
 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2991

LEVERAGING HEADLESS CONTENT MANAGEMENT
SYSTEM AS A SERVICE IN A SERVICE-BASED

ARCHITECTURE: ENHANCING USER EXPERIENCE AND
OVERCOMING RESOURCE LIMITATIONS FOR START-UPS

ILMA ARIFIANY1, GEDE PUTRA KUSUMA2

1,2Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina
Nusantara University, Jakarta 11480, Indonesia

E-mail: 1ilma.arifiany@binus.ac.id, 2i.negara@binus.ac.id

ABSTRACT

Microservices and service-oriented architecture have acquired widespread recognition in recent years as
efficient solutions for building scalable, resilient, and simple-to-maintain software systems. Although they
offer an optimal solution for large organizations with intricate and dynamic systems, their suitability for
startups may be uncertain because of the constraints a new company may encounter, such as budget and
human resources. Hence, the architectural design should be modified following the specific requirements of
the company in question. This case study focused on building a service-based architecture that would address
a new company’s constraints while still emphasizing the application’s user experience. We implemented this
service-based architecture by utilizing a headless content management system and building additional
reusable services using the plugin and database feature of the content management system. This architecture
allowed developers to accelerate and simplify the development of the company’s backend services, enabling
a focus on improving features impacting user experience. In our resulting architecture, each service operated
on its own, with distinct responsibilities, lowering the reliance on one backend. This architecture also
improved the website’s performance, as shown by a fast response time, high throughput, and an overall good
load speed.

Keywords: Composable Architecture, Headless Content Management System, Microservices Architecture,
Modern Web Development, Service-Oriented Architecture

1. INTRODUCTION

Microservice and service-oriented
architecture (SOA) are modern architectural systems
known for their exceptional performance and are
well-suited for enterprises with large and complex
product offerings [1]. SOA is very well-suited for
extensive, complicated, organization-wide systems
needing integration with several applications and
services. On the other hand, the microservices
pattern is more suited for smaller, well-segmented
web-based systems [2]. However, implementing
both architectures is not always the right choice for
start-up companies that still face various limitations,
such as the limitation of human resources and
architecture budget [3, 4]. Start-up companies
sometimes encounter constraints such as limited
human resources and budget, which render the
implementation of both architectures unsuitable for
them. The intricate nature of microservices may
extend the development and maintenance period

because the services may require personnel with
specialized skills in every area each service controls
and supports [5]. Thus, companies might need a less
intricate architecture than microservices and SOA,
an architecture scalable to greater complexity when
company constraints are addressed [4]. However,
user experience (UX) is also a vital factor for startup
companies to satisfy users of their applications, and
it cannot be overlooked. Poor UX can lead the users
to criticize the presentation of the product even if the
product idea itself was good. Good UX can increase
user acquisition, retention, and satisfaction. By
prioritizing UX from the beginning, startups can
create products that resonate with users, stand out in
the market, and pave the way for long-term
growth.[6].

This case study aims to create a service-
based architecture which incorporates microservices
and SOA method within company limitations. The
object of this case study is a website for a new

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2992

company that helps people seeking work and helps
organizations find employees. They have several
products for which development is required: Events,
Mentorships, Virtual Work Experiences, and CV
Reviews. They also planned to create more products
in the future, hence the necessity to have a scalable
and easily developed application.

In the past, this company used the
WordPress platform as the base for both the backend
and the frontend, creating monolithic architecture.
WordPress presents challenges. The complexity and
limited adaptability of its code make it difficult to
develop into a more important website platform,
resulting in a steep learning curve [7]. Furthermore,
because of the monolithic nature of the WordPress
platform being used, data stored within it can only
be accessed through the CMS and the integrated
website itself. This limits the ability to access data
from different websites or applications, thus
hindering further growth [8]. Therefore, because of
the growing number of features being developed, it
became necessary to migrate from the monolithic
structure of WordPress to a more modernized
approach that would satisfy the company’s needs.
Third party plugins that helped WordPress handle
additional features also slowed down the website,
thus the use of this architecture also sacrificed user
experience.

To summarize, building an inexpensive,
intuitive, and adaptable system without sacrificing
user experience is what this company needs. We
propose a modern and less complex service-based
architecture, where services with distinct
responsibilities are developed, but not as loosely
coupled as microservices. This architectural design
can also be described as a composable architecture,
as each component is reusable and integrable into
different applications. A service-based approach will
allow developers to divide the application into
different necessary services as it grows.

For faster development, A headless content
management system (Headless CMS) can serve as
the basis for developing an appropriate website,
meeting the company’s requirement for rapid and
efficient development. A Headless CMS is a content
management system that separates the frontend,
where content is presented, from the backend, where
content is stored. Headless CMS can manage all
aspects of data management and often feature a
separate dashboard from the application [8, 9].
Headless CMS simplifies data and component
structuring, letting developers build applications
with improved efficiency. By leveraging the CMS’s
existing database, smaller services can be developed
and integrated into the main dashboard with

simplicity, eliminating the need for separate
frontend.

Headless CMS is responsible for presenting
and processing all the website’s content through its
API. Therefore, its performance is crucial to the
application’s overall performance. A Headless CMS
solely as a backend makes the application vulnerable
to a single point of failure. One of the technical
aspects related to UX that should be addressed,
besides failure considerations, is the speed and
security of the application. Speed is very important
because of the high level of user interaction on the
site. Therefore, further investigation is needed to
determine whether this architecture requires
additional services able to share tasks with Headless
CMS. This case study not only aimed to build
suitable architecture for start-up companies but also
explored whether adding services would improve
site performance or if a Headless CMS alone
sufficed. By comparing the performance of the
various services developed, the architecture with
optimal performance can be identified. a clear
overview of how to work with the CMS.

