
 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2932

OPTIMIZING SENTIMENT INTERPRETATION OF
COURSERA COURSE REVIEWS USING AN ADAPTIVE FISH
SWARM OPTIMIZATION-INSPIRED RECURRENT NEURAL

NETWORK (AFSO-RNN)

 J SAHITHA BANU1, G PREETHI2

1Research Scholar, Department of Computer Science, Ponnaiyah Ramajayam Institute of Science and
Technology (PRIST), Thanjavur,Tamilnadu

2 Associate Professor, Ponnaiyah Ramajayam Institute of Science and Technology (PRIST),
Thanjavur,Tamilnadu

E-mail:1 shahithak@gmail.com,2 mgpreethi@gmail.com

ABSTRACT

This study introduces an innovative approach, Adaptive Fish Swarm Optimization-Inspired Recurrent Neural
Network (AFSO-RNN), to optimize sentiment interpretation of Coursera course reviews. The AFSO-RNN
model combines the adaptive capabilities of fish swarm optimization with the power of recurrent neural
networks. The recurrent neural network component processes the textual data of course reviews by capturing
semantic meaning and context. It learns from sequential dependencies to extract relevant features for
sentiment analysis. The adaptive fish swarm optimization component enhances the learning process of the
recurrent neural network. Inspired by collective behaviour in fish swarms, it dynamically adjusts network
parameters during training. The optimisation process explores and exploits optimal solutions by mimicking
fish swarm movement and communication patterns, improving sentiment interpretation accuracy. Extensive
experiments on a large dataset of Coursera course reviews demonstrate the superior performance of AFSO-
RNN compared to traditional sentiment analysis techniques. The model’s optimized sentiment interpretation
provides valuable insights into learner sentiments, enabling informed decision-making for instructors,
administrators, and learners regarding course selection and improvement. This research contributes to
sentiment analysis in online learning environments by showcasing the effectiveness of the AFSO-RNN
model. By combining recurrent neural networks with adaptive fish swarm optimization, AFSO-RNN offers
a promising avenue for enhancing the accuracy and efficiency of sentiment analysis for Coursera course
reviews

Keywords: Adaptive, Courseera, Fish Swarm optimization, Recurrent Neural Network, Sentiment Analysis,
Optimization

1. INTRODUCTION

Online learning has disrupted traditional
educational models, leveraging technological
advancements to create an innovative and flexible
learning ecosystem [1]. Through Learning
Management Systems (LMS) and cloud-based
platforms, online learning provides learners a wide
range of educational resources, including
multimedia content, e-books, and interactive
learning modules. Incorporating Artificial
Intelligence (AI) and machine learning algorithms
within online learning platforms enables
personalized learning experiences through adaptive
assessments and intelligent tutoring systems [2].
Learners can receive immediate feedback, track their

progress, and access supplementary materials
tailored to their learning needs. The asynchronous
nature of online learning allows for self-paced
learning, granting learners the freedom to set their
schedules and progress at their preferred speed.
Online learning fosters a global community of
learners, connecting individuals from different
backgrounds, cultures, and geographic locations
through virtual classrooms and online discussion
forums [3]. The availability of massive open online
courses (MOOCs) further democratizes education,
making high-quality educational content accessible
to a vast audience. Embracing online-learning
empowers learners to develop digital literacy,
adaptability, and lifelong learning skills required in

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2933

today’s rapidly evolving knowledge-based society
[4].

In the digital age, where information is at
our fingertips, understanding the sentiment behind
textual data has become crucial. Sentiment analysis,
also known as opinion mining, is a field that focuses
on extracting emotions, attitudes, and opinions
expressed in a text [5]. By applying computational
techniques and machine learning algorithms,
sentiment analysis enables us to analyse and
interpret the sentiment conveyed in large volumes of
text data. One of the primary applications of
sentiment analysis is customer feedback analysis [6].
With the rise of e-commerce platforms and online
reviews, businesses can collect valuable customer
feedback. Sentiment analysis allows companies to
automatically process and categorize this feedback,
providing insights into customer satisfaction levels,
common pain points, and areas for improvement.
This information can guide businesses in enhancing
their products, services, and overall customer
experience [7]. Another significant application of
sentiment analysis is in social media monitoring.
Social media platforms serve as a rich source of
public opinion and sentiment. By analysing tweets,
posts, comments, and other user-generated content,
sentiment analysis can help track public sentiment
towards brands, events, or trending topics. This
information is beneficial for marketers, advertisers,
and decision-makers in understanding the public’s
perception and tailoring their strategies accordingly
[8].

Sentiment analysis also finds applications
in political analysis and public policy making.
Researchers and policymakers can gauge public
opinion on policies, politicians, or societal issues by
analysing sentiments expressed in news articles,
blogs, or social media posts [9]. This insight can
inform decision-making processes, help identify
areas of concern, and facilitate more effective
communication strategies. Sentiment analysis has
implications for market research and competitive
analysis. Businesses can gain valuable insights into
consumer preferences, sentiment towards
competitors, and emerging trends by analysing
online reviews, forum discussions, or survey
responses. This knowledge allows companies to
adapt their marketing strategies, develop new
products, and gain a competitive edge in the market
[10]. As sentiment analysis techniques advance,
researchers are exploring new dimensions, such as
aspect-based sentiment analysis and emotion
detection. Aspect-based sentiment analysis aims to
identify sentiments towards specific aspects or

features of a product or service, providing more
granular insights. Emotion detection focuses on
categorizing emotions expressed in text, enabling a
deeper understanding of user experiences and
reactions [11]. Bio-inspired optimization techniques
are versatile and can be applied in various domains
[12]–[16], including sentiment analysis, to achieve
better results [17], [18], [27], [28], [19]–[26]. These
techniques provide a means to enhance sentiment
analysis performance by leveraging nature-inspired
algorithms and adapting them to the specific
requirements and characteristics of different
domains, such as social media, product reviews, or
customer feedback. Using bio-inspired optimization,
sentiment analysis can be more accurate, robust, and
adaptable to different textual data types.

1.1. Problem Statement

Negation and ambiguity present significant
challenges in sentiment analysis, as they can lead to
incorrect sentiment classification. Sentences
containing negation, double negatives, or ambiguous
expressions can completely reverse the sentiment
expressed or introduce uncertainty. Existing
sentiment analysis models often struggle to handle
these linguistic complexities, resulting in erroneous
sentiment predictions. This problem calls for
developing advanced algorithms and techniques to
accurately identify and handle negations, resolve
ambiguities, and infer the correct sentiment in
complex sentence structures. Overcoming the
challenge of negation and ambiguity in sentiment
analysis requires innovative approaches that can
effectively capture the subtle linguistic cues and
disambiguate sentiment expressions, leading to more
reliable and precise sentiment classification.

1.2. Motivation

The motivation behind addressing the
challenge of negation and ambiguity in sentiment
analysis is to improve the precision and reliability of
sentiment classification. We can avoid
misinterpretations and erroneous sentiment
predictions by developing advanced algorithms and
techniques to accurately identify negations, resolve
ambiguities, and infer the correct sentiment in
complex sentence structures. This motivation arises
from enhancing customer satisfaction by accurately
capturing sentiments in customer feedback,
improving sentiment analysis accuracy in social
media monitoring, and providing more reliable
insights to guide business strategies and decision-
making.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2934

1.3. Objective
Devise an advanced sentiment analysis

algorithm that effectively identifies and handles
negations, resolves ambiguities, and accurately
infers the correct sentiment in complex sentence
structures. This objective aims to enhance the
precision and reliability of sentiment classification
by mitigating the impact of linguistic complexities
on sentiment analysis results. It involves developing
techniques to accurately interpret sentiments
expressed in negated sentences, double negatives,
and ambiguous expressions, thereby avoiding
misinterpretations and erroneous sentiment
predictions.

 Identify and handle negations, ambiguities,
and complex sentence structures.

 Enhance precision and reliability of
sentiment classification.

 Avoid misinterpretations and erroneous
sentiment predictions.

2. LITERATURE REVIEW

.
“Semantic Conceptualization” [29]

involves representing text documents as a bag of
concepts, where each concept is associated with a
specific sentiment. The concepts are derived from
semantic resources or domain-specific knowledge
bases. The model captures the underlying sentiment
expressed in the text by tagging the concepts with
sentiment labels. This approach enables a more
nuanced understanding of sentiment, focusing on
concepts’ meaning and context rather than
individual words. By leveraging tagged bag-of-
concepts, sentiment analysis models can provide
more accurate and context-aware predictions,
facilitating applications such as opinion mining,
social media sentiment analysis, and customer
feedback analysis. “Urdu Sentiment Analysis” [30]
capture complex patterns and relationships in
multimodal data. Fusing textual and non-textual
information allows for more comprehensive
sentiment analysis, considering linguistic and visual
cues. This approach can be valuable in
understanding sentiment in social media content,
user reviews, or multimedia data in the Urdu
language. By applying deep learning algorithms to
multimodal data, Urdu sentiment analysis can
provide insights into public opinion, customer
feedback, and user experiences in various domains,
aiding decision-making processes and enhancing
user engagement.

“Attention-Emotion-Enhanced
Convolutional LSTM” [31] is a powerful model for

sentiment analysis that combines attention
mechanisms, emotion-enhanced features, and the
Convolutional LSTM architecture. It effectively
captures important text parts, incorporates emotional
cues, and captures spatial and temporal
dependencies in the data. This comprehensive
approach improves sentiment analysis performance
and can be applied to various tasks, including social
media sentiment monitoring, customer feedback
analysis, and opinion mining, providing a more
accurate understanding of sentiment in textual data.
“Broad Multitask Transformer Network” [32]
employs a multitask learning approach,
simultaneously handling various sentiment analysis
subtasks, such as document-level, sentence-level,
and aspect-level sentiment analysis. The model
learns to generalize well across different sentiment
analysis scenarios by joint training on multiple tasks.
This multitask framework transfers shared
knowledge and enhance the model’s overall
performance. BMT-Net demonstrates promising
results in sentiment analysis applications, providing
a versatile and efficient solution for understanding
sentiment in text data across multiple levels of
granularity.

