-generated content, 
sentiment analysis can help track public sentiment 
towards brands, events, or trending topics. This 
information is beneficial for marketers, advertisers, 
and decision-makers in understanding the public’s 
perception and tailoring their strategies accordingly 
[8]. 

Sentiment analysis also finds applications 
in political analysis and public policy making. 
Researchers and policymakers can gauge public 
opinion on policies, politicians, or societal issues by 
analysing sentiments expressed in news articles, 
blogs, or social media posts [9]. This insight can 
inform decision-making processes, help identify 
areas of concern, and facilitate more effective 
communication strategies. Sentiment analysis has 
implications for market research and competitive 
analysis. Businesses can gain valuable insights into 
consumer preferences, sentiment towards 
competitors, and emerging trends by analysing 
online reviews, forum discussions, or survey 
responses. This knowledge allows companies to 
adapt their marketing strategies, develop new 
products, and gain a competitive edge in the market 
[10]. As sentiment analysis techniques advance, 
researchers are exploring new dimensions, such as 
aspect-based sentiment analysis and emotion 
detection. Aspect-based sentiment analysis aims to 
identify sentiments towards specific aspects or 

features of a product or service, providing more 
granular insights. Emotion detection focuses on 
categorizing emotions expressed in text, enabling a 
deeper understanding of user experiences and 
reactions [11]. Bio-inspired optimization techniques 
are versatile and can be applied in various domains 
[12]–[16], including sentiment analysis, to achieve 
better results [17], [18], [27], [28], [19]–[26]. These 
techniques provide a means to enhance sentiment 
analysis performance by leveraging nature-inspired 
algorithms and adapting them to the specific 
requirements and characteristics of different 
domains, such as social media, product reviews, or 
customer feedback. Using bio-inspired optimization, 
sentiment analysis can be more accurate, robust, and 
adaptable to different textual data types. 
 
1.1. Problem Statement 

Negation and ambiguity present significant 
challenges in sentiment analysis, as they can lead to 
incorrect sentiment classification. Sentences 
containing negation, double negatives, or ambiguous 
expressions can completely reverse the sentiment 
expressed or introduce uncertainty. Existing 
sentiment analysis models often struggle to handle 
these linguistic complexities, resulting in erroneous 
sentiment predictions. This problem calls for 
developing advanced algorithms and techniques to 
accurately identify and handle negations, resolve 
ambiguities, and infer the correct sentiment in 
complex sentence structures. Overcoming the 
challenge of negation and ambiguity in sentiment 
analysis requires innovative approaches that can 
effectively capture the subtle linguistic cues and 
disambiguate sentiment expressions, leading to more 
reliable and precise sentiment classification. 
 
1.2. Motivation 

The motivation behind addressing the 
challenge of negation and ambiguity in sentiment 
analysis is to improve the precision and reliability of 
sentiment classification. We can avoid 
misinterpretations and erroneous sentiment 
predictions by developing advanced algorithms and 
techniques to accurately identify negations, resolve 
ambiguities, and infer the correct sentiment in 
complex sentence structures. This motivation arises 
from enhancing customer satisfaction by accurately 
capturing sentiments in customer feedback, 
improving sentiment analysis accuracy in social 
media monitoring, and providing more reliable 
insights to guide business strategies and decision-
making. 
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1.3. Objective 
Devise an advanced sentiment analysis 

algorithm that effectively identifies and handles 
negations, resolves ambiguities, and accurately 
infers the correct sentiment in complex sentence 
structures. This objective aims to enhance the 
precision and reliability of sentiment classification 
by mitigating the impact of linguistic complexities 
on sentiment analysis results. It involves developing 
techniques to accurately interpret sentiments 
expressed in negated sentences, double negatives, 
and ambiguous expressions, thereby avoiding 
misinterpretations and erroneous sentiment 
predictions. 

 Identify and handle negations, ambiguities, 
and complex sentence structures. 

 Enhance precision and reliability of 
sentiment classification. 

 Avoid misinterpretations and erroneous 
sentiment predictions. 

 
2. LITERATURE REVIEW  

. 
“Semantic Conceptualization” [29] 

involves representing text documents as a bag of 
concepts, where each concept is associated with a 
specific sentiment. The concepts are derived from 
semantic resources or domain-specific knowledge 
bases. The model captures the underlying sentiment 
expressed in the text by tagging the concepts with 
sentiment labels. This approach enables a more 
nuanced understanding of sentiment, focusing on 
concepts’ meaning and context rather than 
individual words. By leveraging tagged bag-of-
concepts, sentiment analysis models can provide 
more accurate and context-aware predictions, 
facilitating applications such as opinion mining, 
social media sentiment analysis, and customer 
feedback analysis. “Urdu Sentiment Analysis” [30] 
capture complex patterns and relationships in 
multimodal data. Fusing textual and non-textual 
information allows for more comprehensive 
sentiment analysis, considering linguistic and visual 
cues. This approach can be valuable in 
understanding sentiment in social media content, 
user reviews, or multimedia data in the Urdu 
language. By applying deep learning algorithms to 
multimodal data, Urdu sentiment analysis can 
provide insights into public opinion, customer 
feedback, and user experiences in various domains, 
aiding decision-making processes and enhancing 
user engagement. 
 

“Attention-Emotion-Enhanced 
Convolutional LSTM” [31] is a powerful model for 

sentiment analysis that combines attention 
mechanisms, emotion-enhanced features, and the 
Convolutional LSTM architecture. It effectively 
captures important text parts, incorporates emotional 
cues, and captures spatial and temporal 
dependencies in the data. This comprehensive 
approach improves sentiment analysis performance 
and can be applied to various tasks, including social 
media sentiment monitoring, customer feedback 
analysis, and opinion mining, providing a more 
accurate understanding of sentiment in textual data. 
“Broad Multitask Transformer Network” [32] 
employs a multitask learning approach, 
simultaneously handling various sentiment analysis 
subtasks, such as document-level, sentence-level, 
and aspect-level sentiment analysis. The model 
learns to generalize well across different sentiment 
analysis scenarios by joint training on multiple tasks. 
This multitask framework transfers shared 
knowledge and enhance the model’s overall 
performance. BMT-Net demonstrates promising 
results in sentiment analysis applications, providing 
a versatile and efficient solution for understanding 
sentiment in text data across multiple levels of 
granularity. 
 

“Dynamic Bayesian Network” [33] 
combines the flexibility of Bayesian networks with 
the ability to capture temporal dynamics in sentiment 
and topic transitions. The DBN model considers the 
dependencies between topics and sentiments over 
time, allowing for the exploration of how sentiments 
change within different topics or themes. The DBN 
approach comprehensively explains the evolving 
relationships between topics and sentiments by 
incorporating dynamic factors, such as time intervals 
and sequential patterns. This enables researchers and 
analysts to track sentiment shifts, identify emerging 
trends, and gain insights into the evolution of public 
opinion in various domains, such as social media, 
customer reviews, or political discourse. The DBN 
approach offers a valuable tool for studying the 
complex dynamics of topic-sentiment relationships 
and their evolution over time. “Efficient Adaptive 
Transfer Network” [34] focuses on effectively 
transferring knowledge across different domains or 
tasks to enhance performance. EATN employs an 
adaptive transfer learning approach that dynamically 
adjusts the transferability of knowledge from source 
domains to target domains based on their 
similarities. This adaptive mechanism allows the 
model to leverage relevant information while 
mitigating the adverse effects of domain differences. 
EATN performs aspect-level sentiment analysis 
tasks better by efficiently utilizing transfer learning, 
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particularly in scenarios with limited labelled data. 
This model provides a valuable solution for 
sentiment analysis in various domains, allowing for 
efficient knowledge transfer and better utilization of 
available resources. 

 
“Supervised Machine Learning-Based 

Sentiment Analysis” [35] approaches consider 
various factors such as domain, dataset 
characteristics, and feature representations to 
provide a more accurate prediction. By analysing the 
context in which the sentiment analysis model will 
be applied, such as social media, customer reviews, 
or news articles, contextual-based approaches can 
account for the specific challenges and nuances of 
the target domain. This enables researchers and 
practitioners to make informed decisions regarding 
model selection, feature engineering, and 
hyperparameter tuning, improving sentiment 
analysis performance. “Deformable CNN and 
Attention” [36] addresses the challenges of 
capturing aspect-specific information and modelling 
the relationships between aspects and sentiment 
expressions in the text. By using deformable CNNs, 
ADeCNN effectively captures local context and 
aspect-specific features, allowing for more precise 
sentiment analysis at the aspect level. Incorporating 
attention mechanisms further improves the model’s 
ability to focus on essential aspects and sentiment-
bearing words within the text. ADeCNN provides a 
robust solution for aspect-level sentiment analysis, 
offering improved accuracy and capturing fine-
grained sentiment information.  
 