2. LITERATURE REVIEW

Numerous companies at an early stage
adopted Monolithic Architecture because of its
advantages in the speedy development of
applications with minimal resource needs.
Monolithic Architecture is a traditional software
development approach where an application is built
as a single unit. All components of the application,
including the user interface, business logic, and data
access layer, are tightly coupled and deployed
together as a single entity [3]. Therefore, monolithic
architecture is simpler to build, especially for small
teams, and easier to deploy. Monolithic architecture
requires lower operational overhead, as fewer
resources are needed. But being a single unit means
that if one application process experiences a
significant spike in demand, the entire architecture
must be upgraded. If the application faces troubles,
then the whole architecture might be affected.
Adding or improving functionality in a monolithic
program becomes increasingly complex as its code
base expands, leading to difficulties in adopting new
technologies or frameworks for specific components
because of technological constraints. High
complexity limits the capacity for experimentation
and presents obstacles to executing innovative ideas
[10]. Therefore, monolithic architecture is not
suitable for companies that aim for scalability and
adaptability.

One way companies have dealt with this
issue is by using Service-Based Architecture, in

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2993

which applications are divided into smaller,
independent services [11]. Examples of this
approach include Services-Oriented Architecture
and Microservices. Service-oriented architecture
(SOA) is a software framework that decomposes
software components into various services that
interact with each other as a cohesive entity. SOA
aims to simplify complex software systems by
transforming them into reusable services that can be
accessed by various applications and users, known
as service consumers. These services can be viewed
as fundamental components for the development of
new applications. Every component of an SOA
service carries a unique responsibility and comes
with an interface that encompasses input and output
parameters, as well as the communication protocols
for accessing it [12]. SOA services can be registered
and reused in multiple application environments.
This enables developers to make use of pre-existing
functionality with no redevelopment.

SOA provides several benefits when
compared to monolithic architecture. SOA enables
companies to separate applications into independent
services that can be modified, constructed, and
deployed individually. This allows for enhanced
flexibility in system development and maintenance.
The independent nature of services ensures that
modifications made to one service do not
automatically impact other services or the overall
program, hence enabling flexibility and scalability.
This helps the maintenance and development of the
application [3, 11].

Microservice architecture is another
architecture that breaks an application into several
services. These services can be deployed
independently, loosely coupled, and are generated
according to specific business requirements. This
architecture is similar to SOA, as both are founded
on the concept of services [13]. These services work
by exchanging messages with each other through
message passing. This architecture distinguishes
itself from monolithic architecture and service-
oriented architecture by its focus on scalability,
independence, and semantic cohesion of each
individual component inside the system.
Microservice and SOA also differ in service
granularity and communication method [2, 14].

While Microservices and SOA offer
benefits, they also present drawbacks for start-up
companies. For companies in the initial phases of
development, this may provide considerable
complexity right from the beginning. Every service
requires its own infrastructure, including its
database, servers, and environment configurations.
The team’s focus on validating their business idea

might be hampered by the need to undertake
complex tasks such as inter-service communication
management, data consistency maintenance, and
fault tolerance implementation. Microservices’
complexity may prolong development and
maintenance, creating challenges for resource-
constrained startups [3]. Start-ups often have small
teams with limited technical expertise. Managing a
distributed system like SOA or microservices
requires specialized skills in areas such as DevOps,
network security, and distributed systems.
Monolithic architecture or simpler service-oriented
designs can often meet the initial needs of a start-up
without the overhead. Instead of resorting back to
monolithic architecture, another solution might be
possible. In this case, a Headless Content
Management System might be utilized to create
simpler Service-Based Architecture instead of
creating services one by one which consume
resources and time.

A Headless Content Management System is
a CMS that separates where content is stored
(‘body’) from where it is presented (‘head’). The
data generated by this CMS is delivered over a
Representational State Transfer (REST) Application
Programming Interface (API), enabling its
utilization across several platforms. This enhances
its adaptability and provides superior scalability
compared to monolithic CMS [9, 15]. By employing
headless architecture, developers have the freedom
to select an appropriate technology and framework
for developing the frontend layer. Content delivery
is effortless with APIs, irrespective of whether it is a
web app, mobile app, voice assistant, or another
digital channel. [16].

Because it is independent from the
presentation layer of the application, this decoupling
aligns with the principles of service-based
architecture, where services are modular and
reusable. The design and architecture of Headless
CMS are structured to allow seamless content
integration with any platform, adhering to four
fundamental principles: flexibility, performance,
security, and affordability. Headless CMS platforms
scale independently, as they focus solely on content
storage and delivery. In a service-based architecture,
this means the content service can scale based on
demand without affecting other services. For
example, during high traffic, the content delivery
layer can be scaled independently of the transaction
or authentication services.

Flexibility allows companies to quickly
respond to the fluctuation of consumer expectations
and new developments in technology or
microservices. Application developers get the

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2994

freedom to choose the technologies and tools to be
used in the application. The primary objective of a
Headless CMS is to segregate the processes of
content creation, storage, and management from the
responsibilities of data display and delivery.
Compared to a conventional content management
system that merely provides template designs, this
solution reduces worries regarding security,
scalability, usability, and frontend technology [17].
These benefits make Headless CMS a natural fit for
service-based architectures, where modularity,
scalability, and flexibility are key. A Headless CMS
can be deployed as a microservice within a larger
ecosystem, interacting with other services via APIs.
The CMS handles database, component, and content
creation. This allows developers to concentrate on
the application’s frontend, resulting in quicker and
more effective development.

Currently, there are a lot of Headless CMS
platforms in the market. While there are benefits to
using Headless CMS, there are some downsides too,
depending on the Headless CMS platforms
developers choose. For example, if the Headless
CMS is cloud-based, the cost can get quite high too.
Some Headless CMS platforms also have security
concerns when their implementation is lacking.
Some are also vendors locked in, making the
possibility of migration in the future require
significant work. Therefore, it’s important to choose
the Headless CMS that has handled those downsides
and is suitable for the developers’ and company’s
needs.