“Dynamic Bayesian Network” [33]
combines the flexibility of Bayesian networks with
the ability to capture temporal dynamics in sentiment
and topic transitions. The DBN model considers the
dependencies between topics and sentiments over
time, allowing for the exploration of how sentiments
change within different topics or themes. The DBN
approach comprehensively explains the evolving
relationships between topics and sentiments by
incorporating dynamic factors, such as time intervals
and sequential patterns. This enables researchers and
analysts to track sentiment shifts, identify emerging
trends, and gain insights into the evolution of public
opinion in various domains, such as social media,
customer reviews, or political discourse. The DBN
approach offers a valuable tool for studying the
complex dynamics of topic-sentiment relationships
and their evolution over time. “Efficient Adaptive
Transfer Network” [34] focuses on effectively
transferring knowledge across different domains or
tasks to enhance performance. EATN employs an
adaptive transfer learning approach that dynamically
adjusts the transferability of knowledge from source
domains to target domains based on their
similarities. This adaptive mechanism allows the
model to leverage relevant information while
mitigating the adverse effects of domain differences.
EATN performs aspect-level sentiment analysis
tasks better by efficiently utilizing transfer learning,

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2935

particularly in scenarios with limited labelled data.
This model provides a valuable solution for
sentiment analysis in various domains, allowing for
efficient knowledge transfer and better utilization of
available resources.

“Supervised Machine Learning-Based

Sentiment Analysis” [35] approaches consider
various factors such as domain, dataset
characteristics, and feature representations to
provide a more accurate prediction. By analysing the
context in which the sentiment analysis model will
be applied, such as social media, customer reviews,
or news articles, contextual-based approaches can
account for the specific challenges and nuances of
the target domain. This enables researchers and
practitioners to make informed decisions regarding
model selection, feature engineering, and
hyperparameter tuning, improving sentiment
analysis performance. “Deformable CNN and
Attention” [36] addresses the challenges of
capturing aspect-specific information and modelling
the relationships between aspects and sentiment
expressions in the text. By using deformable CNNs,
ADeCNN effectively captures local context and
aspect-specific features, allowing for more precise
sentiment analysis at the aspect level. Incorporating
attention mechanisms further improves the model’s
ability to focus on essential aspects and sentiment-
bearing words within the text. ADeCNN provides a
robust solution for aspect-level sentiment analysis,
offering improved accuracy and capturing fine-
grained sentiment information.

“Affective Knowledge Augmented
Interactive Graph Convolutional Network” [37]
incorporates affective knowledge, such as emotion
lexicons or sentiment intensifiers, to enhance
sentiment analysis in Chinese text. Leveraging
interactive graph convolutional networks effectively
captures the contextual relationships between
aspects and sentiments, considering both syntactic
and semantic dependencies. This interactive graph-
based approach allows the model to learn and
propagate sentiment information through the aspect-
sentiment graph, enabling a more comprehensive
understanding of aspect-level sentiment in Chinese
text. It demonstrates superior performance in
capturing fine-grained sentiment nuances. It is a
valuable tool for aspect-based sentiment analysis in
Chinese language applications, such as product
reviews, social media content, or customer feedback
analysis. “Multitask Multiview Neural Network”
[38] addresses multiple subtasks within the
sentiment analysis process, such as aspect extraction

and sentiment classification, in a unified framework.
By leveraging multi-view representations, which
incorporate multiple perspectives or modalities of
the input data, the model captures a more
comprehensive understanding of the aspects and
their associated sentiments. The multitask paradigm
enables shared learning across subtasks, enhancing
the model’s performance and generalization
capabilities. This approach allows for a holistic
analysis of aspect-based sentiment, enabling more
accurate and nuanced sentiment analysis results. The
multitask multi-view neural network is a valuable
tool for extracting and analysing sentiments towards
specific aspects in various domains, including
product reviews, social media discussions, and
customer feedback analysis.

“Naive Bayes Classification Algorithm
(NBCA)” [39] is widely utilized in sentiment
analysis, but it has certain limitations to be mindful
of. A fundamental assumption of NBCA is feature
independence, which may not hold in real-world text
data. This oversimplification can limit its ability to
capture complex sentiment patterns accurately.
Additionally, NBCA treats all features equally,
disregarding the varying impact of different words
or phrases on sentiment. This may result in the
suboptimal weighting of feature importance. The
assumption of feature independence may lead to
misclassifications when sentiment depends on
contextual or interactive effects between features.
Despite these limitations, NBCA can still generate
valuable results in many sentiment analysis tasks,
especially in more uncomplicated cases or as a
baseline approach. It is essential to understand the
assumptions and considerations of NBCA when
applying it to sentiment analysis and to evaluate its
performance against other algorithms in more
complex scenarios. “Random Forest Classification
Algorithm (RFCA)” [40] is a versatile machine
learning algorithm that offers several advantages for
sentiment analysis. RFCA can handle both
numerical and categorical text features, allowing
effective processing of textual data by encoding it
into numerical representations. RFCA excels at
detecting complex feature interactions, enabling it to
capture nuanced sentiment patterns that rely on
combinations of words and phrases. RFCA also
provides feature importance measures, facilitating
feature selection and guiding analysts to focus on the
most influential factors for sentiment prediction.
With its ability to handle text data, capture feature
interactions, and offer insights into feature
importance, RFCA enhances sentiment analysis by
providing accurate predictions and valuable

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2936

interpretability, making it an indispensable tool for
sentiment analysis practitioners.

3. ADAPTIVE FISH SWARM

OPTIMIZATION-INSPIRED
RECURRENT NEURAL NETWORK
(AFSO-RNN)

3.1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) offer
distinct advantages over primary neural networks
like Multi-Layer Perceptions (MLPs) due to their
ability to process information in both forward and
backward directions. RNNs can store and utilize
information temporarily by iterating through various
layers. At each time step 𝑖, the RNN performs two
primary operations: hidden state update and output
calculation. The hidden state denoted as ℎ௜ , is

computed by applying an activation function 𝜎 to a

combination of the current input 𝑝௜ and the previous

hidden state ℎ{௜ିଵ}. This operation can be expressed
as Eq.(1).

ℎ௜ = 𝜎൫𝑤௛௛ ∗ ℎ{௜ିଵ} + 𝑤௛௣ ∗ 𝑝௜

+ 𝑏௛൯
(1)

where 𝑤௛௛ represents the weight matrix for the

hidden-to-hidden connections, 𝑤௛௣ represents the
weight matrix for the input-to-hidden connections,
and 𝑏௛ represents the bias vector for the hidden
state.

Once the hidden state is updated, the RNN
calculates the output 𝑙௜ bypassing the hidden state ℎ௜

through a typical neural network represented by 𝑇𝑇,
which can be written as Eq.(2):

𝑙௜ = 𝑇𝑇(ℎ௜) (2)

where 𝑇𝑇 denotes the function that computes the
output based on the hidden state.

The RNN can process the input sequence in
either the forward or backward direction. Forward
processing involves sequentially calculating the
hidden states and outputs from time step 1 to 𝑚.
Conversely, backward processing computes the
hidden states and outputs in reverse order, from time
step 𝑚 to 1. RNNs are categorized as deep neural
networks because they can process information
across multiple layers. However, a challenge they
face is the vanishing gradient problem, which
hinders their performance in handling long-term
dependencies. Alternative RNN architectures such

as Long-Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) have been developed to
overcome this issue, introducing specialized
mechanisms to mitigate the vanishing gradient
problem. To train the sRNN (Simple RNN) model, a
technique called forward-backwards propagation
(FFP) is employed. FFP, commonly used in MLPs,
is adapted to the context of sRNN by extending the
process over multiple time steps. The formulation
for the FFP process in the sRNN can be described as
follows:

Considering the input value 𝑝௠, which

serves as the input to the sRNN model, the input
layer (represented by 𝑝௠) is connected to the current

hidden layer (represented by 𝑛௟௣) through
connection weights. Similarly, the connection
weight between the present hidden layer and the next
hidden layer is denoted as 𝑛௟௟ . The connection
strength between the last hidden layer and the output
layer is given by 𝑛௟௤ . The biases implemented in the
links between the hidden layer and the result layer
are represented by 𝑚௟ and 𝑚௤ . At time step 𝑚, the

output can be expressed as 𝑙௠. In this context, the
sRNN can be mathematically formulated as Eq.(3)
to Eq.(5).

𝑙௠ = 𝑗(𝑙௠ିଵ, 𝑝௠) (3)

𝑙௠ = 𝑗൫ൣ𝑛௟௣. 𝑝௠ + 𝑛௟௟ . 𝑝௠ିଵ൧

+ 𝑣௟൯
(4)

𝑞ത௠ = 𝑗൫ൣ𝑛௟௣. 𝑝௠ + 𝑛௟௟. 𝑝௠ିଵ൧

+ 𝑣௟൯
(5)

where 𝑗 denotes the activation function that
combines the inputs, weights, and biases to compute
the output, and the symbol * represents the
multiplication operation.

The predicted result is represented by 𝑞ത௠in
the given context. This formulation illustrates how
the sRNN processes the input at each time step,
updating the hidden state and calculating the output
based on the current and previous inputs and their
corresponding connection weights and biases. It is
important to note that the specific form of the
activation function 𝑗 and the definitions of the

variables, such as 𝑛௟௣, 𝑛௟௟ , 𝑛௟௤ , 𝑣௟ , 𝑚௟ and 𝑚௤ can
vary depending on the specific implementation and
variations of the sRNN model. The training of the
sRNN involves a sequential process where, at each

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2937

time step 𝑚, the error (𝐻) between the predicted

output values (𝑞ത௠) and the valid output values

(𝑞௠) is calculated. In machine learning
terminology, this error is commonly referred to as
the loss and is denoted as 𝑍. The primary objective

of the training process is to minimize 𝑍, indicating
that an ideal model would exhibit significantly
reduced loss. To quantify the overall loss produced
by training a single set of data starting from time step
1 to 𝑇, Eq.(6) is applied.

𝑍(𝑞ത௠, 𝑞) = ෍ 𝑍(𝑞ത௠, 𝑞௠)

்

௠ୀଵ

 (6)

where 𝑇 represents the maximum duration of the
training process, indicating the number of time steps
considered during training. The sum over m
indicates that the loss at each time step is
accumulated to compute the overall loss.