“Affective Knowledge Augmented 
Interactive Graph Convolutional Network” [37] 
incorporates affective knowledge, such as emotion 
lexicons or sentiment intensifiers, to enhance 
sentiment analysis in Chinese text. Leveraging 
interactive graph convolutional networks effectively 
captures the contextual relationships between 
aspects and sentiments, considering both syntactic 
and semantic dependencies. This interactive graph-
based approach allows the model to learn and 
propagate sentiment information through the aspect-
sentiment graph, enabling a more comprehensive 
understanding of aspect-level sentiment in Chinese 
text. It demonstrates superior performance in 
capturing fine-grained sentiment nuances. It is a 
valuable tool for aspect-based sentiment analysis in 
Chinese language applications, such as product 
reviews, social media content, or customer feedback 
analysis. “Multitask Multiview Neural Network” 
[38] addresses multiple subtasks within the 
sentiment analysis process, such as aspect extraction 

and sentiment classification, in a unified framework. 
By leveraging multi-view representations, which 
incorporate multiple perspectives or modalities of 
the input data, the model captures a more 
comprehensive understanding of the aspects and 
their associated sentiments. The multitask paradigm 
enables shared learning across subtasks, enhancing 
the model’s performance and generalization 
capabilities. This approach allows for a holistic 
analysis of aspect-based sentiment, enabling more 
accurate and nuanced sentiment analysis results. The 
multitask multi-view neural network is a valuable 
tool for extracting and analysing sentiments towards 
specific aspects in various domains, including 
product reviews, social media discussions, and 
customer feedback analysis. 
 

“Naive Bayes Classification Algorithm 
(NBCA)” [39] is widely utilized in sentiment 
analysis, but it has certain limitations to be mindful 
of. A fundamental assumption of NBCA is feature 
independence, which may not hold in real-world text 
data. This oversimplification can limit its ability to 
capture complex sentiment patterns accurately. 
Additionally, NBCA treats all features equally, 
disregarding the varying impact of different words 
or phrases on sentiment. This may result in the 
suboptimal weighting of feature importance. The 
assumption of feature independence may lead to 
misclassifications when sentiment depends on 
contextual or interactive effects between features. 
Despite these limitations, NBCA can still generate 
valuable results in many sentiment analysis tasks, 
especially in more uncomplicated cases or as a 
baseline approach. It is essential to understand the 
assumptions and considerations of NBCA when 
applying it to sentiment analysis and to evaluate its 
performance against other algorithms in more 
complex scenarios. “Random Forest Classification 
Algorithm (RFCA)” [40] is a versatile machine 
learning algorithm that offers several advantages for 
sentiment analysis. RFCA can handle both 
numerical and categorical text features, allowing 
effective processing of textual data by encoding it 
into numerical representations. RFCA excels at 
detecting complex feature interactions, enabling it to 
capture nuanced sentiment patterns that rely on 
combinations of words and phrases. RFCA also 
provides feature importance measures, facilitating 
feature selection and guiding analysts to focus on the 
most influential factors for sentiment prediction. 
With its ability to handle text data, capture feature 
interactions, and offer insights into feature 
importance, RFCA enhances sentiment analysis by 
providing accurate predictions and valuable 
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interpretability, making it an indispensable tool for 
sentiment analysis practitioners. 
 
3. ADAPTIVE FISH SWARM 

OPTIMIZATION-INSPIRED 
RECURRENT NEURAL NETWORK 
(AFSO-RNN) 

 
3.1. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) offer 
distinct advantages over primary neural networks 
like Multi-Layer Perceptions (MLPs) due to their 
ability to process information in both forward and 
backward directions. RNNs can store and utilize 
information temporarily by iterating through various 
layers. At each time step 𝑖, the RNN performs two 
primary operations: hidden state update and output 
calculation. The hidden state denoted as ℎ௜ , is 

computed by applying an activation function 𝜎 to a 

combination of the current input 𝑝௜ and the previous 

hidden state ℎ{௜ିଵ}. This operation can be expressed 
as Eq.(1). 

ℎ௜ = 𝜎൫𝑤௛௛ ∗ ℎ{௜ିଵ} + 𝑤௛௣ ∗ 𝑝௜

+ 𝑏௛൯ 
(1) 

where 𝑤௛௛ represents the weight matrix for the 

hidden-to-hidden connections, 𝑤௛௣ represents the 
weight matrix for the input-to-hidden connections, 
and 𝑏௛ represents the bias vector for the hidden 
state. 
 

Once the hidden state is updated, the RNN 
calculates the output 𝑙௜ bypassing the hidden state ℎ௜  

through a typical neural network represented by 𝑇𝑇, 
which can be written as Eq.(2): 

𝑙௜ = 𝑇𝑇(ℎ௜) (2) 

where 𝑇𝑇 denotes the function that computes the 
output based on the hidden state. 
 

The RNN can process the input sequence in 
either the forward or backward direction. Forward 
processing involves sequentially calculating the 
hidden states and outputs from time step 1 to 𝑚. 
Conversely, backward processing computes the 
hidden states and outputs in reverse order, from time 
step 𝑚 to 1. RNNs are categorized as deep neural 
networks because they can process information 
across multiple layers. However, a challenge they 
face is the vanishing gradient problem, which 
hinders their performance in handling long-term 
dependencies. Alternative RNN architectures such 

as Long-Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) have been developed to 
overcome this issue, introducing specialized 
mechanisms to mitigate the vanishing gradient 
problem. To train the sRNN (Simple RNN) model, a 
technique called forward-backwards propagation 
(FFP) is employed. FFP, commonly used in MLPs, 
is adapted to the context of sRNN by extending the 
process over multiple time steps. The formulation 
for the FFP process in the sRNN can be described as 
follows: 

 
Considering the input value 𝑝௠, which 

serves as the input to the sRNN model, the input 
layer (represented by 𝑝௠) is connected to the current 

hidden layer (represented by 𝑛௟௣) through 
connection weights. Similarly, the connection 
weight between the present hidden layer and the next 
hidden layer is denoted as 𝑛௟௟ . The connection 
strength between the last hidden layer and the output 
layer is given by 𝑛௟௤ . The biases implemented in the 
links between the hidden layer and the result layer 
are represented by 𝑚௟ and 𝑚௤ . At time step 𝑚, the 

output can be expressed as 𝑙௠. In this context, the 
sRNN can be mathematically formulated as Eq.(3) 
to Eq.(5). 

𝑙௠ = 𝑗(𝑙௠ିଵ, 𝑝௠) (3) 

𝑙௠ = 𝑗൫ൣ𝑛௟௣. 𝑝௠ + 𝑛௟௟ . 𝑝௠ିଵ൧

+ 𝑣௟൯ 
(4) 

𝑞ത௠ = 𝑗൫ൣ𝑛௟௣. 𝑝௠ + 𝑛௟௟. 𝑝௠ିଵ൧

+ 𝑣௟൯ 
(5) 

where 𝑗 denotes the activation function that 
combines the inputs, weights, and biases to compute 
the output, and the symbol * represents the 
multiplication operation. 
 

The predicted result is represented by 𝑞ത௠in 
the given context. This formulation illustrates how 
the sRNN processes the input at each time step, 
updating the hidden state and calculating the output 
based on the current and previous inputs and their 
corresponding connection weights and biases. It is 
important to note that the specific form of the 
activation function 𝑗 and the definitions of the 

variables, such as 𝑛௟௣, 𝑛௟௟ , 𝑛௟௤ , 𝑣௟ , 𝑚௟ and 𝑚௤  can 
vary depending on the specific implementation and 
variations of the sRNN model. The training of the 
sRNN involves a sequential process where, at each 
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time step 𝑚, the error (𝐻) between the predicted 

output values (𝑞ത௠) and the valid output values 

(𝑞௠) is calculated. In machine learning 
terminology, this error is commonly referred to as 
the loss and is denoted as 𝑍. The primary objective 

of the training process is to minimize 𝑍, indicating 
that an ideal model would exhibit significantly 
reduced loss. To quantify the overall loss produced 
by training a single set of data starting from time step 
1 to 𝑇, Eq.(6) is applied. 

𝑍(𝑞ത௠, 𝑞) = ෍ 𝑍(𝑞ത௠, 𝑞௠)

்

௠ୀଵ

 (6) 

where 𝑇 represents the maximum duration of the 
training process, indicating the number of time steps 
considered during training. The sum over m 
indicates that the loss at each time step is 
accumulated to compute the overall loss. 
 

One challenge sRNN encounter during 
training is the vanishing gradient problem or the 
gradient explosion issue. These issues tend to arise 
as the size of the dataset increases and as the training 
duration 𝑇 extends. The vanishing gradient problem 
refers to the phenomenon where the gradients used 
for updating the network’s parameters diminish 
exponentially as they propagate back through time. 
This can result in slower convergence or difficulty in 
capturing long-term dependencies. On the other 
hand, the gradient explosion occurs when the 
gradients grow exponentially, leading to unstable 
training and divergence. The vanishing gradient and 
gradient explosion problems are particularly relevant 
to sRNN due to their recurrent nature and the 
repeated application of weight matrices and 
activation functions over multiple time steps. 
Researchers have developed alternative RNN 
architectures, such as LSTM and GRU, 
incorporating specialized gating mechanisms to 
alleviate these gradient-related issues and improve 
training stability. 
 