3. METHODOLOGY

Possessing a thorough comprehension of
the user’s responsibilities and workflows was crucial
when developing an application that prioritizes the
user as the primary focus. Therefore, before
developing the website, we conducted a
comprehensive interview with the stakeholders,
including the UI designers, to gather the
requirements [18]. Discussions with stakeholders
established that the platform will serve Job Seekers,
Mentors, and Business Companies, each with
distinct roles and functions. We also identify the
main actions users can take on the website, which
are:

a. Seeing the list and details of Events,
Mentors, and Virtual Work Experiences.

b. Registering and paying for Events,
Mentorships, and Virtual Work
Experiences

c. Manage their accounts, profiles, and
registrations
After gathering the requirements we

needed, we continued designing the architecture by
decomposing the system into services. We designed
the services based on a domain-driven design
principle where services are designed around
business capabilities rather than technical layers
[19]. To ensure service granularity, where services
are small enough to be manageable but large enough
to provide meaningful functionality, the services we
design handle each defined activity. The primary
services in the new architecture are:

a. Catalog Service: Provides a list and details
of each Event, Mentor, and Virtual Work
Experience.

b. Enrollment Service: Service that handles
Event, Mentorship, and Virtual Experience
registration.

c. Management Service: Service that handles
each product’s Create, Update, and Delete
methods, along with account and content
management.
By separating the Catalog and Enrollment

services, some core functionalities of the website can
continue to be operational even when one service
experiences failure. For example, users can still view
program lists and enroll even if the Management
service fails. As the organization grows and acquires
additional resources, the Management Service can
be segmented into smaller units. Furthermore,
alongside these three services, various third-party
services would be integrated as well. These include
a Billing Service using Midtrans and a Scheduling
Service using Calendly.

Following the initial design’s completion,
the next step involved implementing technical
architecture. This architecture adopted REST API to
communicate between components. Fig 1. provides
a comprehensive and complete overview of what
each service handles. Fig 2. illustrates the complete
architecture, including the technologies used.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2995

Fig 1: The Responsibilities of The Services

Fig 2: The Technical Design of Service-Based Architecture

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2996

To evaluate this architecture, as the website
is still in development, we focused on the aspect of
UX that can be affected by the architecture, which is
speed [20]. We assessed the services and RESTful
APIs we developed by conducting an API
performance test with Apache JMeter and a website
performance test with Google Lighthouse. Apache
JMeter is free and open-source software designed for
conducting functional behavioral testing and

measuring performance. It may analyze and assess
the performance of web applications and services
[21]. JMeter performs tests by sending HTTP
requests to the server being tested and afterwards
measuring the response time. Response time is
calculated as the time from when the request is sent
until the complete response is received. The steps to
do an API call simulation can be seen in Fig 3.

Fig 3: Steps of Testing API Endpoints using JMeter

To test an API endpoint, first we need to
define a thread group, which comprises the
parameters that will affect the simulation. Here are
the following parameters in a thread group:

a. Number of Threads (Users): The number of
virtual users that will simulate the API call.
This determines the number of users who
will simultaneously execute the call.

b. Ramp-up Period: The time JMeter will take
to start the threads. This controls how
quickly the users are added to the test. A
gradual ramp-up helps simulate real-world

scenarios where users do not all arrive at the
same time.

c. Loop count: Specifies how many times the
simulation will be executed by each thread.
To determine how many executions are

done in one test, we need to see the parameters. For
example, when we set 20 virtual users with a ramp-
up period of 2 seconds and a loop count of two, the
total number of executions will be 40 executions.
Each Rest APIs will have different parameters and
will be specified in Evaluation. An example of how
a thread group is established can be seen in Fig 4.

Fig 4: Example of Thread Groups in JMeter

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2997

HTTPs Samplers are the setup for API
calls, such as pinpointing the endpoints and
determining the headers, while listeners are the
reports needed. The final report can be accessed
through an Aggregate Report. The summary and
aggregate reports provide the following metrics:

a. Throughput: The number of requests per
minute the server has processed. Higher
throughput indicates better API
performance.

b. Average: the total time is divided by the
number of requests sent to the server.

c. Error rate: Number of failed requests.
d. Median: the number representing the time,

where half of the server response time is
lower than this number and half is higher.

e. Deviation shows how much the server
response time varies.
An example of aggregate reports can be

seen in Fig 5.

Fig 5: Example of Aggregate Report in JMeter

A response time under 1 second is
preferable, while a response time of 1-2 seconds is
still acceptable. 2-5 seconds is tolerable for non-
critical actions, while over 5 seconds can frustrate
for users [22, 23].

After the services were created and tested,
we performed website testing to assess the impact of
the API on the website’s performance. Because the
website is server-rendered where API calls are done
in server, the quality of the API endpoints are
important and affects the website quality. To assess
how much the API endpoints affected the website,
Google Lighthouse is used to test the website.

Google Lighthouse, sometimes known as
Lighthouse, is a free tool designed to evaluate the
performance of a website and assist developers in
enhancing its performance [24]. Google Lighthouse
categorizes numerous factors that impact its ranking,
including fast First Contentful Paint (FCP), Total
Blocking Time (TBT), Speed Index, Largest
Contentful Paint, and Cumulative Layout Shift. The
scoring criteria have been established by the Google
Developers team.

In this case study, we investigated how the
generated APIs affected the website load speed,

which can be discerned through FCP. FCP measures
the time it takes for a web browser to display the
initial part of the Document Object Model (DOM)
content after a user visits a webpage. Time to First
Byte (TTFB) is one of the factors that influences
FCP. It measures the time between when a page
request starts and when the first byte of data is
received from the server. In the latest versions of
Lighthouse, TTFB appears as an audit known as
“Initial server response time”. Each audit has its own
scoring category, which can be seen in Table 1,
Table 2, and Table 3. An example of a Lighthouse
Report can be seen in Fig 6.