One challenge sRNN encounter during
training is the vanishing gradient problem or the
gradient explosion issue. These issues tend to arise
as the size of the dataset increases and as the training
duration 𝑇 extends. The vanishing gradient problem
refers to the phenomenon where the gradients used
for updating the network’s parameters diminish
exponentially as they propagate back through time.
This can result in slower convergence or difficulty in
capturing long-term dependencies. On the other
hand, the gradient explosion occurs when the
gradients grow exponentially, leading to unstable
training and divergence. The vanishing gradient and
gradient explosion problems are particularly relevant
to sRNN due to their recurrent nature and the
repeated application of weight matrices and
activation functions over multiple time steps.
Researchers have developed alternative RNN
architectures, such as LSTM and GRU,
incorporating specialized gating mechanisms to
alleviate these gradient-related issues and improve
training stability.

As the size of the dataset increases, or the
training duration extends, the vanishing gradient and
gradient explosion problems become more
pronounced. Researchers continue to explore
advanced optimization techniques, weight
initialization strategies, and architectural
modifications to address these challenges and
improve the training efficiency and effectiveness of
sRNNs. Considering the variable 𝑍, which

represents the loss (𝐻) produced by a batch of data

𝑉 within the given training period 𝑇, the partial

derivative of the loss concerning a specific weight 𝑁
can be calculated. This is expressed in Eq.(7).

𝜀𝑍

𝜀𝑁
= ෍

𝜀𝑍௠

𝜀𝑁

்

௠ୀଵ

 (7)

Eq.(7) signifies that the derivative of the

overall loss 𝑍 concerning a particular weight 𝑁 is
the sum of the derivatives of the loss at each time

step, denoted as
ఌ௓೘

ఌே
, for m ranging from 1 to 𝑇.To

simplify Eq.(7), we can apply the chain rule of
differentiation. The reformulation is achieved as
Eq.(8).

𝜀𝑍

𝜀𝑁
= ෍

𝜀𝑍௠

𝜀𝑞௠

𝜀𝑞௠

𝜀𝑙௠

𝜀𝑙௠

𝜀𝑞௧

𝜀𝑞௧

𝜀𝑁

்

௠ୀଵ

 (8)

where


ఌ௓೘

ఌே
 represents the partial derivative of the

loss at time step m concerning the predicted
output 𝑞௠. This derivative quantifies the

impact of a small change in 𝑞௠ on the
overall loss. It reflects how errors in the
prediction at a specific time step contribute
to the overall loss.


ఌ௤೘

ఌ௟೘
 denotes the derivative of the predicted

output 𝑞௠ concerning the hidden state 𝑙௠
at the same time step. This derivative
capture how changes in the hidden state
affect the predicted output. It demonstrates
how information flows through the
network, connecting the hidden and output
states.


ఌ௟೘

ఌ௤೟
 symbolizes the derivative of the hidden

state 𝑙௠ at time step m concerning the

hidden state 𝑞௧ at a later time step 𝑡. This
term illustrates the ability of the sRNN to
retain and propagate information across
time. It reveals how the hidden state at a
particular time step influences the hidden
state at a later time step.


ఌ௤೟

ఌே
 represents the derivative of the hidden

state 𝑞௧ at time step 𝑡 for the weight 𝑁.
This term quantifies the impact of a change
in weight 𝑁 on the hidden state 𝑞௧. It

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2938

demonstrates how weights affect the hidden
state and, subsequently, the overall
prediction of the sRNN.

By considering all these terms together,

Eq.(8) showcases the flow of gradients through the
sRNN during the training process. The derivative of
the loss for a particular weight 𝑁 accumulates
contributions from various factors, including the
prediction error at each time step, the relationship
between the hidden state and the predicted output,
and the propagation of information across time steps.

Understanding these gradient dependencies

is crucial for tackling challenges like the vanishing
gradient problem and optimizing the training of
sRNNs. Researchers have developed techniques
such as gradient clipping, which limits the
magnitude of gradients, and initialization strategies,
to alleviate gradient-related issues. Additionally,
advancements like LSTM and GRU architectures,
incorporating specialized gating mechanisms, have
effectively mitigated the vanishing gradient problem
and captured long-term dependencies. Continuous
exploration and development of techniques to
improve gradient flow and address the challenges
inherent in training sRNNs are essential for
enhancing their performance and enabling them to
model and learn from sequential data effectively.

Eq.(9) highlights the dependence of the
hidden state at time 𝑚 on the hidden state at a later

time 𝑡. The derivative expresses this
ఌ௟೘

ఌ௟೟
. This

derivative capture how changes in the hidden state at
time m affect the hidden state at time 𝑡. To
understand this relationship, Eq.(9) involves the
utilization of the Jacobian matrix, which represents
the derivative of the hidden state at time 𝑚 for the

hidden state at time 𝑡. The Jacobian matrix can be
decomposed into a sequence of derivatives, as
shown in Eq.(9):

ఌ௟೘

ఌ௟೟
=

ఌ௟೘

ఌ௟೘షభ

ఌ௟೘షభ

ఌ௟೘షమ
…

ఌ௟೟శభ

ఌ௟೟
=

∑
ఌ௟ೞ

ఌ௟ೞషభ

௠
௦ୀ௧ାଵ

(9)

In Eq.(9), the summation over 𝑠 from 𝑡 +

1 to m indicates that the derivative of the hidden

state at time 𝑠 concerning the hidden state at the time

(𝑠 − 1) is accumulated. This demonstrates the
progressive impact of each hidden state on the
following hidden states in the sequence, allowing

information to flow through time steps. By
combining Eq.(7) and Eq.(9), an Eigen
Decomposition Vector (EDV) can be obtained,
represented as Eq.(10).

𝐸𝐷𝑉 = 𝑁ி𝑑𝑖𝑎𝑔[𝑗ᇱ(𝑙௠ିଵ)] (10)

In Eq.(10), 𝑁 represents the weight matrix,

𝐹 represents the activation function, ‘𝑗’ represents

the derivative of the activation function, and 𝑙(௠ିଵ)

represents the hidden state at the time (𝑚 − 1).
The EDV represents the eigenvalues and
eigenvectors associated with the hidden state
dynamics. It characterizes how the hidden state
evolves and the impact of the weight matrix and
activation function on this evolution.

The Eigen Decomposition Vector (EDV)
provides valuable insights into the dynamics of the
sRNN and its ability to capture and process
sequential information. By analyzing the
eigenvalues and eigenvectors, researchers
understand the network’s behavior, stability, and
capacity to capture long-term dependencies.
Expanding the equations mentioned above and
considering the Eigen Decomposition Vector
contribute to the technical understanding of how the
hidden states in an sRNN are interconnected and
how information is propagated and processed over
time. These insights aid in developing more efficient
training strategies and architectural modifications to
improve the performance and effectiveness of sRNN
in modelling and learning from sequential data.

The eigenvalues generated by the EDV are
denoted as ∋ଵ, ∋ଶ, ∋ଷ, … . . ∋௧, where each
eigenvalue corresponds to its respective eigenvector:
ℎ𝑟ଵ, ℎ𝑟ଶ, ℎ𝑟ଷ … . . , ℎ𝑟௧. The eigenvalues and
eigenvectors provide insights into the behavior and
characteristics of the sRNN. The constraint |∋ଵ| >
|∋ଶ||∋ଷ| … |∋௧| indicates that the largest

eigenvalue ∋௦ has the most significant influence on
the dynamics of the system. This constraint
highlights the importance of the largest eigenvalue
in determining the stability and behavior of the
sRNN. Specifically, when ∋௦ is less than 1, a

vanishing gradient problem may occur, and when ∋௦
is greater than 1, an exploding gradient problem may
arise. These gradient-related issues can hinder the
training process and affect the network’s ability to
learn from sequential data effectively.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2939

To address the challenges posed by the
vanishing and exploding gradient problems,
alternative RNN architectures like LSTM and GRU
were developed. These architectures incorporate

specialized mechanisms to capture better and
preserve long-term dependencies and mitigate
gradient-related issues. Eq.(11) represents the
information flow within an LSTM architecture.

𝐿𝑆𝑇𝑀 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛:

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑗௠ =∈ ൫𝑁௝ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௝൯

𝑎௠ =∈ (𝑁௔. [𝑟௠ିଵ, 𝑝௠] + 𝑣௠)

𝐸௠
ᇱ = 𝑡𝑎𝑛ℎ(𝑁௘ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௘)

𝐸௠ = 𝑗௠ ∗ 𝐸௠ିଵ + 𝑚௙ ∗ 𝐸௠
ᇱ

𝑏௠ =∈ (𝑁௕ . [𝑟௠ିଵ, 𝑝௠] + 𝑣௕)

𝑟௠ = 𝑏௠ ∗ 𝑡𝑎𝑛ℎ(𝐸௠),

 (11)

where
 𝑗௠ represents the input gate, which controls

the flow of information from the input p_m
and the previous hidden state 𝑟(௠ିଵ) into
the current hidden state.

 𝑎௠ represents the forget gate, determining
how much the previous hidden state should
be forgotten.

 𝐸௠
ᇱ represents the candidate memory cell

that stores new information from the input
and the previous hidden state.

 𝐸௠ represents the current memory cell,
which is a combination of the previous
memory cell 𝐸(௠ିଵ) and the candidate’s

memory cell 𝐸௠
ᇱ weighted by the forget

gate 𝑚௙ .

 𝑏௠ represents the output gate, which
regulates the output from the current
memory cell.

 𝑟௠ represents the hidden state, which is the
output of the LSTM cell and is computed as
the element-wise product of the output gate
𝑏௠ and the hyperbolic tangent of the

current memory cell 𝐸௠.

Eq.(9) define the computations performed
within an LSTM cell, facilitating the capture and
management of long-term dependencies in
sequential data. By incorporating specialized
mechanisms and computations like those defined in
Eq.(9) for LSTM or Eq.(11) for GRU, these
architectures offer improved gradient flow,
enhanced memory retention, and better handling of
sequential information compared to standard sRNN.
The continuous advancement and exploration of
such architectures aim to overcome the limitations of
sRNN and enable more effective modelling and
learning from sequential data.

 In the context of the LSTM unit, the term 𝐸
refers to the cell state. Two activation functions
facilitate computation: the hyperbolic tangent and
the Sigmoid. The hyperbolic tangent is defined as

𝑡𝑎𝑛ℎ(𝑑) =
ଵି௛షమ೏

ଵା௛షమ೏
, while the Sigmoid function

is represented by ∈ (𝑑) =
ௗ

ଵା௛ష೏
. The input vector

is denoted as 𝑝, and the output vector is represented

by 𝑟. Additionally, 𝑁 and 𝑣 are used to symbolize
the weights and their associated biases in the LSTM
unit.