As the size of the dataset increases, or the 
training duration extends, the vanishing gradient and 
gradient explosion problems become more 
pronounced. Researchers continue to explore 
advanced optimization techniques, weight 
initialization strategies, and architectural 
modifications to address these challenges and 
improve the training efficiency and effectiveness of 
sRNNs. Considering the variable 𝑍, which 

represents the loss (𝐻) produced by a batch of data 

𝑉 within the given training period 𝑇, the partial 

derivative of the loss concerning a specific weight 𝑁 
can be calculated. This is expressed in Eq.(7). 

𝜀𝑍

𝜀𝑁
= ෍

𝜀𝑍௠

𝜀𝑁

்

௠ୀଵ

 (7) 

 
Eq.(7) signifies that the derivative of the 

overall loss 𝑍 concerning a particular weight 𝑁 is 
the sum of the derivatives of the loss at each time 

step, denoted as 
ఌ௓೘

ఌே
, for m ranging from 1 to 𝑇.To 

simplify Eq.(7), we can apply the chain rule of 
differentiation. The reformulation is achieved as 
Eq.(8). 

𝜀𝑍

𝜀𝑁
= ෍

𝜀𝑍௠

𝜀𝑞௠

𝜀𝑞௠

𝜀𝑙௠

𝜀𝑙௠

𝜀𝑞௧

𝜀𝑞௧

𝜀𝑁

்

௠ୀଵ

 (8) 

where  

 
ఌ௓೘

ఌே
 represents the partial derivative of the 

loss at time step m concerning the predicted 
output 𝑞௠. This derivative quantifies the 

impact of a small change in 𝑞௠ on the 
overall loss. It reflects how errors in the 
prediction at a specific time step contribute 
to the overall loss. 

 
ఌ௤೘

ఌ௟೘
 denotes the derivative of the predicted 

output 𝑞௠ concerning the hidden state 𝑙௠ 
at the same time step. This derivative 
capture how changes in the hidden state 
affect the predicted output. It demonstrates 
how information flows through the 
network, connecting the hidden and output 
states. 

 
ఌ௟೘

ఌ௤೟
 symbolizes the derivative of the hidden 

state 𝑙௠ at time step m concerning the 

hidden state 𝑞௧ at a later time step 𝑡. This 
term illustrates the ability of the sRNN to 
retain and propagate information across 
time. It reveals how the hidden state at a 
particular time step influences the hidden 
state at a later time step. 

 
ఌ௤೟

ఌே
 represents the derivative of the hidden 

state 𝑞௧ at time step 𝑡 for the weight 𝑁. 
This term quantifies the impact of a change 
in weight 𝑁 on the hidden state 𝑞௧. It 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2938 

 

demonstrates how weights affect the hidden 
state and, subsequently, the overall 
prediction of the sRNN. 

 
By considering all these terms together, 

Eq.(8) showcases the flow of gradients through the 
sRNN during the training process. The derivative of 
the loss for a particular weight 𝑁 accumulates 
contributions from various factors, including the 
prediction error at each time step, the relationship 
between the hidden state and the predicted output, 
and the propagation of information across time steps. 

 
Understanding these gradient dependencies 

is crucial for tackling challenges like the vanishing 
gradient problem and optimizing the training of 
sRNNs. Researchers have developed techniques 
such as gradient clipping, which limits the 
magnitude of gradients, and initialization strategies, 
to alleviate gradient-related issues. Additionally, 
advancements like LSTM and GRU architectures, 
incorporating specialized gating mechanisms, have 
effectively mitigated the vanishing gradient problem 
and captured long-term dependencies. Continuous 
exploration and development of techniques to 
improve gradient flow and address the challenges 
inherent in training sRNNs are essential for 
enhancing their performance and enabling them to 
model and learn from sequential data effectively. 
 

Eq.(9) highlights the dependence of the 
hidden state at time 𝑚 on the hidden state at a later 

time 𝑡. The derivative expresses this 
ఌ௟೘

ఌ௟೟
. This 

derivative capture how changes in the hidden state at 
time m affect the hidden state at time 𝑡. To 
understand this relationship, Eq.(9) involves the 
utilization of the Jacobian matrix, which represents 
the derivative of the hidden state at time 𝑚 for the 

hidden state at time 𝑡. The Jacobian matrix can be 
decomposed into a sequence of derivatives, as 
shown in Eq.(9): 

 
ఌ௟೘

ఌ௟೟
=

ఌ௟೘

ఌ௟೘షభ

ఌ௟೘షభ

ఌ௟೘షమ
…

ఌ௟೟శభ

ఌ௟೟
=

∑
ఌ௟ೞ

ఌ௟ೞషభ

௠
௦ୀ௧ାଵ  

(9) 

 
In Eq.(9), the summation over 𝑠 from 𝑡 +

1 to m indicates that the derivative of the hidden 

state at time 𝑠 concerning the hidden state at the time 

(𝑠 − 1) is accumulated. This demonstrates the 
progressive impact of each hidden state on the 
following hidden states in the sequence, allowing 

information to flow through time steps. By 
combining Eq.(7) and Eq.(9), an Eigen 
Decomposition Vector (EDV) can be obtained, 
represented as Eq.(10). 

𝐸𝐷𝑉 = 𝑁ி𝑑𝑖𝑎𝑔[𝑗ᇱ(𝑙௠ିଵ)] (10) 

 
In Eq.(10), 𝑁 represents the weight matrix, 

𝐹 represents the activation function, ‘𝑗’ represents 

the derivative of the activation function, and 𝑙(௠ିଵ) 

represents the hidden state at the time (𝑚 − 1). 
The EDV represents the eigenvalues and 
eigenvectors associated with the hidden state 
dynamics. It characterizes how the hidden state 
evolves and the impact of the weight matrix and 
activation function on this evolution. 
 

The Eigen Decomposition Vector (EDV) 
provides valuable insights into the dynamics of the 
sRNN and its ability to capture and process 
sequential information. By analyzing the 
eigenvalues and eigenvectors, researchers 
understand the network’s behavior, stability, and 
capacity to capture long-term dependencies. 
Expanding the equations mentioned above and 
considering the Eigen Decomposition Vector 
contribute to the technical understanding of how the 
hidden states in an sRNN are interconnected and 
how information is propagated and processed over 
time. These insights aid in developing more efficient 
training strategies and architectural modifications to 
improve the performance and effectiveness of sRNN 
in modelling and learning from sequential data. 
 

The eigenvalues generated by the EDV are 
denoted as ∋ଵ, ∋ଶ, ∋ଷ, … . . ∋௧, where each 
eigenvalue corresponds to its respective eigenvector: 
ℎ𝑟ଵ, ℎ𝑟ଶ, ℎ𝑟ଷ … . . , ℎ𝑟௧. The eigenvalues and 
eigenvectors provide insights into the behavior and 
characteristics of the sRNN. The constraint |∋ଵ| >
|∋ଶ||∋ଷ| … |∋௧| indicates that the largest 

eigenvalue ∋௦ has the most significant influence on 
the dynamics of the system. This constraint 
highlights the importance of the largest eigenvalue 
in determining the stability and behavior of the 
sRNN. Specifically, when ∋௦ is less than 1, a 

vanishing gradient problem may occur, and when ∋௦ 
is greater than 1, an exploding gradient problem may 
arise. These gradient-related issues can hinder the 
training process and affect the network’s ability to 
learn from sequential data effectively. 
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To address the challenges posed by the 
vanishing and exploding gradient problems, 
alternative RNN architectures like LSTM and GRU 
were developed. These architectures incorporate 

specialized mechanisms to capture better and 
preserve long-term dependencies and mitigate 
gradient-related issues. Eq.(11) represents the 
information flow within an LSTM architecture. 

𝐿𝑆𝑇𝑀 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑗௠ =∈ ൫𝑁௝ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௝൯

𝑎௠ =∈ (𝑁௔. [𝑟௠ିଵ, 𝑝௠] + 𝑣௠)

𝐸௠
ᇱ = 𝑡𝑎𝑛ℎ(𝑁௘ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௘)

𝐸௠ = 𝑗௠ ∗ 𝐸௠ିଵ + 𝑚௙ ∗ 𝐸௠
ᇱ

𝑏௠ =∈ (𝑁௕ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௕)

𝑟௠ = 𝑏௠ ∗ 𝑡𝑎𝑛ℎ(𝐸௠),

 (11) 

where 
 𝑗௠ represents the input gate, which controls 

the flow of information from the input p_m 
and the previous hidden state 𝑟(௠ିଵ) into 
the current hidden state. 

 𝑎௠ represents the forget gate, determining 
how much the previous hidden state should 
be forgotten. 

 𝐸௠
ᇱ  represents the candidate memory cell 

that stores new information from the input 
and the previous hidden state. 