Table 1: Time to First Byte Criteria

Score Category

Below 0.8s Good

Between 0.8s to 1.8s Needs Improvement

Above 1.8s Poor

Table 2: First Contentful Score Criteria

Score Category

Below 1.8s Good

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2998

Between 1.8s to 3s Needs Improvement

Above 3s Poor

Table 3: Performance Score Criteria

Score Category

0-49 Poor

50-89 Needs Improvement

90-100 Good

Fig 6: Example of Lighthouse Analysis Result

Variations in web and network
technologies can impact the consistency of
Lighthouse testing results, causing fluctuations in
measurements even when the page content is the
same. Lighthouse proposed reducing the impact of
external influences by using either localhost or a
machine within the same network, along with a
dedicated device. In addition, they recommended
executing Lighthouse numerous times and using

aggregate metrics such as Mean and Median instead
of single tests [25]. Following that advice, we tested
the pages on the same computer, using Lighthouse
CLI, at various times. To assess the impact of
transitioning from Strapi endpoints to services’
endpoints on website performance, we conducted an
in-depth evaluation of all the relevant endpoints of
Strapi, Meilisearch, and Enrollment Service.

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2999

4. SERVICES DEVELOPMENT

4.1 Building the Headless Content Management
System as the Management Service

After defining all product components, we
started developing the Headless CMS. This CMS is
the core of our service-oriented architecture. After
researching some Headless CMS platforms, we
chose Strapi as our chosen Headless CMS. Based on
our research, Strapi has handled the possible
downsides of Headless CMS mentioned in the
Literature Review. Strapi is an open-source and free,
allowing developers to expand and modify the
codebase to meet their needs. It is also not locked in
by one vendor, making migration to another
platform easier. Because it can be self-hosted,
developers can choose to deploy the CMS to an
infrastructure fitting to their budget. Developers also
have full control over security because of this self-
hosted nature, on top of already providing security

features like CSRF protection, CORS configuration,
and role-based access control.

Strapi provides an extensive dashboard,
content-generating capabilities, and a REST API
gateway [26]. In addition, Strapi provides
authentication management and offers a
straightforward way for developers to build plugins,
therefore simplifying the integration of third-party
services into the CMS. Different to WordPress
plugins that extend both backend and frontend
functionalities, Strapi plugins focus on backend
functionality, such as adding new APIs and services,
so it has less impact on the front end side.

Strapi speeds up the development of REST
API and content architecture by providing the
Content-Type Builder feature. This feature enables
developers to create components for each product
and quickly generates REST API endpoints for each
component. An example of the Content Builder can
be seen in Fig 7.

Fig 7: Content-Type Builder in the Company’s Strapi CMS

Once the components had been created,
developers could define user roles by referring to the
user types determined by the product requirements.
Developers could control the API access
permissions that correspond to each role. Granting
API access to a role allows all users assigned to that

role to retrieve and modify data through the specified
API endpoint. To ensure extra security, a
middleware was implemented in API endpoints that
change data. This middleware restricts data
modification or deletion to the data owner only,

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3000

preventing unauthorized access and manipulation of
data by other users with different roles.

During development, we generated 74 API
endpoints that would be used for various
components of the websites. Out of those, 27
endpoints related to data that would be shown on the
website and 8 endpoints related to enrollment that
could be migrated to the other two services.

4.2 Creating and Integrating Meilisearch as
Catalog Service

For the catalog service, we decided to use
Search-as-a-Service. Search-as-a-Service (SaaS) is a
solution that handles indexing, querying, and
delivering search results to an application. For
example, in e-commerce, SaaS is used to display
products and enabling filters, sorting, and search.
This is suitable for displaying the company’s
products, such as events, mentors, and virtual work
experiences [27]. SaaS is simple to integrate into
Strapi via plugin. Meilisearch was chosen to serve as
the underlying technology for the catalog service.
Meilisearch is an efficient, fast, and feature-rich
open-source and free search engine specifically built
for seamless integration and implementation in
diverse projects. Like Strapi, it is self-hosted, giving
developers more freedom. Meilisearch was built
using Rust and can be integrated into other
programming languages, including Node.js, which

Strapi was built on. Meilisearch is a powerful
platform that enables developers to effortlessly
incorporate fast and accurate search capabilities into
their applications, while also allowing for easy
customization and scalability [28]. Its flexibility
enables efficient management of huge amounts of
data and traffic, making it suitable for both small and
large-scale online applications. Meilisearch does not
require access to our application’s database because
it has its own database called Lightning Memory-
Mapped Database, which serves as its storage engine

Meilisearch allows seamless integration
into web-based applications for developers by
offering a RESTful API. Meilisearch is neatly
incorporated into Strapi via a plugin. Via the Strapi
dashboard, we exported the specific data we wanted
from the database to Meilisearch, arranging them
into a searchable and filterable index. The
integration of Meilisearch into Strapi can be seen in
Fig 8. While Meilisearch boasts a straightforward
implementation, optimizing and adapting the data
fed into Meilisearch is vital to ensure compatibility
with the organization’s unique demands. This
includes creating catalog names and defining
filterable properties for each index. We indexed four
specific sorts of data, which are Mentors, Virtual
Work Experiences, and Community Events. These
types of data correspond to the company’s primary
products.

Fig 8: Integration of Meilisearch into Strapi

A catalog service is essential because Strapi
might need to access multiple components and
databases through a single endpoint, which can

create a significant burden on the application and
database. For instance, the homepage requires access
to different tables to get featured events, mentors,

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3001

and virtual work experiences. By condensing the
featured data into a single entry in Meilisearch, the
requirement to connect to various tables and access
the database is avoided. By integrating Meilisearch,
the need to depend on Strapi’s API endpoints for
displaying each product’s catalog is reduced. It
reduces the reliance on list APIs like Expertise,
Event Types, Event Classes, and others. Previously,
these API calls were used for constructing filter lists

on each product’s catalog page. For example,
filtering mentors based on their expertise and work
experiences. By defining these attributes as
filterable, Meilisearch automatically aggregates
them to be displayed as filters in the instant search
engine. An example of the simplification of tables
into an index can be seen in Fig 9 while the result of
the indexing can be seen in Fig 10.