𝐺𝑅𝑈 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛:

⎩
⎨

⎧
𝑎௠ =∈ (𝑁௔. [𝐸௠ିଵ, 𝑝௠] + 𝑝௠)

𝑖௠ =∈ (𝑁௜ . [𝐸௠ିଵ, 𝑝௠])

𝐸௠
ᇱ = 𝑡𝑎𝑛ℎ(𝑁. [𝑖௠ ∗ 𝐸௠ିଵ, 𝑝௠])

𝐸௠ = (1 − 𝑎௠) ∗ 𝐸௠ିଵ + 𝑎௠ ∗ 𝐸௠
ᇱ ,

(12)

In the given scenario, the input vector is represented
as 𝑝, and the computed prediction is denoted as 𝐸௠.

The update function is symbolized by 𝑎௠, while the

associated weight is defined as 𝑁. The GRU, like the
LSTM in Eq.(11), uses hyperbolic tangent and

Sigmoid activation functions to achieve efficient
data compression.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2940

Algorithm 1: Recurrent Neural Network
(RNN)

Input:
 trainingdata: The training data for the

RNN.
 numepochs: The number of epochs to

train the RNN.
 learningrate: The learning rate for

updating the RNN weights.
 hiddensize: The number of hidden units

in the RNN.
 numlayers: The number of layers in the

RNN.
 batchsize: The size of each training

batch.

Output:

 trainedrnn: The trained RNN model.

Procedure:

Step 1: Initialize the RNN model with
random weights:
Create an RNN with numlayers
layers and hiddensize hidden units
per layer.
Initialize the weights randomly.

Step 2: Split the training data into batches
of size batchsize.

Step 3: Repeat the following steps for
numepochs:
a. Shuffle the training batches.
b. For each batch in the shuffled

training batches:
 Reset the hidden state of

the RNN.
 For each input sequence

in the batch:
 Forward pass:

 Pass the input
sequence through the
RNN to obtain the
predicted output.

 Compute the loss
between the predicted
output and the target
output.

 Backward pass:
 Compute the

gradients of the loss
concerning the RNN
parameters.

 Update the RNN
weights using an
optimizer (e.g.,

stochastic gradient
descent) and the
computed gradients.

c. Print the average loss over all
batches for the current epoch.

Step 4: Return the trained RNN model.

The computational complexity is one
significant challenge when applying RNN for
training on a huge dataset. With a large dataset, the
sheer number of data points and the length of each
sequence can dramatically increase the
computational requirements for training the RNN.
The forward and backward passes, involving
numerous matrix operations, become
computationally expensive and time-consuming.
This challenge often necessitates the utilization of
specialized hardware or distributed computing
setups to handle the computational load efficiently.
Moreover, the increased complexity can lead to
longer training times, making it more difficult to
iterate and experiment with different architectures or
hyperparameters. Addressing this challenge requires
careful optimization and resource allocation to
efficiently process the vast amount of data during
training.

Adaptive Fish Swarm Optimization

(AFSO) offers a promising approach to overcoming
the computational challenges of training a Recurrent
Neural Network (RNN) on a huge dataset. AFSO
employs a population-based optimization technique
inspired by the collective behavior of fish. By
simulating the movement and interaction of fish
within a search space, AFSO can efficiently explore
and exploit the dataset, enabling the identification of
optimal RNN parameters. The algorithm’s adaptive
nature allows it to dynamically adjust its search
strategy based on the evolving characteristics of the
dataset, leading to improved convergence and
reduced computational burden. By harnessing the
power of swarm intelligence, AFSO offers a scalable
and efficient solution for training RNNs on large
datasets, enabling researchers and practitioners to
effectively tackle the computational challenges and
unleash the full potential of their data.

3.2. Adaptive Fish Swarm Optimization (AFSO)

AFSO mimics fish behaviour such as
searching, swarming, and following to optimize the
search domain; this is a specialized use of the swarm
intelligence approach. It can quickly converge on a
solution and is capable of organizing itself. The
AFSO first produces a school of artificial fish, each
using three behaviours to construct its local solution,

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2941

before the school’s self-organized system exchanges
data and arrives at the global solution.

3.2.1. FSO Preliminaries

The settings of a standard FSO are initially
set with a school of simulated fish. Take into account
a hypothetical artificial fish, 𝑃 =
(𝑃ଵ, 𝑃ଶ, … . , 𝑃௧), and a fitness function, 𝐺(𝑃),
which stands for the concentration of food at a
particular place. Artificial fish sense a distance of 𝑃௦,

move in steps of 𝑌௦௪ = |𝑃௦ − 𝑃௪|, seek
exclusively within a volume of space equal to or
smaller than their vision, and take 𝜃 steps per
second. There are three main ways in which fish
strive to select the spot that can provide for their
nutritional demands.

(a). Searching

Finding what you’re looking for is one of
the most fundamental animal behaviours. In its
pursuit of sustenance, an artificial fish will
continually go toward a dense concentration within
its field of vision. Ai fish can detect where there is a
high concentration of food inside their optical field,
and they will swim to that location. Searching is a
random search with a bias towards locations with
abundant food sources. It can be mathematically
expressed as Eq.(13) and Eq.(14).

𝑃௡௘௫௧

= 𝑃௦

+ 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃௪ − 𝑃௦

‖𝑃௪ − 𝑃௦‖
, 𝐺(𝑃𝑤)

> 𝐺(𝑃𝑠)

(13
)

𝑃௡௘௫௧

= 𝑃௦ + 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝, 𝐺(𝑃𝑤)
≤ 𝐺(𝑃𝑠)

(14
)

where 𝑃𝑠 represents the location of a robotic fish,

𝐺(𝑃𝑠) represents the concentration of food, and

𝑅𝑎𝑛𝑑() is a random number between 0 and 1. The
fish’s visual range is incremented to a new random
point 𝑃𝑤. When the condition 𝐺(𝑃𝑤) > 𝐺(𝑃𝑠)
holds, the fish advances one position in the direction
of 𝑃𝑤, to 𝑃 next. When Eq.(13) and Eq.(14) fail, a
random step is taken within the observable range
𝐺(𝑃𝑤) ≤ 𝐺(𝑃𝑠) holds.

(b). Swarming

Fish often travel in schools or swarms. Fish
have developed to the point where schools form near
large food concentrations. Each artificial fish needs
to be as near to the centre of the school as possible,

with as little space between them as feasible. This
swarming behaviour is expressed in Eq.(15).

𝑃௡௘௫௧

= 𝑃௦ + 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃௎ − 𝑃௦

‖𝑃௎ − 𝑃௦‖
,

𝐺(𝑃௎) > 𝐺(𝑃𝑠)𝑎𝑛𝑑
𝑡𝑒

𝑡
< 𝜃

(15)

where 𝑃௎ is the position of the centre of a fish

swarm, 𝐺(𝑃௎) is the concentration of food, and 𝑡௘

is the total number of people visible at 𝑃௎. If

𝐺(𝑃௎) > 𝐺(𝑃௦) and 𝑡𝑒
𝑡ൗ < 𝜃, the fish travels to

the centre location 𝑃௎ because it is less congested
and has a more tremendous amount of food than the
present place 𝑃௦. If not, the fish is moved to a new
spot using a searching behaviour.

(c). Following

The action that follows is directed. When
one fish is near a lot of food, its neighbours will rush
to join it. Each artificial fish must swim to a location
with a denser concentration of food, away from any
potential competition. Eq.(16) express the following
behaviour of artificial fish.

𝑃௡௘௫௧

= 𝑃௦

+ 𝑅𝑎𝑛𝑑(). 𝑠𝑡𝑒𝑝.
𝑃𝑚𝑎𝑥 − 𝑃௦

‖𝑃𝑚𝑎𝑥 − 𝑃௦‖
, 𝐺(𝑃

> 𝐺(𝑃𝑠) 𝑎𝑛𝑑
𝑡𝑒

𝑡
< 𝜃

(16
)

A school of fish’s optimal location is

denoted by 𝑃௠௔௫ , and the concentration of food

available to it is given by 𝐺(𝑃௠௔௫). Higher food
concentration and reduced crowding at
𝐺(𝑃 𝑚𝑎𝑥) > 𝐺(𝑃𝑠) and 𝑡𝑒/𝑡 < 𝜃 means that

𝑃௠௔௫ is in good condition and will advance one step

towards 𝑃௠௔௫ . Otherwise, the fish will engage in a
searching behaviour to figure out where it should go
next.

On top of that, AFSO needs to publish a
bulletin that keeps track of the ideal location and
fitness of artificial fish throughout time. After acting,
each fish updates the bulletin and checks its status
against the overall average. If the fish’s present
condition is better than what was stated in the
bulletin, the value will be changed. The optimal
solution, the optimal state and the fitness on the
bulletin should be produced at the end of the
procedure.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2942

FSO is generally advantageous because of

its quick search for a feasible solution range, high
resilience, low sensitivity to beginning conditions,
and fast convergence time. It works well for
addressing optimization issues that need a high
degree of precision. Later in the AFSO’s time frame,
it may experience a sluggish convergence rate and
be trapped in a restricted accuracy. This paper
proposes a modified AFSO method to address these
issues.

3.2.2. AFSO

This paper presents a new version of AFSO
to enhance its convergence speed and accuracy. A
better AFSO is based on the following ideas: The
artificial fish’s vision field and step size are initially
under the control of an adaptive function so that
convergence speed and accuracy may be considered.
With more iterations, the moving step size and the
artificial fish’s vision shrink. Second, the artificial
fish’s swarming and following behaviour’s
movement strategy is enhanced to speed up
convergence. No consideration is given to
congestion, and the propensity to search has been
turned off. Third, This research enhances the
algorithm’s searching behaviour to boost efficiency.
If a better option is not identified, the robotic fish
will attempt again using its improved vision and
more significant steps. Finally, an explanation for
how species go extinct and recover is offered. At the
end of each cycle, the least suitable artificial fish
would be eliminated, and a new, more flexible
artificial fish would be created to maintain
population health.