 𝐸௠ represents the current memory cell, 
which is a combination of the previous 
memory cell 𝐸(௠ିଵ) and the candidate’s 

memory cell 𝐸௠
ᇱ  weighted by the forget 

gate 𝑚௙ . 

 𝑏௠ represents the output gate, which 
regulates the output from the current 
memory cell. 

 𝑟௠ represents the hidden state, which is the 
output of the LSTM cell and is computed as 
the element-wise product of the output gate 
𝑏௠ and the hyperbolic tangent of the 

current memory cell 𝐸௠. 
 

Eq.(9) define the computations performed 
within an LSTM cell, facilitating the capture and 
management of long-term dependencies in 
sequential data. By incorporating specialized 
mechanisms and computations like those defined in 
Eq.(9) for LSTM or Eq.(11) for GRU, these 
architectures offer improved gradient flow, 
enhanced memory retention, and better handling of 
sequential information compared to standard sRNN. 
The continuous advancement and exploration of 
such architectures aim to overcome the limitations of 
sRNN and enable more effective modelling and 
learning from sequential data. 
 
 In the context of the LSTM unit, the term 𝐸 
refers to the cell state. Two activation functions 
facilitate computation: the hyperbolic tangent and 
the Sigmoid. The hyperbolic tangent is defined as 

𝑡𝑎𝑛ℎ(𝑑) =
ଵି௛షమ೏

ଵା௛షమ೏
, while the Sigmoid function 

is represented by ∈ (𝑑) =
ௗ

ଵା௛ష೏
. The input vector 

is denoted as 𝑝, and the output vector is represented 

by 𝑟. Additionally, 𝑁 and 𝑣 are used to symbolize 
the weights and their associated biases in the LSTM 
unit. 

𝐺𝑅𝑈 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 

⎩
⎨

⎧
𝑎௠ =∈ (𝑁௔. [𝐸௠ିଵ, 𝑝௠] + 𝑝௠)

𝑖௠ =∈ (𝑁௜ . [𝐸௠ିଵ, 𝑝௠])

𝐸௠
ᇱ = 𝑡𝑎𝑛ℎ(𝑁. [𝑖௠ ∗ 𝐸௠ିଵ, 𝑝௠])

𝐸௠ = (1 − 𝑎௠) ∗ 𝐸௠ିଵ + 𝑎௠ ∗ 𝐸௠
ᇱ ,

 

 

(12) 

In the given scenario, the input vector is represented 
as 𝑝, and the computed prediction is denoted as 𝐸௠. 

The update function is symbolized by 𝑎௠, while the 

associated weight is defined as 𝑁. The GRU, like the 
LSTM in Eq.(11), uses hyperbolic tangent and 

Sigmoid activation functions to achieve efficient 
data compression. 
 
 
 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2940 

 

Algorithm 1: Recurrent Neural Network 
(RNN) 

Input: 
 trainingdata: The training data for the 

RNN. 
 numepochs: The number of epochs to 

train the RNN. 
 learningrate: The learning rate for 

updating the RNN weights. 
 hiddensize: The number of hidden units 

in the RNN. 
 numlayers: The number of layers in the 

RNN. 
 batchsize: The size of each training 

batch. 
 
Output: 

 trainedrnn: The trained RNN model. 
 
Procedure: 

Step 1: Initialize the RNN model with 
random weights: 
Create an RNN with numlayers 
layers and hiddensize hidden units 
per layer. 
Initialize the weights randomly. 

Step 2: Split the training data into batches 
of size batchsize. 

Step 3: Repeat the following steps for 
numepochs: 
a. Shuffle the training batches. 
b. For each batch in the shuffled 

training batches: 
 Reset the hidden state of 

the RNN. 
 For each input sequence 

in the batch: 
 Forward pass: 

 Pass the input 
sequence through the 
RNN to obtain the 
predicted output. 

 Compute the loss 
between the predicted 
output and the target 
output. 

 Backward pass: 
 Compute the 

gradients of the loss 
concerning the RNN 
parameters. 

 Update the RNN 
weights using an 
optimizer (e.g., 

stochastic gradient 
descent) and the 
computed gradients. 

c. Print the average loss over all 
batches for the current epoch. 

Step 4: Return the trained RNN model. 
 

The computational complexity is one 
significant challenge when applying RNN for 
training on a huge dataset. With a large dataset, the 
sheer number of data points and the length of each 
sequence can dramatically increase the 
computational requirements for training the RNN. 
The forward and backward passes, involving 
numerous matrix operations, become 
computationally expensive and time-consuming. 
This challenge often necessitates the utilization of 
specialized hardware or distributed computing 
setups to handle the computational load efficiently. 
Moreover, the increased complexity can lead to 
longer training times, making it more difficult to 
iterate and experiment with different architectures or 
hyperparameters. Addressing this challenge requires 
careful optimization and resource allocation to 
efficiently process the vast amount of data during 
training. 

 
Adaptive Fish Swarm Optimization 

(AFSO) offers a promising approach to overcoming 
the computational challenges of training a Recurrent 
Neural Network (RNN) on a huge dataset. AFSO 
employs a population-based optimization technique 
inspired by the collective behavior of fish. By 
simulating the movement and interaction of fish 
within a search space, AFSO can efficiently explore 
and exploit the dataset, enabling the identification of 
optimal RNN parameters. The algorithm’s adaptive 
nature allows it to dynamically adjust its search 
strategy based on the evolving characteristics of the 
dataset, leading to improved convergence and 
reduced computational burden. By harnessing the 
power of swarm intelligence, AFSO offers a scalable 
and efficient solution for training RNNs on large 
datasets, enabling researchers and practitioners to 
effectively tackle the computational challenges and 
unleash the full potential of their data. 

 
3.2. Adaptive Fish Swarm Optimization (AFSO) 

AFSO mimics fish behaviour such as 
searching, swarming, and following to optimize the 
search domain; this is a specialized use of the swarm 
intelligence approach. It can quickly converge on a 
solution and is capable of organizing itself. The 
AFSO first produces a school of artificial fish, each 
using three behaviours to construct its local solution, 
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before the school’s self-organized system exchanges 
data and arrives at the global solution. 
 
3.2.1. FSO Preliminaries 

The settings of a standard FSO are initially 
set with a school of simulated fish. Take into account 
a hypothetical artificial fish, 𝑃 =
(𝑃ଵ, 𝑃ଶ, … . , 𝑃௧), and a fitness function, 𝐺(𝑃), 
which stands for the concentration of food at a 
particular place. Artificial fish sense a distance of 𝑃௦, 

move in steps of 𝑌௦௪ = |𝑃௦ − 𝑃௪|, seek 
exclusively within a volume of space equal to or 
smaller than their vision, and take 𝜃 steps per 
second. There are three main ways in which fish 
strive to select the spot that can provide for their 
nutritional demands. 
 
(a). Searching 

Finding what you’re looking for is one of 
the most fundamental animal behaviours. In its 
pursuit of sustenance, an artificial fish will 
continually go toward a dense concentration within 
its field of vision. Ai fish can detect where there is a 
high concentration of food inside their optical field, 
and they will swim to that location. Searching is a 
random search with a bias towards locations with 
abundant food sources. It can be mathematically 
expressed as Eq.(13) and Eq.(14). 

𝑃௡௘௫௧

= 𝑃௦

+ 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃௪ − 𝑃௦

‖𝑃௪ − 𝑃௦‖
, 𝐺(𝑃𝑤)

> 𝐺(𝑃𝑠) 

(13
) 

𝑃௡௘௫௧

= 𝑃௦ + 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝, 𝐺(𝑃𝑤)
≤ 𝐺(𝑃𝑠) 

(14
) 

where 𝑃𝑠 represents the location of a robotic fish, 

𝐺(𝑃𝑠) represents the concentration of food, and 

𝑅𝑎𝑛𝑑() is a random number between 0 and 1. The 
fish’s visual range is incremented to a new random 
point 𝑃𝑤. When the condition 𝐺(𝑃𝑤) > 𝐺(𝑃𝑠) 
holds, the fish advances one position in the direction 
of 𝑃𝑤, to 𝑃 next. When Eq.(13) and Eq.(14) fail, a 
random step is taken within the observable range 
𝐺(𝑃𝑤) ≤ 𝐺(𝑃𝑠) holds. 
 
(b). Swarming 

Fish often travel in schools or swarms. Fish 
have developed to the point where schools form near 
large food concentrations. Each artificial fish needs 
to be as near to the centre of the school as possible, 

with as little space between them as feasible. This 
swarming behaviour is expressed in Eq.(15). 

𝑃௡௘௫௧

= 𝑃௦ + 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃௎ − 𝑃௦

‖𝑃௎ − 𝑃௦‖
, 

𝐺(𝑃௎) > 𝐺(𝑃𝑠)𝑎𝑛𝑑 
𝑡𝑒

𝑡
< 𝜃 

(15) 

where 𝑃௎ is the position of the centre of a fish 

swarm, 𝐺(𝑃௎) is the concentration of food, and 𝑡௘  

is the total number of people visible at 𝑃௎. If 

𝐺(𝑃௎) > 𝐺(𝑃௦) and 𝑡𝑒
𝑡ൗ < 𝜃, the fish travels to 

the centre location 𝑃௎ because it is less congested 
and has a more tremendous amount of food than the 
present place 𝑃௦. If not, the fish is moved to a new 
spot using a searching behaviour. 
 