Fig 9: Example of Simplification of Tables to Index Displayed in Typescript Mode

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3002

Fig 10: Imported Data from Strapi to Meilisearch

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3003

4.3 Building and Integrating NestJS as
Enrollment Service

The development of a new API backend is
necessary for the development of the enrollment
service. After researching and comparing the
performance of various programming languages, we
have chosen NodeJS for its notable performance and
employed NestJS as the framework to build the
backend architecture [29, 30]. First, we used Strapi’s
content generation feature to establish the
enrollment structures. By utilizing Strapi’s
automated generation of database schemas,
developers are spared from manually creating these
structures. Strapi’s ability to create tables for inter-

component connections ensures the smooth
integration of these entities within the new backend.

The NestJS application used and is built
based on the database generated by Strapi, so the two
services would share a database. When enrollment is
done through NestJS, the data can be viewed on the
CMS dashboard since they share the same database,
eliminating the need for a new dashboard for
enrollment data. This example can be seen in Fig 11.

For security, a new enrollment token is
generated each time a user logs in. This ensures only
authorized users access the APIs. This service
handles event and work registration separately from
the management service, lessening the management
service’s processing load.

Fig 11: Enrollments through Enrollment Service in Strapi Dashboard

5. EVALUATION

5.1 REST API Performance Test Result

For the first test, we performed tests on the
RESTful API endpoints for Management Service
(Strapi), Catalog Service (Meilisearch), and
Enrollment Service (NestJS). We conducted
multiple experiments using varying sample sizes.
The Catalog Service’s first iteration of the test
consists of 10 virtual users for each API being
evaluated. Successive iterations of the test add 10
virtual users to each test. Every test has a ramp-up

period of 1 second and 2 loops. The variables
“Average” and “Median” refer to the mean and
median response time (in milliseconds),
respectively. “Error” shows the percentage of errors
met during the test. “Throughput” stands for the
number of requests processed per second.
“Deviation” stands for the standard deviation of the
response times.

We performed tests on the API endpoints of
the Catalog Service that are expected to get many
requests because of their common use on pages
visited by guests and users. The API endpoints

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3004

include the home page, events catalog API, event
detail, Virtual Work Experiences catalog, Virtual
Work Experiences Detail, Mentors Listing, and
Mentor Profile. The following table shows the
outcomes of the API performance tests conducted on

Strapi catalog endpoints and Meilisearch’s
endpoints, compared to one another. For all tests,
there was 0 error rate, while the rest of the variables’
result can be seen in Table 4.

Table 4: Performance Test Result of Catalog Listing APIs

Total
Samples

Average Median Throughput Deviation

Strapi Meilisearch Strapi Meilisearch Strapi Meilisearch Strapi Meilisearch

140 454ms 379ms 302ms 262ms 19.28/s 22.54/s 444.41 420.8

280 517ms 281ms 407ms 258ms 28.5/s 53.45/s 288.21 85.48

420 639ms 267ms 567ms 246ms 38.22/s 67.47/s 252.78 78.58

560 881ms 325ms 744ms 277ms 35.46/s 77.31/s 431.86 147.76

The result showed that Meilisearch
achieved better results in load-testing scenarios with
a larger number of samples, a shorter response time,
and higher throughput. This suggests that there was
a greater probability that using the catalog service
would cause reduced load times at the front end. This

is because the data delivered by the catalog service
has been optimized compared to the data fetched
from the Strapi endpoints. For a clearer comparison,
Fig 12 compares the numbers between Management
Service APIs and Catalog Service APIs.

Fig 12: Graphs of Performance Test Result of Catalog Listing APIs

Next, we tested the enrollment APIs for
Strapi and the Enrollment Service. For the first

iteration of the test, we performed tests on the APIs
to retrieve enrollment data for Mentorship, Events,

200
300
400
500
600
700
800

140 280 420 560

Average (ms)

Strapi Meilisearch

200
300
400
500
600
700
800

140 280 420 560

Median (ms)

Strapi Meilisearch

15
25
35
45
55
65
75

140 280 420 560

Throughput (/s)

Strapi Meilisearch

70
120
170
220
270
320
370
420
470

140 280 420 560

Deviation

Strapi Meilisearch

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3005

and Virtual Work Experiences. The first test
comprised 10 virtual users, and with each successive
iteration, an additional 10 virtual users were added.
The ramp-up period for all tests was set to 1 second,
and the loop count was set to 2. The result of the test
can be seen in Table 5. The test showed that the
Enrollment Service shows superior performance at
lower user load but deteriorates as it dealt with a

higher number of users visiting the same API
endpoints. This suggests the service needs more
optimization to efficiently handle a higher number of
requests that occur when the website sees a larger
user base. For a clearer comparison, Fig 13 compares
the numbers between Management Service APIs and
Catalog Service APIs.

Table 5: Performance Test Result of Enrollment Listing APIs

Total
Samples

Average Median Throughput Deviation

Strapi NestJS Strapi NestJS Strapi NestJS Strapi NestJS

60 275ms 163ms 264ms 168ms 22.92/s 36.1/s 73.91 66.62

120 283ms 262ms 268ms 289ms 45.75/s 46.35/s 66.6 85.66

180 267ms 474ms 243ms 537ms 76.63/s 44.68/s 124.02 158.37

240 258ms 672ms 272ms 751ms 97.72/s 46.17/s 80.89 183.1

Fig 13: Graphs of Performance Test Result of Enrollment Listing APIs

The next test was performed for API
Endpoints used for creating enrollments. The testing
process involved two API endpoints: the transaction
API, responsible for managing enrollment for
Mentorship and Events, and the Virtual Work
Experience Enrollment API. The first iteration of the
test included 10 virtual users for each API being
evaluated. Afterward, with each iteration, an

additional 10 virtual users were added to each test.
Every test featured a ramp-up period of 5 seconds
and a loop count of 1. The test results for the Strapi
Enrollment endpoints and the Enrollment Service’s
endpoints were similar. The result of the test can be
seen in Table 6. For a clearer comparison, Fig 14
compares the numbers between Management
Service APIs and Catalog Service APIs.