(a). Adaptive Moving and Visual

The investigation of the fundamental AFSO
showed that the algorithm’s convergence is
significantly impacted by the visual appearance of
artificial fish and the maximum step size of the
algorithm. A consistent setting for the sight and the
step might lead to an unwanted extreme. Larger
visual and step sizes early in AFSO may hasten to
swarm and following behaviour convergence,
allowing artificial fish to quickly converge to the
local and global optimum position within a few
repetitions. Later, as both visual and step sizes are
reduced, searching behaviour becomes more
common. The artificial fish that swam around the
outlier precisely pinpointed the position of the
neighbouring outlier, allowing them to zero in on the
best possible value.

 To guarantee quick convergence and a
good solution, gradually decreasing the artificial
fish’s visual and step size is essential. This research
provides a new technique based on a piecewise
adaptive function for modifying the appearance and
the size of the steps taken by artificial fish. This
makes it possible for the size and visibility of the
steps to improve with increasing iteration count. Size
adaptive steps and visualization are mathematically
expressed in Eq.(17) and Eq.(18).

𝑣𝑖𝑠𝑢𝑎𝑙

= 𝑀𝑎𝑥_𝑅. 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(𝑀𝑖𝑛ோ/𝑀𝑎𝑥_𝑅)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)

(17
)

𝑠𝑡𝑒𝑝

= 𝑀𝑎𝑥ா . 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(𝑀𝑖𝑛_𝐸/𝑀𝑎𝑥_𝐸)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)

(18
)

wherein 𝑀𝑎𝑥_𝑅 and 𝑀𝑖𝑛_𝑅 denote the most

major and most minor possible steps and 𝑀𝑎𝑥_𝐸

and 𝑀𝑖𝑛_𝐸denote the most extensive and smallest
possible visual value. To improve the artificial fish’s
search capabilities, it is possible to raise the values
of 𝑀𝑎𝑥_𝑅 and 𝑀𝑖𝑛_𝑅 because the function has
fast initial decay of parameters due to a power-law
decay curve.

 The artificial fish in the fish swarm-based
attribute reduction approach is a binary sequence.
Artificial fish are kept at a distance that is a multiple
of 1 times the weighted average distance between
them. That’s why both the step size and the visual
must be whole numbers in the programme. Attribute
reduction in a neighbourhood rough set using AFSO
is performed with a step size of 1 and a visual
threshold of 1. Eq.(19) and Eq.(20) express the same.

 𝑣𝑖𝑠𝑢𝑎𝑙 =

𝑖𝑛𝑡 ቀ𝑀𝑎𝑥_𝑅. 𝑖𝑡𝑒𝑟
௟௢௚(ଵ/ெ௔௫_ோ)

௟௢௚(ெ௔௫_௚௘௡)
ቁ

(19
)

𝑠𝑡𝑒𝑝

= 𝑖𝑛𝑡 ቆ𝑀𝑎𝑥_𝐸. 𝑖𝑡𝑒𝑟
𝑙𝑜𝑔(1/𝑀𝑎𝑥_𝐸)

𝑙𝑜𝑔(𝑀𝑎𝑥_𝑔𝑒𝑛)
ቇ

(20
)

(b). Adaptive Swarming and Following Actions

The swarming and following behaviours
affect the convergence rate in the artificial fish
swarm approach. In the search area, the artificial fish
swim in schools following one another. The artificial
fish can quickly advance to a near-extreme position
by moving towards the group’s core, where higher-
fitness partners are likely to be found. Artificial fish
will engage in swarming behaviour and go to the
centre of the group if it determines that the

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2943

conditions there are better than the present place and
the centre is not excessively crowded.

 When the distance 𝑦௦,௨ = |𝑃௨ −

𝑃௦|among the centre point of all the partners (𝑃௎)
within visual and the current position of the artificial

fish(𝑃௦) is between visual and step ൫𝑠𝑡𝑒𝑝 <

𝑦௦,௨ < 𝑣𝑖𝑠𝑢𝑎𝑙൯, the artificial fish must make a
large number of motions to reach the centre position.
In addition to slowing down the algorithm’s
convergence rate, this might cause the artificial fish
to end up at a local extreme position in its motions.
This swarming behaviour improves the moving step
size, as shown in Eq.(21).

 𝑠𝑡𝑒𝑝 = 𝑅𝑎𝑛𝑑(). |𝑃𝑈 −
𝑃𝑠|

(21)

where 𝑅𝑎𝑛𝑑() is provided to prevent the swarming
tendency from settling on the local extreme,
modifying the swarm’s movement step can increase
the algorithm’s convergence speed.

 The parameter study of the artificial fish
swarm technique reveals that it is challenging to
guarantee both resolution speed and accuracy using
the crowding factor. For neighbourhood rough set
attribute reduction, just the best reduction subset is
needed (i.e., the best place to release a school of
artificial fish). As a result, the density factor is not
considered during the attribute reduction of the
neighbourhood rough set using the refined fish
swarm. If the partner’s central location in the visual
field has more excellent fitness than the present

position, as determined by ൫𝐺(𝑃௎) > 𝐺(𝑃௦)൯, the
artificial fish will take one step in the direction of the
partner’s central position.

Swarming often exhibits a searching
behaviour. The searching behaviour is activated
when the present location of the artificial fish is
lower than the centre position of the fish group being
searched. Searching, swarming, and following have
all measured and compared their AFSO
performance. Swarming behaviour may also involve
searching, significantly lengthening the algorithm’s
runtime. The artificial fish will stay where it is since
this modification to the swarming behaviour will
prevent them from hunting for food.

Better swarming behaviour is represented
by Eq.(22) and Eq.(23).

𝑃௡௘௫௧

= 𝑃௦ + 𝑠𝑡𝑒𝑝.
𝑃𝑈 − 𝑃𝑠

‖𝑃𝑈 − 𝑃𝑠‖
 , 𝐺(𝑃𝑈)

> 𝐺(𝑃𝑠)

(22)

𝑃௡௘௫௧ = 𝑃௦, 𝐺(𝑃𝑢) ≤ 𝐺(𝑃𝑠) (23)

Similar to how clustering behaviour is
conceptualized and improved, the following
behaviour is no longer detailed since it is assumed to
be understood.

(c). Advanced Searching

The artificial fish will move on to the next
spot in the visual field after exhausting its attempts
at scanning the viable domain space. A parameter
study of the artificial fish swarm method shows that
the number of attempts significantly affects
searching behaviour and, in turn, the outcomes of
searching behaviour, which may quickly lead to
unnecessary and inefficient searching. This means
the programme may make more attempts before
giving up. Suppose the artificial fish hasn’t located
the next better place after try_number iterations of
searching. In that case, it will attempt again, but this
time with a more refined grasp of its visual field,
which might lead to erroneous results and a
slowdown in the algorithm’s execution time.
Because of this, the artificial fish’s updated
perceptual sphere is now 𝑣𝑖𝑠𝑢𝑎𝑙௡௘௪ =
𝑣𝑖𝑠𝑢𝑎𝑙 + 𝑠𝑡𝑒𝑝. If the fish were to be identified in
the new visual area, it would move forward one step
to a better place with high fitness, with a maximum
step size of 𝑠𝑡𝑒𝑝௡௘௪ = 2 × 𝑠𝑡𝑒𝑝. If the optimal
location isn’t found after try_number iterations, the
phoney fish will wander in the expanded field of
view.

3.2.3. Extinction and Spontaneous Recovery

Those members of biological communities
that are more flexible to environmental shifts are
more likely to persist. Individuals with lower
adaptability are selected out of existence over time
because they cannot quickly adjust to a changing
environment. Based on this reasoning, this research
has coined “elite fish” to describe highly adaptable
artificial fish and “inferior fish” to describe those
with little adaptation. With their superior capacity
for change, elite fish benefit significantly from
applying AFSO to optimization issues. Within a few
iterations, it might be able to find a more optimal
spot. In contrast, weaker fish typically require more
iterations to locate a more suitable place for

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2944

adaptation, lengthening the algorithm’s running
duration.

 The algorithm’s runtime is reduced thanks
to the inclusion of an extinction mechanism. After
each cycle of AFSO, the artificial fish is ranked in
order of their fitness as determined by their current
location. The least-suited artificial fish is considered
subpar and hence should be eradicated. Introducing
extinction increases the flexibility of the remaining
artificial fish, which benefits the swarm. The number
of fish, however, decreases due to the extinction
mechanism. As the number of iterations rises, the
algorithm’s randomness decreases, and the fish
swarm’s size decreases. The search for the optimal
position of the solution often proves fruitless. A
regeneration process produces the same number of
highly adaptable artificial fish. This helps the fish
maintain its size and makes it more versatile in its
environment.

 After each iteration of the AFSO-based
attribute decrease of the rough neighbourhood set,
the fitness ratings for every artificial fish site are
ordered in ascending order. After the artificial fish
has been brought back to life, you can evaluate how
well each potential new home suits the fish. Any
artificial fish will perish and be replaced by the
artificial fish listed on the notice board if their fitness
levels are equivalent. Otherwise, the least fit
artificial fish will be wiped out and replaced by a
new generation of more fit artificial fish. By
integrating death and spontaneous recovery, this
research can ensure a high fitness level while
shortening each cycle’s duration.

3.2.4. Reduced Neighbourhood Impact
(a). Characteristics

𝑇𝑌 = (𝑂, 𝑈 ∪ 𝑌, 𝜃) represents a

neighbourhood decision system, where 𝑂 =
{𝑝ଵ, 𝑝ଶ, … . , 𝑝௧} is a nonempty finite set of objects

called the universe, 𝑈 = {𝑑ଵ, 𝑑ଶ, … . , 𝑑௖} is the

set of condition features, 𝑌 is the set of decision

features, and 𝜃 is the neighbourhood parameter
(0 ≤ 𝜃 ≤ 1). Local dependency of 𝑌 on 𝑉 is
defined as Eq.(24).