(c). Following 

The action that follows is directed. When 
one fish is near a lot of food, its neighbours will rush 
to join it. Each artificial fish must swim to a location 
with a denser concentration of food, away from any 
potential competition. Eq.(16) express the following 
behaviour of artificial fish. 

𝑃௡௘௫௧

= 𝑃௦

+ 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃𝑚𝑎𝑥 − 𝑃௦

‖𝑃𝑚𝑎𝑥 − 𝑃௦‖
, 𝐺(𝑃 

> 𝐺(𝑃𝑠) 𝑎𝑛𝑑
𝑡𝑒

𝑡
< 𝜃 

(16
) 

 
A school of fish’s optimal location is 

denoted by 𝑃௠௔௫ , and the concentration of food 

available to it is given by 𝐺(𝑃௠௔௫). Higher food 
concentration and reduced crowding at 
𝐺(𝑃 𝑚𝑎𝑥) > 𝐺(𝑃𝑠) and 𝑡𝑒/𝑡 < 𝜃 means that 

𝑃௠௔௫  is in good condition and will advance one step 

towards 𝑃௠௔௫ . Otherwise, the fish will engage in a 
searching behaviour to figure out where it should go 
next. 
  

On top of that, AFSO needs to publish a 
bulletin that keeps track of the ideal location and 
fitness of artificial fish throughout time. After acting, 
each fish updates the bulletin and checks its status 
against the overall average. If the fish’s present 
condition is better than what was stated in the 
bulletin, the value will be changed. The optimal 
solution, the optimal state and the fitness on the 
bulletin should be produced at the end of the 
procedure.  
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FSO is generally advantageous because of 

its quick search for a feasible solution range, high 
resilience, low sensitivity to beginning conditions, 
and fast convergence time. It works well for 
addressing optimization issues that need a high 
degree of precision. Later in the AFSO’s time frame, 
it may experience a sluggish convergence rate and 
be trapped in a restricted accuracy. This paper 
proposes a modified AFSO method to address these 
issues. 

 
3.2.2. AFSO 

This paper presents a new version of AFSO 
to enhance its convergence speed and accuracy. A 
better AFSO is based on the following ideas: The 
artificial fish’s vision field and step size are initially 
under the control of an adaptive function so that 
convergence speed and accuracy may be considered. 
With more iterations, the moving step size and the 
artificial fish’s vision shrink. Second, the artificial 
fish’s swarming and following behaviour’s 
movement strategy is enhanced to speed up 
convergence. No consideration is given to 
congestion, and the propensity to search has been 
turned off. Third, This research enhances the 
algorithm’s searching behaviour to boost efficiency. 
If a better option is not identified, the robotic fish 
will attempt again using its improved vision and 
more significant steps. Finally, an explanation for 
how species go extinct and recover is offered. At the 
end of each cycle, the least suitable artificial fish 
would be eliminated, and a new, more flexible 
artificial fish would be created to maintain 
population health. 

 
(a). Adaptive Moving and Visual 

The investigation of the fundamental AFSO 
showed that the algorithm’s convergence is 
significantly impacted by the visual appearance of 
artificial fish and the maximum step size of the 
algorithm. A consistent setting for the sight and the 
step might lead to an unwanted extreme. Larger 
visual and step sizes early in AFSO may hasten to 
swarm and following behaviour convergence, 
allowing artificial fish to quickly converge to the 
local and global optimum position within a few 
repetitions. Later, as both visual and step sizes are 
reduced, searching behaviour becomes more 
common. The artificial fish that swam around the 
outlier precisely pinpointed the position of the 
neighbouring outlier, allowing them to zero in on the 
best possible value. 

 

 To guarantee quick convergence and a 
good solution, gradually decreasing the artificial 
fish’s visual and step size is essential. This research 
provides a new technique based on a piecewise 
adaptive function for modifying the appearance and 
the size of the steps taken by artificial fish. This 
makes it possible for the size and visibility of the 
steps to improve with increasing iteration count. Size 
adaptive steps and visualization are mathematically 
expressed in Eq.(17) and Eq.(18). 

𝑣𝑖𝑠𝑢𝑎𝑙

= 𝑀𝑎𝑥_𝑅. 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(𝑀𝑖𝑛ோ/𝑀𝑎𝑥_𝑅)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)
 

(17
) 

𝑠𝑡𝑒𝑝

= 𝑀𝑎𝑥ா . 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(𝑀𝑖𝑛_𝐸/𝑀𝑎𝑥_𝐸)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)
 

(18
) 

wherein 𝑀𝑎𝑥_𝑅 and 𝑀𝑖𝑛_𝑅 denote the most 

major and most minor possible steps and 𝑀𝑎𝑥_𝐸 

and 𝑀𝑖𝑛_𝐸denote the most extensive and smallest 
possible visual value. To improve the artificial fish’s 
search capabilities, it is possible to raise the values 
of 𝑀𝑎𝑥_𝑅 and 𝑀𝑖𝑛_𝑅 because the function has 
fast initial decay of parameters due to a power-law 
decay curve. 
 
 The artificial fish in the fish swarm-based 
attribute reduction approach is a binary sequence. 
Artificial fish are kept at a distance that is a multiple 
of 1 times the weighted average distance between 
them. That’s why both the step size and the visual 
must be whole numbers in the programme. Attribute 
reduction in a neighbourhood rough set using AFSO 
is performed with a step size of 1 and a visual 
threshold of 1. Eq.(19) and Eq.(20) express the same. 

 𝑣𝑖𝑠𝑢𝑎𝑙 =

𝑖𝑛𝑡 ቀ𝑀𝑎𝑥_𝑅. 𝑖𝑡𝑒𝑟
௟௢௚(ଵ/ெ௔௫_ோ)

௟௢௚(ெ௔௫_௚௘௡)
ቁ 

(19
) 

𝑠𝑡𝑒𝑝

= 𝑖𝑛𝑡 ቆ𝑀𝑎𝑥_𝐸. 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(1/𝑀𝑎𝑥_𝐸)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)
ቇ

(20
) 

 
(b). Adaptive Swarming and Following Actions 

The swarming and following behaviours 
affect the convergence rate in the artificial fish 
swarm approach. In the search area, the artificial fish 
swim in schools following one another. The artificial 
fish can quickly advance to a near-extreme position 
by moving towards the group’s core, where higher-
fitness partners are likely to be found. Artificial fish 
will engage in swarming behaviour and go to the 
centre of the group if it determines that the 
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conditions there are better than the present place and 
the centre is not excessively crowded. 
 
 When the distance 𝑦௦,௨ = |𝑃௨ −

𝑃௦|among the centre point of all the partners (𝑃௎)  
within visual and the current position of the artificial 

fish(𝑃௦) is between visual and step ൫𝑠𝑡𝑒𝑝 <

𝑦௦,௨ < 𝑣𝑖𝑠𝑢𝑎𝑙൯, the artificial fish must make a 
large number of motions to reach the centre position. 
In addition to slowing down the algorithm’s 
convergence rate, this might cause the artificial fish 
to end up at a local extreme position in its motions. 
This swarming behaviour improves the moving step 
size, as shown in Eq.(21). 

 𝑠𝑡𝑒𝑝 = 𝑅𝑎𝑛𝑑(). |𝑃𝑈 −
𝑃𝑠| 

(21) 

where 𝑅𝑎𝑛𝑑() is provided to prevent the swarming 
tendency from settling on the local extreme, 
modifying the swarm’s movement step can increase 
the algorithm’s convergence speed. 
 
 The parameter study of the artificial fish 
swarm technique reveals that it is challenging to 
guarantee both resolution speed and accuracy using 
the crowding factor. For neighbourhood rough set 
attribute reduction, just the best reduction subset is 
needed (i.e., the best place to release a school of 
artificial fish). As a result, the density factor is not 
considered during the attribute reduction of the 
neighbourhood rough set using the refined fish 
swarm. If the partner’s central location in the visual 
field has more excellent fitness than the present 

position, as determined by ൫𝐺(𝑃௎) > 𝐺(𝑃௦)൯, the 
artificial fish will take one step in the direction of the 
partner’s central position. 
 

Swarming often exhibits a searching 
behaviour. The searching behaviour is activated 
when the present location of the artificial fish is 
lower than the centre position of the fish group being 
searched. Searching, swarming, and following have 
all measured and compared their AFSO 
performance. Swarming behaviour may also involve 
searching, significantly lengthening the algorithm’s 
runtime. The artificial fish will stay where it is since 
this modification to the swarming behaviour will 
prevent them from hunting for food. 

Better swarming behaviour is represented 
by Eq.(22) and Eq.(23). 