150
250
350
450
550
650

60 120 180 240

Average (ms)

Strapi Enrollment Service

150
250
350
450
550
650
750

60 120 180 240

Median (ms)

Strapi Enrollment Service

15
35
55
75
95

115

60 120 180 240

Throughput (/s)

Strapi Enrollment Service

50
70
90

110
130
150
170
190

60 120 180 240

Deviation

Strapi Enrollment Service

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3006

Table 6: Performance Test Result of Enrollment Creation APIs

Total
Samples

Average Median Throughput Deviation

Strapi NestJS Strapi NestJS Strapi NestJS Strapi NestJS

20 221ms 209ms 219ms 165ms 4.05/s 4.02/s 73.55 134.43

40 224ms 166ms 181ms 148ms 7.37/s 7.89/s 95.64 109.76

60 161ms 178ms 161ms 151ms 10.99/s 11.18/s 47.09 117.28

80 199ms 148ms 177ms 155ms 14.45/s 14.31/s 78.62 92.78

100 464ms 196ms 176ms 170ms 18.37/s 19.47/s 558.4 138.46

Fig 14: Graphs of Performance Test Result of Enrollment Listing APIs

5.2 Website Performance Test Result

A performance test of the developed
website has been conducted to assess the impact of
utilizing the services on user experience. As per
Google Developers’ suggestions, we tested the pages
by running Lighthouse 10 times in two days. We
calculated the mean, median scores, and standard
deviation for each category. The pages we evaluated
for this study include the pages that will be most
often visited by both users and guests. These pages

included the home page (W1), events catalog (W2),
event detail (W3), Virtual Work Experiences
Catalog (W4), Virtual Work Experiences Detail
(W5), Mentors Listing (W6), and Mentor Profile
(W7). The first test is performed for Time to First
Byte (TTFB), as this audit is the audit most affected
by API performance. TTFB affects First Contentful
Paint (FCP), so it was expected that TTFB test
results would match FCP. Table 7 compares the
TTFB test results on pages using 2 different services.

140
155
170
185
200
215
230

20 40 60 80

Average (ms)

Strapi Enrollment Service

140
155
170
185
200
215
230

20 40 60 80

Median (ms)

Strapi Enrollment Service

0

5

10

15

20

20 40 60 80

Throughput (/s)

Strapi Enrollment Service

0
30
60
90

120
150

60 120 180 240

Deviation

Strapi Enrollment Service

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3007

Table 7: Time to First Byte Result

Assessed
Page

Average (in seconds) Median (in seconds) Deviation

Mobile Desktop Mobile Desktop Mobile Desktop

Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS

W1 2.2 1.55 0.68 0.6 1.25 0.76 0.61 0.52 1.65 1.58 0.2 0.17

W2 0.64 0.7 0.56 0.56 0.52 0.74 0.52 0.56 0.29 0.17 0.21 0.11

W3 0.66 0.43 0.53 0.36 0.6 0.41 0.51 0.33 0.15 0.13 0.09 0.08

W4 0.49 0.75 0.5 0.38 0.48 0.46 0.49 0.39 0.12 0.7 0.09 0.08

W5 0.55 0.53 0.56 0.6 0.51 0.52 0.49 0.51 0.11 0.1 0.17 0.41

W6 0.48 0.63 0.44 0.31 0.44 0.48 0.42 0.3 0.12 0.34 0.07 0.05

W7 0.6 0.57 0.51 0.45 0.53 0.54 0.49 0.44 0.17 0.16 0.1 0.09

A clearer comparison between each point
can be seen in Fig 15. Based on the categorization
described in Table 1, Table 2, and Table 3, scores are
divided into three criteria: red (poor), yellow (needs

improvement), and green (good/meets standards).
This color assignment also applies to the figures
following the next figure.

Fig 15: Comparison of Time to First Byte Time Result

The following test measured First
Contentful Paint. Since FCP is considerably affected
by TTFB, which was part of FCT criteria, the
outcome mirrored the TTFB test outcome. The test
results for FCP can be seen in Table 8. Similar to the

previous table, this table also compares the
performance of the same page but using different
services. Meanwhile, for the comparison of FCP
results between pages using Strapi and Meilisearch,
it can be seen in Fig 9.

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

W1 W2 W3 W4 W5 W6 W7

Avg Mobile Time to First Byte

Strapi Meilisearch

0.2
0.3

0.4

0.5
0.6

0.7

0.8

W1 W2 W3 W4 W5 W6 W7

Avg Desktop Time to First Byte

Strapi Meilisearch

0.3

0.5

0.7

0.9

1.1

1.3

W1 W2 W3 W4 W5 W6 W7

Median Mobile Time to First Byte

Strapi Meilisearch

0.2

0.3

0.4

0.5

0.6

0.7

W1 W2 W3 W4 W5 W6 W7

Median Desktop Time to First Byte

Strapi Meilisearch

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3008

Table 8: First Contentful Paint Result (MS = Meilisearch)