𝜇𝑉(𝑌)ఏ =
|𝑀𝐾𝐸௏(𝑌)ఏ|

|𝑂|൘ (24)

Given the neighbourhood’s dependence

𝜇𝑉 − {𝑑}(௒)ഇ < 𝜇𝑉(𝑌)ఏ, the attribute 𝑑 is

critical to the set 𝑉; otherwise, the attribute is extra

to the set 𝑉 and can be removed from the set 𝑉.
Local optimization is a common problem for
standard neighbourhood feature reduction
algorithms. This research incorporates better AFSO
into neighbourhood feature reduction to address this
issue. The attempt to determine the efficiency of
attribute reduction and the likelihood of discovering
the optimal reduction is significantly bolstered by
using enhanced AFSOs well-suited for distributed
processing of optimization issues. The most pressing
issue is determining the spacing between feature
subsets to employ the improved AFSO in
neighbourhood rough set feature reduction. To
estimate the distance between two binary values, this
research presents the Hamming metric based on the
approach given in the reference.

(b). Location Identification

In a system for making decisions with 𝑡
attributes, Attribute reduction’s holy grail is a nested
collection of conditional attributes, and it’s detailed
here, and there are 2௧ possible combinations of
attribute subsets. Given that each character can be
symbolized by a binary integer, the location of each
artificial fish may be expressed as a sequence of 𝑡

bits. To indicate whether or not the 𝑠𝑡ℎ feature of
the data system has been designated as a critical
feature, a ‘1’ is stored in the 𝑠 bit of the binary
number. Otherwise, a ‘0’ is stored there. With six
conditional attributes, {𝑑ଵ, 𝑑ଶ, … . , 𝑑଺} in the
decision system, the resulting binary string
{𝑑ଵ, 𝑑ଶ, 𝑑଺} corresponds to the location of the
artificial fish as “011001” and vice versa.

(c). Hamming Distance

This research uses the Hamming distance to
determine how far apart two fish are. Take the binary
representation of the locations of two simulated fish,
𝑃௦ and 𝑃௪. When comparing 𝑃௦ and 𝑃௪, the
Hamming distance is defined as Eq.(25).

𝑙(𝑃௦, 𝑃௪) = ෍ 𝑝௦ ⊕ 𝑝௪

௧

௦,௪ୀଵ

 (25)

wherein ⊕ is a 𝑃𝐾𝐵 operation, 𝑝௦, 𝑝௪ 𝜔 {0,1}.

The value 𝑝௦in the notation 𝑃௦ denotes a binary bit.

(d). Mid-point of Swarm

The enhanced AFSO relies on seeing the
centre of the school of fish to move the artificial fish.
Finding the fish school’s epicentre is crucial to
understanding their swarming behaviour. Eq.(26)
define the centre position of 𝑡 fishes as follows: Let

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2945

𝑃ଵ, 𝑃ଶ, … . , 𝑃௧ be some binary integers

representing the locations of 𝑡 fishes.

𝑃௎ = ൝𝑢௦|𝑖𝑓
1

2
෍ 𝑝௦

௪

௧

௦ୀଵ

> 0.5, 𝑡ℎ𝑒𝑛 𝑢𝑠

= 1, 𝑒𝑙𝑠𝑒 = 0ൡ

(26)

where 𝑝௦
௪ stands for the 𝑠th piece of fish position

𝑃௦, where 𝑃௎ is the geometric centre of 𝑡 fishes.

(e). Fitness Function-based Update

The first step in the improved AFSO is
creating the fitness function, which significantly
influences the algorithm’s direction of convergence.
Neighbourhood rough set attribute reduction aims
primarily to obtain the best reduction. The
superfluous conditional characteristics are removed
to achieve a reduced set of conditional attributes
while maintaining the decision system’s
categorization capability. The two key issues to
consider while making attribute reduction on rough
neighbourhood sets are whether or not the resulting
attribute set contains duplicate attributes and
whether or not the resulting attribute set retains the
classification capacity of the original attribute set.
Thus, the upgraded AFSO for the rough local set
should accomplish two things in its design:

First, it’s preferable if the reduction result

has a minimum number of conditional attributes. In
addition, the reduction set’s classification
performance aligns with that of all conditional
attribute sets. Eq.(27) specifies the fitness function
needed to accomplish the core objective.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜇𝐵(𝑌)𝜃 (27)

Condition feature set 𝑉 neighbourhood

classification quality (or neighbourhood
dependency) on decision 𝑌 is denoted by 𝜇𝐵(𝑌)𝜃
in Eq.(24).
(f). Termination Criteria

These termination criteria balance finding
the most negligible possible reduction set while
maintaining classification accuracy. By setting a
maximum iteration limit, avoiding excessive
iterations, and checking for convergence and
consistency, the algorithm’s running time is reduced,
and an efficient solution to the problem is achieved.

The termination criteria for AFSO can be
summarized as follows:

 Maximum Iterations: AFSO stops when
the number of iterations exceeds the
maximum value specified at the beginning.
This criterion ensures that the algorithm
doesn’t run indefinitely and has a
predefined limit on the number of
iterations.

 Convergence: AFSO terminates when the
bulletin board record remains unchanged
for several iterations. This means that if the
solution found by the algorithm remains the
same for a certain number of consecutive
iterations, it is considered converged, and
further iterations are unnecessary. This
criterion helps in identifying a stable
solution.

 Consistency: AFSO will stop if the exact
answer is found in three consecutive
iterations. This criterion indicates that the
algorithm has reached a consistent solution,
and there is no need for further iterations.

Algorithm 2: Adaptive Fish Swarm

Optimization (AFSO)
Input:

 Population size (N)
 Maximum and minimum step sizes

(MaxR, MinR)
 Maximum and minimum visual values

(MaxE, MinE)
 Maximum number of iterations

(Maxgen)
 Try number for searching behavior

(trynumber)

Output:

 Optimal solution
 Optimal state
 Fitness value

Procedure:

Step 1: Initialize the AFSO parameters:
Set MaxR, MinR, MaxE, MinE,
Maxgen, and trynumber.

Step 2: Generate an initial population of
artificial fish with random
positions and velocities.

Step 3: Evaluate the fitness of each
artificial fish using the fitness
function G(P).

Step 4: Perform the following steps for
each iteration until the maximum
number of iterations is reached:

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2946

a. Update the visual and step
sizes based on the current
iteration:

 Adjust the visual size
based on the iteration
count and the defined
MaxE and MinE values.

 Adjust the step size
based on the iteration
count and the defined
MaxR and MinR values.

b. For each artificial fish:
 Perform searching

behavior:
 Generate a random

point Pw within the
visual range.

 Compare the fitness
of Pw with the
current position Ps.

 If G(Pw) is better
than G(Ps), move
the fish one step
towards Pw.

 Otherwise, take a
random step within
the observable
range.

 Perform swarming
behavior:
 Calculate the

distance between
the center position
of all partners
within the visual
range and the
current position of
the fish.

 If the distance falls
within the range
defined by the step
size and visual size,
adjust the step size
accordingly.

 Move the fish one
step towards the
center position if
the fitness of the
center position is
better.

 Perform the following
behavior:
 Move the fish one

step towards the
best-known position

if its fitness is
better.

 Perform advanced
searching behavior:
 Expand the visual

range and increase
the step size if the
fish can’t find a
better position after
the try_number
iterations.

 If the fish is within
the expanded visual
range, move it one
step towards a
better position.

 Update the fitness of the
fish after the
movements.

c. Update the bulletin board to
keep track of the optimal
position and fitness.

d. Check if any fish needs to be
eliminated based on fitness
ranking and apply the
extinction mechanism.

e. Generate new artificial fish to
maintain the population size.

Step 5: Return the optimal solution, the
optimal state, and the fitness
from the bulletin board.

3.3. Fusion of AFSO and RNN

The Adaptive Fish Swarm Optimization-
based Recurrent Neural Network (AFSO-RNN) is a
hybrid algorithm that combines the power of Fish
Swarm Optimization (FSO) and Recurrent Neural
Networks (RNNs) to address complex optimization
problems. AFSO-RNN leverages the ability of FSO
to explore the search space efficiently and the
predictive capabilities of RNNs to solve problems
with temporal dependencies. In AFSO-RNN, the
fish population acts as agents that collectively search
for optimal solutions. Each fish represents a set of
RNN parameters, including weights and biases. The
algorithm starts by initializing the fish population
randomly within the predefined search space. The
fitness of each fish is evaluated based on RNN
performance metrics, such as mean squared error or
cross-entropy loss.

The AFSO component of the algorithm
introduces an adaptive mechanism to enhance
exploration and exploitation capabilities. The fish
update their positions using a combination of
individual movement and group behavior. They

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2947

adapt their swimming speed and step size based on
the fitness of the leader fish and the proximity to
other fish in the swarm. This adaptive mechanism
enables efficient search space exploration and
convergence towards optimal solutions. The RNN
component of AFSO-RNN processes the input data
and learns the underlying patterns by adjusting its
parameters. The RNN’s ability to capture temporal
dependencies makes AFSO-RNN particularly
suitable for sequential and time-series data. Through
iterations of the AFSO-RNN algorithm, the fish
swarm dynamically adapts its behavior, and the
RNN continuously updates its parameters based on
the current fish positions. This cooperative
interaction between the swarm and the RNN leads to
exploring diverse solutions and exploiting promising
regions in the search space.

One significant advantage of the Adaptive

Fish Swarm Optimization-based Recurrent Neural
Network (AFSO-RNN) is its ability to address
computational complexity in optimization tasks.
Traditional optimization algorithms often struggle
with large and complex datasets due to their high
computational requirements. However, AFSO-RNN
overcomes this challenge by leveraging the efficient
exploration capabilities of the Fish Swarm
Optimization (FSO) algorithm and the temporal
dependency modelling of Recurrent Neural
Networks (RNNs). By combining these two
techniques, AFSO-RNN achieves a more efficient
and effective search process, leading to improved
convergence speed and reduced computational
complexity. This allows AFSO-RNN to handle
large-scale datasets and complex optimization
problems with higher efficiency, making it a
valuable tool in various domains where
computational complexity is a significant concern.

Algorithm 3: AFSO-RNN

Input:
 Dataset: Training dataset with input-

output pairs
 Number of fish (population size)
 Maximum number of iterations
 Number of hidden units in the RNN
 Number of output units in the RNN
 Maximum and minimum bounds for

RNN parameters (weights and biases)
Output:

 Optimal RNN parameters

Procedure:

Step 1: Initialize the fish population randomly
within the search space defined by the
maximum and minimum bounds for
RNN parameters.

Step 2: Evaluate the fitness of each fish in the
population using a fitness function
based on RNN performance, such as
mean squared error or cross-entropy
loss.