𝑃௡௘௫௧

= 𝑃௦ + 𝑠𝑡𝑒𝑝.
𝑃𝑈 − 𝑃𝑠

‖𝑃𝑈 − 𝑃𝑠‖
 , 𝐺(𝑃𝑈)

> 𝐺(𝑃𝑠) 

(22) 

𝑃௡௘௫௧ = 𝑃௦, 𝐺(𝑃𝑢) ≤ 𝐺(𝑃𝑠) (23) 

Similar to how clustering behaviour is 
conceptualized and improved, the following 
behaviour is no longer detailed since it is assumed to 
be understood. 
 
(c). Advanced Searching 

The artificial fish will move on to the next 
spot in the visual field after exhausting its attempts 
at scanning the viable domain space. A parameter 
study of the artificial fish swarm method shows that 
the number of attempts significantly affects 
searching behaviour and, in turn, the outcomes of 
searching behaviour, which may quickly lead to 
unnecessary and inefficient searching. This means 
the programme may make more attempts before 
giving up. Suppose the artificial fish hasn’t located 
the next better place after try_number iterations of 
searching. In that case, it will attempt again, but this 
time with a more refined grasp of its visual field, 
which might lead to erroneous results and a 
slowdown in the algorithm’s execution time. 
Because of this, the artificial fish’s updated 
perceptual sphere is now 𝑣𝑖𝑠𝑢𝑎𝑙௡௘௪ =
𝑣𝑖𝑠𝑢𝑎𝑙 + 𝑠𝑡𝑒𝑝. If the fish were to be identified in 
the new visual area, it would move forward one step 
to a better place with high fitness, with a maximum 
step size of 𝑠𝑡𝑒𝑝௡௘௪ = 2 × 𝑠𝑡𝑒𝑝. If the optimal 
location isn’t found after try_number iterations, the 
phoney fish will wander in the expanded field of 
view. 
 
3.2.3. Extinction and Spontaneous Recovery 

Those members of biological communities 
that are more flexible to environmental shifts are 
more likely to persist. Individuals with lower 
adaptability are selected out of existence over time 
because they cannot quickly adjust to a changing 
environment. Based on this reasoning, this research 
has coined “elite fish” to describe highly adaptable 
artificial fish and “inferior fish” to describe those 
with little adaptation. With their superior capacity 
for change, elite fish benefit significantly from 
applying AFSO to optimization issues. Within a few 
iterations, it might be able to find a more optimal 
spot. In contrast, weaker fish typically require more 
iterations to locate a more suitable place for 
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adaptation, lengthening the algorithm’s running 
duration. 

 
 The algorithm’s runtime is reduced thanks 
to the inclusion of an extinction mechanism. After 
each cycle of AFSO, the artificial fish is ranked in 
order of their fitness as determined by their current 
location. The least-suited artificial fish is considered 
subpar and hence should be eradicated. Introducing 
extinction increases the flexibility of the remaining 
artificial fish, which benefits the swarm. The number 
of fish, however, decreases due to the extinction 
mechanism. As the number of iterations rises, the 
algorithm’s randomness decreases, and the fish 
swarm’s size decreases. The search for the optimal 
position of the solution often proves fruitless. A 
regeneration process produces the same number of 
highly adaptable artificial fish. This helps the fish 
maintain its size and makes it more versatile in its 
environment. 
 
 After each iteration of the AFSO-based 
attribute decrease of the rough neighbourhood set, 
the fitness ratings for every artificial fish site are 
ordered in ascending order. After the artificial fish 
has been brought back to life, you can evaluate how 
well each potential new home suits the fish. Any 
artificial fish will perish and be replaced by the 
artificial fish listed on the notice board if their fitness 
levels are equivalent. Otherwise, the least fit 
artificial fish will be wiped out and replaced by a 
new generation of more fit artificial fish. By 
integrating death and spontaneous recovery, this 
research can ensure a high fitness level while 
shortening each cycle’s duration. 
 
3.2.4. Reduced Neighbourhood Impact 
(a). Characteristics 

𝑇𝑌 = (𝑂, 𝑈 ∪ 𝑌, 𝜃) represents a 

neighbourhood decision system, where 𝑂 =
{𝑝ଵ, 𝑝ଶ, … . , 𝑝௧} is a nonempty finite set of objects 

called the universe, 𝑈 = {𝑑ଵ, 𝑑ଶ, … . , 𝑑௖} is the 

set of condition features, 𝑌 is the set of decision 

features, and 𝜃 is the neighbourhood parameter 
(0 ≤ 𝜃 ≤ 1). Local dependency of 𝑌 on 𝑉 is 
defined as Eq.(24). 

𝜇𝑉(𝑌)ఏ =
|𝑀𝐾𝐸௏(𝑌)ఏ|

|𝑂|൘  (24) 

 
Given the neighbourhood’s dependence 

𝜇𝑉 − {𝑑}(௒)ഇ < 𝜇𝑉(𝑌)ఏ, the attribute 𝑑 is 

critical to the set 𝑉; otherwise, the attribute is extra 

to the set 𝑉 and can be removed from the set 𝑉. 
Local optimization is a common problem for 
standard neighbourhood feature reduction 
algorithms. This research incorporates better AFSO 
into neighbourhood feature reduction to address this 
issue. The attempt to determine the efficiency of 
attribute reduction and the likelihood of discovering 
the optimal reduction is significantly bolstered by 
using enhanced AFSOs well-suited for distributed 
processing of optimization issues. The most pressing 
issue is determining the spacing between feature 
subsets to employ the improved AFSO in 
neighbourhood rough set feature reduction. To 
estimate the distance between two binary values, this 
research presents the Hamming metric based on the 
approach given in the reference. 
 
(b). Location Identification 

In a system for making decisions with 𝑡 
attributes, Attribute reduction’s holy grail is a nested 
collection of conditional attributes, and it’s detailed 
here, and there are 2௧  possible combinations of 
attribute subsets. Given that each character can be 
symbolized by a binary integer, the location of each 
artificial fish may be expressed as a sequence of 𝑡 

bits. To indicate whether or not the 𝑠𝑡ℎ feature of 
the data system has been designated as a critical 
feature, a ‘1’ is stored in the 𝑠 bit of the binary 
number. Otherwise, a ‘0’ is stored there. With six 
conditional attributes, {𝑑ଵ, 𝑑ଶ, … . , 𝑑଺} in the 
decision system, the resulting binary string 
{𝑑ଵ, 𝑑ଶ, 𝑑଺} corresponds to the location of the 
artificial fish as “011001” and vice versa. 
 
(c). Hamming Distance  

This research uses the Hamming distance to 
determine how far apart two fish are. Take the binary 
representation of the locations of two simulated fish, 
𝑃௦ and 𝑃௪. When comparing 𝑃௦ and 𝑃௪, the 
Hamming distance is defined as Eq.(25). 

𝑙(𝑃௦, 𝑃௪) = ෍ 𝑝௦ ⊕ 𝑝௪

௧

௦,௪ୀଵ

 (25) 

wherein ⊕ is a 𝑃𝐾𝐵 operation, 𝑝௦, 𝑝௪ 𝜔 {0,1}. 

The value 𝑝௦in the notation 𝑃௦ denotes a binary bit. 
 
(d). Mid-point of Swarm 

The enhanced AFSO relies on seeing the 
centre of the school of fish to move the artificial fish. 
Finding the fish school’s epicentre is crucial to 
understanding their swarming behaviour. Eq.(26) 
define the centre position of 𝑡 fishes as follows: Let 
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𝑃ଵ, 𝑃ଶ, … . , 𝑃௧  be some binary integers 

representing the locations of 𝑡 fishes. 

𝑃௎ = ൝𝑢௦|𝑖𝑓
1

2
෍ 𝑝௦

௪

௧

௦ୀଵ

> 0.5, 𝑡ℎ𝑒𝑛 𝑢𝑠

= 1, 𝑒𝑙𝑠𝑒 = 0ൡ 

(26) 

where 𝑝௦
௪ stands for the 𝑠th piece of fish position 

𝑃௦, where 𝑃௎ is the geometric centre of 𝑡 fishes. 
 
(e). Fitness Function-based Update 

The first step in the improved AFSO is 
creating the fitness function, which significantly 
influences the algorithm’s direction of convergence. 
Neighbourhood rough set attribute reduction aims 
primarily to obtain the best reduction. The 
superfluous conditional characteristics are removed 
to achieve a reduced set of conditional attributes 
while maintaining the decision system’s 
categorization capability. The two key issues to 
consider while making attribute reduction on rough 
neighbourhood sets are whether or not the resulting 
attribute set contains duplicate attributes and 
whether or not the resulting attribute set retains the 
classification capacity of the original attribute set. 
Thus, the upgraded AFSO for the rough local set 
should accomplish two things in its design: 

 
First, it’s preferable if the reduction result 

has a minimum number of conditional attributes. In 
addition, the reduction set’s classification 
performance aligns with that of all conditional 
attribute sets. Eq.(27) specifies the fitness function 
needed to accomplish the core objective. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜇𝐵(𝑌)𝜃 (27) 

 
Condition feature set 𝑉 neighbourhood 

classification quality (or neighbourhood 
dependency) on decision 𝑌 is denoted by 𝜇𝐵(𝑌)𝜃 
in Eq.(24). 
(f). Termination Criteria 

These termination criteria balance finding 
the most negligible possible reduction set while 
maintaining classification accuracy. By setting a 
maximum iteration limit, avoiding excessive 
iterations, and checking for convergence and 
consistency, the algorithm’s running time is reduced, 
and an efficient solution to the problem is achieved. 