Assessed
Page

Average (in seconds) Median (in seconds) Deviation

Mobile Desktop Mobile Desktop Mobile Desktop

Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS

W1 3.1 3.17 1.35 1.46 3.05 3.1 1.3 1.25 0.42 0.33 0.21 0.37

W2 2.51 2.33 1.16 1.06 2.45 2.4 1.1 1.1 0.27 0.21 0.27 0.13

W3 2.34 2.3 1.29 1.06 2.4 2.3 1.15 1 0.39 0.29 0.35 0.14

W4 2.49 2.38 1.25 1.31 2.45 2.35 1.2 1.25 0.31 0.19 0.36 0.29

W5 2.59 2.48 1.12 1.14 2.5 2.35 1 1.05 0.24 0.31 0.2 0.3

W6 2.23 2.22 1.27 1.01 2.15 2.2 1.3 1 0.28 0.1 0.2 0.11

W7 2.57 2.3 1.23 1.06 2.4 2.25 1.15 1.1 0.37 0.25 0.33 0.11

Fig 16: Comparison of First Contentful Paint Time Result

Lighthouse provides a final performance
score for each page assessed. These scores can be
seen in Table 9, while the clearer comparison can be
seen in Fig 17. On mobile, the only poor score was
for the home page using Strapi; while using
Meilisearch, the score improved to only "need

improvement”. This makes sense, given the amount
of data required on the home page. It is important to
note that FCP only contributes 10% of the total score
as it also has other audits unrelated to services to be
calculated into the final score.

2
2.2

2.4

2.6
2.8

3

3.2

W1 W2 W3 W4 W5 W6 W7

Avg Mobile First Contentful Paint Time

Strapi Meilisearch

1

1.1

1.2

1.3

1.4

1.5

W1 W2 W3 W4 W5 W6 W7

Avg Desktop First Contentful Paint Time

Strapi Meilisearch

2
2.2

2.4

2.6
2.8

3

3.2

W1 W2 W3 W4 W5 W6 W7

Median Mobile First Contentful Paint Time

Strapi Meilisearch

1

1.1

1.2

1.3

1.4

W1 W2 W3 W4 W5 W6 W7

Median Desktop First Contentful Paint Time

Strapi Meilisearch

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3009

Table 9: Performance Score Result (MS = Meilisearch)

Assessed
Page

Average (in seconds) Median (in seconds) Deviation

Mobile Desktop Mobile Desktop Mobile Desktop

Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS Strapi MS

W1 70.9 72.6 80.8 80 73.5 73.5 81 83.5 5.99 4.27 4.45 7.82

W2 79.4 82.6 84.7 87.8 80.5 84 85 89 7.77 4.94 7.25 4.33

W3 74.9 82.2 82.8 91.6 73.5 82 86.5 92.5 7.08 4.24 9.35 3.53

W4 77.7 77 84.6 83.6 79 78.5 83.5 84.5 7.14 5.93 7.94 6.2

W5 74.8 80.8 82.2 86.4 75 82 82.2 87.5 5.91 5.53 9.03 6.17

W6 87.1 85.4 85.5 90.5 89 87.5 84 93 6.14 5.5 5.5 4.27

W7 80.2 79.8 88.3 90.5 82 81.5 89.5 91 5.27 4.53 4.73 3.8

Fig 17: Comparison of Performance Score Result

Our test result indicates that pages using the
Catalog Service demonstrate improved performance
compared to pages using Strapi endpoints. The
transition from only using Strapi to Meilisearch does
not affect performance; instead, it improves the
performance of specific web pages.

The Enrollment Service requires

improvement in managing a larger user load.
Therefore, Catalog Service can be integrated into

Service-Based Architecture, while Enrollment
Service still needs to be worked on in the future to
be more optimal.

6. CONCLUSION AND FUTURE WORK

Developing a minimum viable product for
a startup with few resources presents difficulties,
particularly when the company wants to focus on
scalability and a positive user experience. This case

70
75

80

85
90

95

100

W1 W2 W3 W4 W5 W6 W7

Avg Mobile Performance Score

Strapi Meilisearch

75

80

85

90

95

100

W1 W2 W3 W4 W5 W6 W7

Avg Desktop Performance Score

Strapi Meilisearch

70
75

80

85
90

95

100

W1 W2 W3 W4 W5 W6 W7

Median Mobile Performance Score

Strapi Meilisearch

75

80

85

90

95

100

W1 W2 W3 W4 W5 W6 W7

Median Desktop Performance Score

Strapi Meilisearch

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3010

study showed that using a headless content
management system offers an effective first step into
creating a service-based architecture before
expanding the architecture into a full SOA or
Microservices. Most of previous research is mostly
concentrated on creating services without
considering using an existing solution and
developing it into a service that can be used. This
case study gives a possible ready-to-use and tested
solution to start-up companies wanting to adopt a
service-based approach but not having enough
resources to create it. From this case study, we
provide a guide on using Headless CMS and proving
that the use of it will not regress the quality of the
service-based architecture.

Employing Headless CMS as a service
shows that development can be hastened while
conforming to industry standards set by the headless
content management system. The CMS’s features,
like database creation and easy component
development, enable a small team of developers to
turn it into a service in a few days, depending on the
application’s complexity. New product components
are developed in under a day, freeing developers to
focus on frontend optimization and user experience.

As the start-up expands, developing
additional services using the CMS data structure
becomes feasible, because developers designed the
structure based on the consistent structure of the
CMS. If the CMS allows developers to create
plugins like Strapi, integrating services can be
accomplished with convenience. In this case study,
we seamlessly integrate Meilisearch as the catalog
service and NestJS as the enrollment service using
plugins.

In our architecture, each service can be
deployed independently, with no impact on the other
services. Proper implementation can enhance
performance if the services are created with
optimization and performance as the main priorities.
In this study, the catalog service we developed
outperformed the first Headless CMS API.
However, the enrollment service performs at the
same level as the initial CMS API, although it
requires more enhancements to handle a larger
number of users. This shows that the creation of
services still needs to be optimized. To optimize the
REST APIs developers might consider tools such as
Load Balancers to assist services in handling many
website visitors and optimize caching in the REST
APIs.

However, even when the backend services
have been optimized, website speed also depends on
user connection, so further investigation into the
overall user experience is required. Not only that, but

overall User Experience is also affected by the User
Interface. Further investigation can be done by doing
surveys with the real users of the website.