Step 3: Set the fish with the best fitness as the
leader fish.

Step 4: Repeat Step 5 to Step 12 until the
maximum number of iterations is
reached:

Step 5: For each fish in the population:
Step 6: Calculate the step vector by

considering the distance to the leader
fish and the movement of nearby fish.

Step 7: Update the fish’s position by adding
the step vector to its current position.

Step 8: Clip the fish’s position to ensure it
stays within the defined search space.

Step 9: Evaluate the fitness of the updated
fish.

Step 10: Perform a local search around the
leader fish by adjusting its position
within a small neighborhood and
evaluating its fitness.

Step 11: If the leader fish’s fitness has
improved, update its position
accordingly.

Step 12: If the termination condition is met, exit
the loop.

Step 13: Return the RNN parameters
corresponding to the leader fish with
the best fitness.

4. ABOUT THE DATASET

The “Course Reviews on Coursera”
dataset, consisting of both the Coursera courses and
Coursera reviews datasets, presents an excellent
opportunity to build personalized recommendation
systems for users on the platform. The Coursera
courses dataset provides detailed information about
622 courses, including the course name, the
institution offering the course, course URL, and
course ID. This dataset can serve as a foundational
resource for understanding the characteristics and
attributes of different courses. Combined with the
Coursera reviews dataset, which includes 1.45
million reviews and ratings, it becomes possible to
develop recommendation algorithms that leverage
user preferences, historical data, and review
sentiments to deliver personalized course
recommendations. By analysing users’ course

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2948

ratings and reviews, these algorithms can identify
courses that align with an individual’s interests,
learning goals, and preferred teaching styles. The
review texts can extract key features, topics, or
themes associated with each course. This text
analysis can help create course profiles, which can
be used to compare courses, identify similar courses
based on content, or even recommend courses
complementary to a user’s previous choices. By
incorporating temporal information from the date
reviews field, personalized recommendation
systems can also consider the recency of reviews and
account for evolving user preferences over time.

 Table 1. Dataset: Coursera Courses

Feature
Data
Type

Description

𝑛𝑎𝑚𝑒 character
The name of the
course

𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 character
The institution
offering the course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑢𝑟𝑙 character
The URL of the
course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character
The unique
identifier for the
course

Table 2. Dataset: Coursera Reviews

Feature
Data
Type

Description

𝑟𝑒𝑣𝑖𝑒𝑤𝑠 character
The text of the
course review

𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟𝑠 character
The name of the
reviewer who wrote
the review

𝑑𝑎𝑡𝑒_𝑟𝑒𝑣𝑖𝑒𝑤𝑠date
The date when the
review was posted

𝑟𝑎𝑡𝑖𝑛𝑔 integer

The rating score is
given by the
reviewer of the
course

𝑐𝑜𝑢𝑟𝑠𝑒_𝑖𝑑 character

The unique
identifier for the
course associated
with review

5. RESULTS AND DISCUSSION

5.1. Classification Accuracy and F-Measure
Analysis

Figure 1 illustrates the graph for
Classification Accuracy (CA) and F-Measure (FM)
Analysis, showcasing the performance of three

distinct classifiers: NBCA, RFCA, and AFSO-RNN.
These classifiers employ different mechanisms to
accomplish classification tasks.

Classification Accuracy (CA) is a

performance measure that indicates the proportion of
correctly classified instances from the total instances
in a dataset. It quantifies the overall accuracy of a
classification algorithm by calculating the ratio of
correctly classified instances to the total number of
instances. A higher CA value signifies a more
accurate classifier. On the other hand, F-Measure
(FM) combines precision and recall into a single
metric, providing a balanced evaluation of a
classifier’s performance, particularly in imbalanced
datasets. FM considers both precision, which
measures the accuracy of optimistic predictions, and
recall, which measures the ability to capture all
relevant positive instances. By calculating their
harmonic mean, FM yields a single value
representing the classifier’s effectiveness in
correctly identifying positive instances and
capturing their true distribution.

NBCA operates based on Bayes’ theorem
and assumes feature independence. It computes
conditional probabilities for each class given the
feature values. The results in Table 3 indicate a CA
of 50.833% and an FM of 51.315% for NBCA.
RFCA, on the other hand, is an ensemble learning
technique that constructs multiple decision trees by
randomly selecting subsets of training data and
features. Each decision tree evaluates the input
instance during classification, and the majority vote
determines the assigned class. The achieved
performance for RFCA is demonstrated as a CA of
65.003% and an FM of 64.728%.

AFSO-RNN combines the AFSO
algorithm, inspired by fish swarms, with a Recurrent
Neural Network (RNN). AFSO optimizes the
weights and biases of the RNN through iterative
fitness function optimization. The outcomes of
AFSO-RNN surpass the other classifiers, exhibiting
a CA of 95.364% and an FM of 95.467%.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2949

Figure 1. Classification Accuracy And F-Measure

The graph indicates the superior

performance of AFSO-RNN in terms of CA and FM
compared to NBCA and RFCA. This underscores
the effectiveness of integrating AFSO optimization
with the capabilities of RNNs. AFSO-RNN
demonstrates its ability to capture intricate patterns
and make accurate predictions. These findings
emphasize the practical application of AFSO-RNN
in classification tasks, particularly in domains where
high accuracy is paramount.

Table 3. Classification Accuracy And F-Measure Results

Classifiers CA FM

NBCA 50.833 51.315

RFCA 65.003 64.728

AFSO-RNN 95.364 95.467

5.2. Fowlkes-Mallows Index and Matthews
Correlation Coefficient Analysis

Figure 2 presents the Fowlkes-Mallows

Index (FMI) and Matthews Correlation Coefficient
(MCC) analysis graph for three different classifiers:
NBCA, RFCA, and AFSO-RNN.

Figure 2. Fowlkes-Mallows Index And Matthews

Correlation Coefficient

The Fowlkes-Mallows Index (FMI)
measures the similarity between two clusterings or
classifications. It assesses how much the
clustering/classification results agree with the
ground truth or known labels. It ranges from 0 to
100, with higher values indicating better agreement.
In classification algorithms, a higher FMI indicates
better accuracy and consistency of the algorithm’s
predictions. The Matthews Correlation Coefficient
(MCC) is a metric commonly used to evaluate the
performance of binary classification models. It
considers true positive, true negative, false positive,
and false negative predictions to compute a value
between -1 and +1. A value of +1 represents a perfect
prediction, 0 indicates a random prediction, and -1
represents a complete disagreement between the
predicted and actual labels. Higher MCC values
indicate the better overall performance of the
classifier.

NBCA is a probabilistic classification
algorithm based on Bayes’ theorem. It assumes that
the presence of a particular feature is independent of
the presence of other features. The FMI value of
51.317 indicates moderate agreement between the
NBCA’s predictions and the ground truth. It
suggests that the algorithm’s predictions align with
the actual labels to some extent but may have room
for improvement. Similarly, the MCC value of 1.663
implies that the classifier’s performance is above
random prediction but still has room for
enhancement. RBCA is an ensemble learning
algorithm that constructs multiple decision trees and
combines their predictions to make final

0

10

20

30

40

50

60

70

80

90

100

CA FM

R
es

u
lt

s
(%

)

Performance Metrics

NBCA RFCA AFSO-RNN

0

10

20

30

40

50

60

70

80

90

100

FMI MCC

R
es

u
lt

s
(%

)

Performance Metrics

NBCA RFCA AFSO-RNN

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2950

classifications. The FMI value of 64.730 indicates a
higher level of agreement between the RFCA’s
predictions and the known labels compared to
NBCA. It suggests that the RFCA produces more
accurate and consistent results. Moreover, the MCC
value 30.007 indicates significantly better
performance, indicating that the RFCA’s predictions
align well with the actual labels.

AFSO-RNN is a hybrid model that
combines the adaptive fish swarm optimization
technique with a recurrent neural network. The FMI
value of 95.468 suggests a high level of agreement
between AFSO-RNN’s predictions and the ground
truth. It indicates that the algorithm performs very
well in accuracy and consistency, with only a small
room for improvement. Similarly, the MCC value
90.728 indicates excellent overall performance,
indicating a strong alignment between the predicted
and actual labels.

Based on the information provided in Table
4, the AFSO-RNN classifier demonstrates the
highest level of agreement and performs
exceptionally well in accuracy and consistency. The
RFCA classifier also performs well, while the
NBCA classifier lags behind the other two classifiers
but exhibits moderate agreement and performance.

Table 4. Fowlkes-Mallows Index And Matthews
Correlation Coefficient Results

Classifiers FMI MCC

NBCA 51.317 1.663

RFCA 64.730 30.007

AFSO-RNN 95.468 90.728

6. CONCLUSION

The Adaptive Fish Swarm Optimization-
Inspired Recurrent Neural Network (AFSO-RNN)
approach presents a novel and effective method for
optimizing sentiment interpretation of Coursera
course reviews. By combining the adaptive
capabilities of fish swarm optimization with the
power of recurrent neural networks, AFSO-RNN
achieves remarkable results in sentiment analysis.
By integrating recurrent neural networks, the AFSO-
RNN model effectively captures the semantic
meaning and contextual information in the textual
data of course reviews. This enables extracting
relevant features and representations crucial for
accurate sentiment interpretation. The adaptive fish
swarm optimization component further enhances the
performance of the AFSO-RNN model by

dynamically adjusting network parameters during
training. Inspired by the collective behaviour of fish
swarms, this optimization technique explores and
exploits optimal solutions, improving sentiment
interpretation accuracy. The extensive experiments
conducted on a large dataset of Coursera course
reviews demonstrate the superiority of AFSO-RNN
over traditional sentiment analysis techniques. The
optimized sentiment interpretation provided by
AFSO-RNN offers valuable insights into learner
sentiments, facilitating informed decision-making
for instructors, administrators, and learners alike
regarding course selection and improvement. The
AFSO-RNN approach contributes significantly to
sentiment analysis in online learning environments.
By combining the strengths of recurrent neural
networks and adaptive fish swarm optimization,
AFSO-RNN provides a promising avenue for
enhancing the accuracy and efficiency of sentiment
analysis for Coursera course reviews, paving the
way for improved understanding and utilization of
learner feedback.