The termination criteria for AFSO can be 
summarized as follows: 

 Maximum Iterations: AFSO stops when 
the number of iterations exceeds the 
maximum value specified at the beginning. 
This criterion ensures that the algorithm 
doesn’t run indefinitely and has a 
predefined limit on the number of 
iterations. 

 Convergence: AFSO terminates when the 
bulletin board record remains unchanged 
for several iterations. This means that if the 
solution found by the algorithm remains the 
same for a certain number of consecutive 
iterations, it is considered converged, and 
further iterations are unnecessary. This 
criterion helps in identifying a stable 
solution. 

 Consistency: AFSO will stop if the exact 
answer is found in three consecutive 
iterations. This criterion indicates that the 
algorithm has reached a consistent solution, 
and there is no need for further iterations. 

 
Algorithm 2: Adaptive Fish Swarm 

Optimization (AFSO) 
Input: 

 Population size (N) 
 Maximum and minimum step sizes 

(MaxR, MinR) 
 Maximum and minimum visual values 

(MaxE, MinE) 
 Maximum number of iterations 

(Maxgen) 
 Try number for searching behavior 

(trynumber) 
 
Output: 

 Optimal solution 
 Optimal state 
 Fitness value 

 
Procedure: 

Step 1: Initialize the AFSO parameters: 
Set MaxR, MinR, MaxE, MinE, 
Maxgen, and trynumber. 

Step 2: Generate an initial population of 
artificial fish with random 
positions and velocities. 

Step 3: Evaluate the fitness of each 
artificial fish using the fitness 
function G(P). 

Step 4: Perform the following steps for 
each iteration until the maximum 
number of iterations is reached: 
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a. Update the visual and step 
sizes based on the current 
iteration: 

 Adjust the visual size 
based on the iteration 
count and the defined 
MaxE and MinE values. 

 Adjust the step size 
based on the iteration 
count and the defined 
MaxR and MinR values. 

b. For each artificial fish: 
 Perform searching 

behavior: 
 Generate a random 

point Pw within the 
visual range. 

 Compare the fitness 
of Pw with the 
current position Ps. 

 If G(Pw) is better 
than G(Ps), move 
the fish one step 
towards Pw. 

 Otherwise, take a 
random step within 
the observable 
range. 

 Perform swarming 
behavior: 
 Calculate the 

distance between 
the center position 
of all partners 
within the visual 
range and the 
current position of 
the fish. 

 If the distance falls 
within the range 
defined by the step 
size and visual size, 
adjust the step size 
accordingly. 

 Move the fish one 
step towards the 
center position if 
the fitness of the 
center position is 
better. 

 Perform the following 
behavior: 
 Move the fish one 

step towards the 
best-known position 

if its fitness is 
better. 

 Perform advanced 
searching behavior: 
 Expand the visual 

range and increase 
the step size if the 
fish can’t find a 
better position after 
the try_number 
iterations. 

 If the fish is within 
the expanded visual 
range, move it one 
step towards a 
better position. 

 Update the fitness of the 
fish after the 
movements. 

c. Update the bulletin board to 
keep track of the optimal 
position and fitness. 

d. Check if any fish needs to be 
eliminated based on fitness 
ranking and apply the 
extinction mechanism. 

e. Generate new artificial fish to 
maintain the population size. 

Step 5: Return the optimal solution, the 
optimal state, and the fitness 
from the bulletin board. 

 
3.3. Fusion of AFSO and RNN 

The Adaptive Fish Swarm Optimization-
based Recurrent Neural Network (AFSO-RNN) is a 
hybrid algorithm that combines the power of Fish 
Swarm Optimization (FSO) and Recurrent Neural 
Networks (RNNs) to address complex optimization 
problems. AFSO-RNN leverages the ability of FSO 
to explore the search space efficiently and the 
predictive capabilities of RNNs to solve problems 
with temporal dependencies. In AFSO-RNN, the 
fish population acts as agents that collectively search 
for optimal solutions. Each fish represents a set of 
RNN parameters, including weights and biases. The 
algorithm starts by initializing the fish population 
randomly within the predefined search space. The 
fitness of each fish is evaluated based on RNN 
performance metrics, such as mean squared error or 
cross-entropy loss. 

The AFSO component of the algorithm 
introduces an adaptive mechanism to enhance 
exploration and exploitation capabilities. The fish 
update their positions using a combination of 
individual movement and group behavior. They 
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adapt their swimming speed and step size based on 
the fitness of the leader fish and the proximity to 
other fish in the swarm. This adaptive mechanism 
enables efficient search space exploration and 
convergence towards optimal solutions. The RNN 
component of AFSO-RNN processes the input data 
and learns the underlying patterns by adjusting its 
parameters. The RNN’s ability to capture temporal 
dependencies makes AFSO-RNN particularly 
suitable for sequential and time-series data. Through 
iterations of the AFSO-RNN algorithm, the fish 
swarm dynamically adapts its behavior, and the 
RNN continuously updates its parameters based on 
the current fish positions. This cooperative 
interaction between the swarm and the RNN leads to 
exploring diverse solutions and exploiting promising 
regions in the search space. 

 
One significant advantage of the Adaptive 

Fish Swarm Optimization-based Recurrent Neural 
Network (AFSO-RNN) is its ability to address 
computational complexity in optimization tasks. 
Traditional optimization algorithms often struggle 
with large and complex datasets due to their high 
computational requirements. However, AFSO-RNN 
overcomes this challenge by leveraging the efficient 
exploration capabilities of the Fish Swarm 
Optimization (FSO) algorithm and the temporal 
dependency modelling of Recurrent Neural 
Networks (RNNs). By combining these two 
techniques, AFSO-RNN achieves a more efficient 
and effective search process, leading to improved 
convergence speed and reduced computational 
complexity. This allows AFSO-RNN to handle 
large-scale datasets and complex optimization 
problems with higher efficiency, making it a 
valuable tool in various domains where 
computational complexity is a significant concern. 
 

Algorithm 3: AFSO-RNN 

Input: 
 Dataset: Training dataset with input-

output pairs 
 Number of fish (population size) 
 Maximum number of iterations 
 Number of hidden units in the RNN 
 Number of output units in the RNN 
 Maximum and minimum bounds for 

RNN parameters (weights and biases) 
Output: 

 Optimal RNN parameters 
 
Procedure: 

Step 1: Initialize the fish population randomly 
within the search space defined by the 
maximum and minimum bounds for 
RNN parameters. 

Step 2: Evaluate the fitness of each fish in the 
population using a fitness function 
based on RNN performance, such as 
mean squared error or cross-entropy 
loss. 

Step 3: Set the fish with the best fitness as the 
leader fish. 

Step 4: Repeat Step 5 to Step 12 until the 
maximum number of iterations is 
reached: 

Step 5: For each fish in the population: 
Step 6: Calculate the step vector by 

considering the distance to the leader 
fish and the movement of nearby fish. 

Step 7: Update the fish’s position by adding 
the step vector to its current position. 

Step 8: Clip the fish’s position to ensure it 
stays within the defined search space. 

Step 9: Evaluate the fitness of the updated 
fish. 

Step 10: Perform a local search around the 
leader fish by adjusting its position 
within a small neighborhood and 
evaluating its fitness. 

Step 11: If the leader fish’s fitness has 
improved, update its position 
accordingly. 

Step 12: If the termination condition is met, exit 
the loop. 

Step 13: Return the RNN parameters 
corresponding to the leader fish with 
the best fitness. 

 
4. ABOUT THE DATASET 

The “Course Reviews on Coursera” 
dataset, consisting of both the Coursera courses and 
Coursera reviews datasets, presents an excellent 
opportunity to build personalized recommendation 
systems for users on the platform. The Coursera 
courses dataset provides detailed information about 
622 courses, including the course name, the 
institution offering the course, course URL, and 
course ID. This dataset can serve as a foundational 
resource for understanding the characteristics and 
attributes of different courses. Combined with the 
Coursera reviews dataset, which includes 1.45 
million reviews and ratings, it becomes possible to 
develop recommendation algorithms that leverage 
user preferences, historical data, and review 
sentiments to deliver personalized course 
recommendations. By analysing users’ course 



 Journal of Theoretical and Applied Information Technology 
15th April 2025. Vol.103. No.7 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
2948 

 

ratings and reviews, these algorithms can identify 
courses that align with an individual’s interests, 
learning goals, and preferred teaching styles. The 
review texts can extract key features, topics, or 
themes associated with each course. This text 
analysis can help create course profiles, which can 
be used to compare courses, identify similar courses 
based on content, or even recommend courses 
complementary to a user’s previous choices. By 
incorporating temporal information from the date 
reviews field, personalized recommendation 
systems can also consider the recency of reviews and 
account for evolving user preferences over time. 