For consideration for future research and
development, Headless CMS usually does not
provide ways to connect to more than a pair of
database servers. If a service shares a component
with the CMS, a modification to that component
necessitates corresponding updates to both services.
The existing system uses a shared database server for
two services, which heightens the risk of a single
point of failure that might stop these services. Future
endeavors can investigate the feasibility of
employing multiple database servers within the
services to alleviate the workload on the database
server. To achieve proper microservice architecture
in the future, developers must perform table and data
migration once they use multiple database server
styles.

7. AUTHORS’ CONTRIBUTIONS

Ilma Arifiany was responsible for the
conceptualization and formulation of the case study's
objectives, the design of the methodology and
architecture, the development of the website's
services and frontend, the evaluation and analysis of
the results, and the drafting of the research
manuscript. Gede Putra Kusuma provided
supervision and mentorship throughout the research
process, reviewed the work, and offered critical
feedback on both the research and the manuscript.

REFERENCES:

[1] Tapia F, Mora MÁ, Fuertes W, et al. From
Monolithic Systems to Microservices: A
Comparative Study of Performance. Applied
Sciences 2020; 10: 5797.

[2] Richards M. Microservices vs. Service-
Oriented Architecture. O’Reilly Media, Inc.,
2016.

[3] Newman S. Monolith to Microservices.
O’Reilly Media, Inc., 2019.

[4] Paternoster N, Giardino C, Unterkalmsteiner
M, et al. Software development in startup
companies: A systematic mapping study. Inf
Softw Technol 2014; 56: 1200–1218.

[5] Kalske M, Mäkitalo N, Mikkonen T.
Challenges When Moving from Monolith to
Microservice Architecture. 2018, pp. 32–47.

[6] Saad J, Martinelli S, Machado LS, et al. UX
work in software startups: A thematic analysis
of the literature. Inf Softw Technol 2021; 140:
106688.

[7] Fitzgerald A. The Ultimate Guide to
WordPress Plugins: 19 Examples & How They

 Journal of Theoretical and Applied Information Technology
15th April 2025. Vol.103. No.7

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3011

Work.,
https://blog.hubspot.com/website/wordpress-
plugins (2021, accessed 19 January 2024).

[8] Lofthouse T. Creating a better WordPress Site:
WordPress vs Headless WordPress vs Modern
Headless CMS. Skyward Digital,
https://skyward.digital/blog/better-wordpress-
sites-with-headless (2023, accessed 19 January
2024).

[9] Melvær K. Headless CMS Explained. Sanity,
https://www.sanity.io/headless-cms (2023,
accessed 20 January 2024).

[10] Mahmood Z. The Promise and Limitations of
Service Oriented Architecture. In:
International Journal of Computers,
https://api.semanticscholar.org/CorpusID:394
10584 (2007).

[11] Tapia F, Mora MÁ, Fuertes W, et al. From
Monolithic Systems to Microservices: A
Comparative Study of Performance. Applied
Sciences 2020; 10: 5797.

[12] Bell M. Service-Oriented Modeling: Service
Analysis, Design, and Architecture. Wiley &
Sons, 2008.

[13] Baresi Luciano and Garriga M. Microservices:
The Evolution and Extinction of Web
Services? In: Bucchiarone Antonio and
Dragoni N and DS and LP and MM and RV
and SA (ed) Microservices: Science and
Engineering. Cham: Springer International
Publishing, pp. 3–28.

[14] Mazzara M, Bucchiarone A, Dragoni N, et al.
Size matters: Microservices research and
applications. Microservices: Science and
Engineering 2020; 29–42.

[15] Gardon DS. Why headless cms over
monolithic cms? Contentrain.

[16] Heslop B. History of content management
systems and rise of headless CMS.,
https://www.contentstack.com/blog/all-about-
headless/content-management-systems-
history-and-headless-cms (2023, accessed 19
January 2024).

[17] Sobri NAN, Abas MAH, Yassin AIM, et al.
Comparison between Headless CMS and
Backend-as-a-Service Products for E-
Suripreneur Backend. Mathematical

Statistician and Engineering Applications
2022; 71: 928–938.

[18] Keeling M. Design It! : From Programmer to
Software Architect . 1st ed. Pragmatic
Bookshelf, 2017.

[19] Evans E. Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-
Wesley Professional, 2004.

[20] Wojciechowski P. Technical Aspects of User
Experience. iRonin.

[21] Halili EH. Apache JMeter. Packt Publishing,
2008.

[22] Galletta DF, Henry R, McCoy S, et al. Web
Site Delays: How Tolerant are Users? J Assoc
Inf Syst 2004; 5: 1 – 28.

[23] Rempel G. Defining standards for web page
performance in business applications. In:
Proceedings of the 6th ACM/SPEC
International Conference on Performance
Engineering. 2015, pp. 245–252.

[24] Google Developers. Google Lighthouse,
https://developer.chrome.com/docs/lighthouse
/overview (2016, accessed 22 April 2024).

[25] Google Developers. Lighthouse Variability,
22/04/2024https://developers.google.com/web
/tools/lighthouse/variability (2019, accessed
22 April 2024).

[26] Gadhavi M. What is Strapi, and Why You
Should Use it? Radix.

[27] Srinivasan P. How to Leverage Search as a
Service for Enhanced Results. ClickUp,
https://clickup.com/blog/search-as-a-service/
(2025, accessed 14 March 2025).

[28] Chang X. The Analysis of Open Source Search
Engines. Highlights in Science, Engineering
and Technology 2023; 32: 32–42.

[29] Damarjati YP, Raharjo WS. Performance and
Scalability Analysis of Node.js and
PHP/Nginx Web Application. Informatika:
Jurnal Teknologi Komputer dan Informatika;
9. Epub ahead of print 2013. DOI:
10.21460/inf.2013.92.313.

[30] Chaniotis IK, Kyriakou K-ID, Tselikas ND. Is
Node.js a viable option for building modern
web applications? A performance evaluation
study. Computing 2015; 97: 1023–1044.