REFERENCES:

[1] K. Shaukat et al., “A Model to Enhance

Governance Issues through Opinion
Extraction,” in 11th Annual IEEE Information
Technology, Electronics and Mobile
Communication Conference, IEMCON 2020,
2020, pp. 511–516. doi:
10.1109/IEMCON51383.2020.9284876.

[2] H. Gibilisco, M. Laubenberger, V. Spiridonov,
J. Belga, J. O. Hallstrom, and P. R. Peluso, “A
Multi-Modal Approach to Sensing Human
Emotion,” in Proceedings - 2018 IEEE
International Conference on Big Data, Big Data
2018, 2019, pp. 2499–2502. doi:
10.1109/BigData.2018.8622451.

[3] M. B. López, G. Alor-Hernández, J. L. Sánchez-
Cervantes, and M. D. P. Salas-Zárate, “EduRP:
An educational resources platform based on
opinion mining and semantic web,” J. Univers.
Comput. Sci., vol. 24, no. 11, pp. 1515–1535,
2018, [Online]. Available:
https://www.scopus.com/inward/record.uri?eid
=2-s2.0-
85062656208&partnerID=40&md5=e2ca6d83
a4cb300d8d3b3be4d416b278

[4] M. Kastrati and M. Biba, “Natural language
processing for Albanian: a state-of-the-art
survey,” Int. J. Electr. Comput. Eng., vol. 12,
no. 6, pp. 6432–6439, 2022, doi:
10.11591/ijece.v12i6.pp6432-6439.

[5] E. Al-Buraihy, R. U. Khan, W. Dan, and M.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2951

Ullah, “An ML-Based Classification Scheme
for Analyzing the Social Network Reviews of
Yemeni People,” Int. Arab J. Inf. Technol., vol.
19, no. 6, pp. 904–914, 2022, doi:
10.34028/iajit/19/6/8.

[6] M. Chen and F. Fan, “Application of LCF
Model Based on Deep Learning in Campus
Network Platforms,” in 2022 IEEE 5th
International Conference on Information
Systems and Computer Aided Education,
ICISCAE 2022, 2022, pp. 113–117. doi:
10.1109/ICISCAE55891.2022.9927657.

[7] C. R. Singh and R. Gobinath, “Hypothesis
Testing of Tweet Text Using NLP,” Lecture
Notes on Data Engineering and
Communications Technologies, vol. 137. pp.
95–108, 2023. doi: 10.1007/978-981-19-2600-
6_7.

[8] A. Lawani, M. R. Reed, T. Mark, and Y. Zheng,
“Reviews and price on online platforms:
Evidence from sentiment analysis of Airbnb
reviews in Boston,” Reg. Sci. Urban Econ., vol.
75, pp. 22–34, 2019, doi:
10.1016/j.regsciurbeco.2018.11.003.

[9] S. M. Sinha, V. P. Kale, R. S. Sangle, S. R.
Bhoite, V. G. Kottawar, and P. B. Deshmukh,
“Celestial Learning: Secure eLearning platform
using Node-Express,” in 2021 5th International
Conference on Computer, Communication, and
Signal Processing, ICCCSP 2021, 2021, pp.
171–176. doi:
10.1109/ICCCSP52374.2021.9465500.

[10] S. Peng et al., “A survey on deep learning for
textual emotion analysis in social networks,”
Digit. Commun. Networks, vol. 8, no. 5, pp.
745–762, 2022, doi:
10.1016/j.dcan.2021.10.003.

[11] G. C. Montes and V. Maia, “The reaction of
disagreements in inflation expectations to fiscal
sentiment obtained from information in official
communiqués,” Bull. Econ. Res., 2023, doi:
10.1111/boer.12381.

[12] L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless Sensor
Network Using Feisty Particle Swarm
Optimization Protocol,” Proc. 4th Int. Conf. Inf.
Manag. Mach. Intell., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[13] A. Senthilkumar, J. Ramkumar, M. Lingaraj, D.
Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[14] D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish Swarm
Optimization-Based Routing Protocol for
Mobility Enabled Wireless Sensor Network,”
Int. J. Comput. Networks Appl., vol. 10, no. 1, p.
119, Jan. 2023, doi:
10.22247/ijcna/2023/218516.

[15] J. Ramkumar, S. Samson Dinakaran, M.
Lingaraj, S. Boopalan, and B. Narasimhan,
“IoT-Based Kalman Filtering and Particle
Swarm Optimization for Detecting Skin
Lesion,” 2023, pp. 17–27. doi: 10.1007/978-
981-19-8353-5_2.

[16] J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud Network,”
Int. J. Comput. Networks Appl., vol. 8, no. 6, pp.
795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[17] J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022, pp. 1–6, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9752899.

[18] P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning Machine
for Sentiment Analysis in Big Data,” 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[19] R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare applications,”
Inc. Internet Things Healthc. Appl. Wearable
Devices, pp. 109–121, 2019, doi: 10.4018/978-
1-7998-1090-2.ch006.

[20] J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio wireless
sensor network,” Int. J. Comput. Networks
Appl., vol. 8, no. 4, pp. 455–464, 2021, doi:
10.22247/ijcna/2021/209711.

[21] J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[22] J. Ramkumar and R. Vadivel, “CSIP—cuckoo
search inspired protocol for routing in cognitive
radio ad hoc networks,” in Advances in
Intelligent Systems and Computing, 2017, vol.
556, pp. 145–153. doi: 10.1007/978-981-10-

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2952

3874-7_14.
[23] J. Ramkumar, “Bee inspired secured protocol

for routing in cognitive radio ad hoc networks,”
Indian J. Sci. Technol., vol. 13, no. 30, pp.
2159–2169, 2020, doi:
10.17485/ijst/v13i30.1152.

[24] R. J, “Meticulous Elephant Herding
Optimization based Protocol for Detecting
Intrusions in Cognitive Radio Ad Hoc
Networks,” Int. J. Emerg. Trends Eng. Res., vol.
8, no. 8, pp. 4548–4554, 2020, doi:
10.30534/ijeter/2020/82882020.

[25] R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol. 10,
no. 1, pp. 1063–1074, 2021, doi:
10.12785/ijcds/100196.

[26] J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311, 2018,
doi: 10.1108/WJE-08-2017-0260.

[27] J. Ramkumar and R. Vadivel, “Performance
Modeling of Bio-Inspired Routing Protocols in
Cognitive Radio Ad Hoc Network to Reduce
End-to-End Delay,” Int. J. Intell. Eng. Syst., vol.
12, no. 1, pp. 221–231, 2019, doi:
10.22266/ijies2019.0228.22.

[28] J. Ramkumar and R. Vadivel, “Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks,” Wirel. Pers. Commun., vol.
120, no. 2, pp. 887–909, Apr. 2021, doi:
10.1007/s11277-021-08495-z.

[29] Y. S. Mehanna and M. B. Mahmuddin, “A
Semantic Conceptualization Using Tagged Bag-
of-Concepts for Sentiment Analysis,” IEEE
Access, vol. 9, pp. 118736–118756, 2021, doi:
10.1109/ACCESS.2021.3107237.

[30] U. Sehar, S. Kanwal, K. Dashtipur, U. Mir, U.
Abbasi, and F. Khan, “Urdu Sentiment Analysis
via Multimodal Data Mining Based on Deep
Learning Algorithms,” IEEE Access, vol. 9, pp.
153072–153082, 2021, doi:
10.1109/ACCESS.2021.3122025.

[31] F. Huang, X. Li, C. Yuan, S. Zhang, J. Zhang,
and S. Qiao, “Attention-Emotion-Enhanced
Convolutional LSTM for Sentiment Analysis,”
IEEE Trans. Neural Networks Learn. Syst., vol.
33, no. 9, pp. 4332–4345, 2022, doi:
10.1109/TNNLS.2021.3056664.

[32] T. Zhang, X. Gong, and C. L. P. Chen, “BMT-
Net: Broad Multitask Transformer Network for
Sentiment Analysis,” IEEE Trans. Cybern., vol.
52, no. 7, pp. 6232–6243, 2022, doi:

10.1109/TCYB.2021.3050508.
[33] H. Liang, U. Ganeshbabu, and T. Thorne, “A

Dynamic Bayesian Network Approach for
Analysing Topic-Sentiment Evolution,” IEEE
Access, vol. 8, pp. 54164–54174, 2020, doi:
10.1109/ACCESS.2020.2979012.

[34] K. Zhang et al., “EATN: An Efficient Adaptive
Transfer Network for Aspect-Level Sentiment
Analysis,” IEEE Trans. Knowl. Data Eng., vol.
35, no. 1, pp. 377–389, 2023, doi:
10.1109/TKDE.2021.3075238.

[35] A. A. Aziz and A. Starkey, “Predicting
Supervise Machine Learning Performances for
Sentiment Analysis Using Contextual-Based
Approaches,” IEEE Access, vol. 8, pp. 17722–
17733, 2020, doi:
10.1109/ACCESS.2019.2958702.

[36] J. Zhou, S. Jin, and X. Huang, “ADeCNN: An
Improved Model for Aspect-Level Sentiment
Analysis Based on Deformable CNN and
Attention,” IEEE Access, vol. 8, pp. 132970–
132979, 2020, doi:
10.1109/ACCESS.2020.3010802.

[37] Q. Yang, Z. Kadeer, W. Gu, W. Sun, and A.
Wumaier, “Affective Knowledge Augmented
Interactive Graph Convolutional Network for
Chinese-Oriented Aspect-Based Sentiment
Analysis,” IEEE Access, vol. 10, pp. 130686–
130698, 2022, doi:
10.1109/ACCESS.2022.3228299.

[38] Y. Bie and Y. Yang, “A multitask multiview
neural network for end-to-end aspect-based
sentiment analysis,” Big Data Min. Anal., vol.
4, no. 3, pp. 195–207, 2021, doi:
10.26599/BDMA.2021.9020003.

[39] K. Suppala and N. Rao, “Sentiment analysis
using naïve bayes classifier,” Int. J. Innov.
Technol. Explor. Eng., vol. 8, no. 8, pp. 264–
269, 2019, [Online]. Available:
https://www.scopus.com/inward/record.uri?eid
=2-s2.0-
85067869918&partnerID=40&md5=43780c38
4f3f789ca635ab7256901a29

[40] Y. L. Pavlov, “Random forests,” Random For.,
vol. 45, no. 1, pp. 1–122, Oct. 2019, doi:
10.4324/9781003109396-5.