 
 
 Table 1. Dataset: Coursera Courses 

Feature 
Data 
Type 

Description 

𝑛𝑎𝑚𝑒 character 
The name of the 
course 

𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 character 
The institution 
offering the course 

𝑐𝑜𝑢𝑟𝑠𝑒_𝑢𝑟𝑙 character 
The URL of the 
course 

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character 
The unique 
identifier for the 
course 

 
 

Table 2. Dataset: Coursera Reviews 

Feature 
Data 
Type 

Description 

𝑟𝑒𝑣𝑖𝑒𝑤𝑠 character 
The text of the 
course review 

𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟𝑠 character 
The name of the 
reviewer who wrote 
the review 

𝑑𝑎𝑡𝑒_𝑟𝑒𝑣𝑖𝑒𝑤𝑠date 
The date when the 
review was posted 

𝑟𝑎𝑡𝑖𝑛𝑔 integer 

The rating score is 
given by the 
reviewer of the 
course 

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character 

The unique 
identifier for the 
course associated 
with review 

 
5. RESULTS AND DISCUSSION 
 
5.1. Classification Accuracy and F-Measure 
Analysis 

Figure 1 illustrates the graph for 
Classification Accuracy (CA) and F-Measure (FM) 
Analysis, showcasing the performance of three 

distinct classifiers: NBCA, RFCA, and AFSO-RNN. 
These classifiers employ different mechanisms to 
accomplish classification tasks.  

 
Classification Accuracy (CA) is a 

performance measure that indicates the proportion of 
correctly classified instances from the total instances 
in a dataset. It quantifies the overall accuracy of a 
classification algorithm by calculating the ratio of 
correctly classified instances to the total number of 
instances. A higher CA value signifies a more 
accurate classifier. On the other hand, F-Measure 
(FM) combines precision and recall into a single 
metric, providing a balanced evaluation of a 
classifier’s performance, particularly in imbalanced 
datasets. FM considers both precision, which 
measures the accuracy of optimistic predictions, and 
recall, which measures the ability to capture all 
relevant positive instances. By calculating their 
harmonic mean, FM yields a single value 
representing the classifier’s effectiveness in 
correctly identifying positive instances and 
capturing their true distribution. 
 

NBCA operates based on Bayes’ theorem 
and assumes feature independence. It computes 
conditional probabilities for each class given the 
feature values. The results in Table 3 indicate a CA 
of 50.833% and an FM of 51.315% for NBCA. 
RFCA, on the other hand, is an ensemble learning 
technique that constructs multiple decision trees by 
randomly selecting subsets of training data and 
features. Each decision tree evaluates the input 
instance during classification, and the majority vote 
determines the assigned class. The achieved 
performance for RFCA is demonstrated as a CA of 
65.003% and an FM of 64.728%. 
 

AFSO-RNN combines the AFSO 
algorithm, inspired by fish swarms, with a Recurrent 
Neural Network (RNN). AFSO optimizes the 
weights and biases of the RNN through iterative 
fitness function optimization. The outcomes of 
AFSO-RNN surpass the other classifiers, exhibiting 
a CA of 95.364% and an FM of 95.467%. 
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Figure 1. Classification Accuracy And F-Measure 

 
The graph indicates the superior 

performance of AFSO-RNN in terms of CA and FM 
compared to NBCA and RFCA. This underscores 
the effectiveness of integrating AFSO optimization 
with the capabilities of RNNs. AFSO-RNN 
demonstrates its ability to capture intricate patterns 
and make accurate predictions. These findings 
emphasize the practical application of AFSO-RNN 
in classification tasks, particularly in domains where 
high accuracy is paramount. 

 
Table 3. Classification Accuracy And F-Measure Results 

Classifiers CA FM 

NBCA 50.833 51.315 

RFCA 65.003 64.728 

AFSO-RNN 95.364 95.467 

 
5.2. Fowlkes-Mallows Index and Matthews 
Correlation Coefficient Analysis  

 
Figure 2 presents the Fowlkes-Mallows 

Index (FMI) and Matthews Correlation Coefficient 
(MCC) analysis graph for three different classifiers: 
NBCA, RFCA, and AFSO-RNN. 

 

 
Figure 2. Fowlkes-Mallows Index And Matthews 

Correlation Coefficient 
 

The Fowlkes-Mallows Index (FMI) 
measures the similarity between two clusterings or 
classifications. It assesses how much the 
clustering/classification results agree with the 
ground truth or known labels. It ranges from 0 to 
100, with higher values indicating better agreement. 
In classification algorithms, a higher FMI indicates 
better accuracy and consistency of the algorithm’s 
predictions. The Matthews Correlation Coefficient 
(MCC) is a metric commonly used to evaluate the 
performance of binary classification models. It 
considers true positive, true negative, false positive, 
and false negative predictions to compute a value 
between -1 and +1. A value of +1 represents a perfect 
prediction, 0 indicates a random prediction, and -1 
represents a complete disagreement between the 
predicted and actual labels. Higher MCC values 
indicate the better overall performance of the 
classifier. 
 

NBCA is a probabilistic classification 
algorithm based on Bayes’ theorem. It assumes that 
the presence of a particular feature is independent of 
the presence of other features. The FMI value of 
51.317 indicates moderate agreement between the 
NBCA’s predictions and the ground truth. It 
suggests that the algorithm’s predictions align with 
the actual labels to some extent but may have room 
for improvement. Similarly, the MCC value of 1.663 
implies that the classifier’s performance is above 
random prediction but still has room for 
enhancement. RBCA is an ensemble learning 
algorithm that constructs multiple decision trees and 
combines their predictions to make final 
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classifications. The FMI value of 64.730 indicates a 
higher level of agreement between the RFCA’s 
predictions and the known labels compared to 
NBCA. It suggests that the RFCA produces more 
accurate and consistent results. Moreover, the MCC 
value 30.007 indicates significantly better 
performance, indicating that the RFCA’s predictions 
align well with the actual labels. 
 

AFSO-RNN is a hybrid model that 
combines the adaptive fish swarm optimization 
technique with a recurrent neural network. The FMI 
value of 95.468 suggests a high level of agreement 
between AFSO-RNN’s predictions and the ground 
truth. It indicates that the algorithm performs very 
well in accuracy and consistency, with only a small 
room for improvement. Similarly, the MCC value 
90.728 indicates excellent overall performance, 
indicating a strong alignment between the predicted 
and actual labels. 
 

Based on the information provided in Table 
4, the AFSO-RNN classifier demonstrates the 
highest level of agreement and performs 
exceptionally well in accuracy and consistency. The 
RFCA classifier also performs well, while the 
NBCA classifier lags behind the other two classifiers 
but exhibits moderate agreement and performance. 
 

Table 4. Fowlkes-Mallows Index And Matthews 
Correlation Coefficient Results 

Classifiers FMI MCC 

NBCA 51.317 1.663 

RFCA 64.730 30.007 

AFSO-RNN 95.468 90.728 

 
6. CONCLUSION 

The Adaptive Fish Swarm Optimization-
Inspired Recurrent Neural Network (AFSO-RNN) 
approach presents a novel and effective method for 
optimizing sentiment interpretation of Coursera 
course reviews. By combining the adaptive 
capabilities of fish swarm optimization with the 
power of recurrent neural networks, AFSO-RNN 
achieves remarkable results in sentiment analysis. 
By integrating recurrent neural networks, the AFSO-
RNN model effectively captures the semantic 
meaning and contextual information in the textual 
data of course reviews. This enables extracting 
relevant features and representations crucial for 
accurate sentiment interpretation. The adaptive fish 
swarm optimization component further enhances the 
performance of the AFSO-RNN model by 

dynamically adjusting network parameters during 
training. Inspired by the collective behaviour of fish 
swarms, this optimization technique explores and 
exploits optimal solutions, improving sentiment 
interpretation accuracy. The extensive experiments 
conducted on a large dataset of Coursera course 
reviews demonstrate the superiority of AFSO-RNN 
over traditional sentiment analysis techniques. The 
optimized sentiment interpretation provided by 
AFSO-RNN offers valuable insights into learner 
sentiments, facilitating informed decision-making 
for instructors, administrators, and learners alike 
regarding course selection and improvement. The 
AFSO-RNN approach contributes significantly to 
sentiment analysis in online learning environments. 
By combining the strengths of recurrent neural 
networks and adaptive fish swarm optimization, 
AFSO-RNN provides a promising avenue for 
enhancing the accuracy and efficiency of sentiment 
analysis for Coursera course reviews, paving the 
way for improved understanding and utilization of 
learner feedback. 
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