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ABSTRACT 
 

Sleep disorders manifest differently across individuals, making accurate diagnosis and treatment highly 
complex. Even within the same diagnosis, there can be variation in sleep architecture among patients, which 
makes generalization across people difficult. Traditional sleep analysis methods rely on manual scoring and 
fixed diagnostic criteria, which fail to capture subject-specific variability in sleep patterns. To address this, 
we propose a data-driven Personalized Sleep Signature (PSS) approach that learns individualized sleep 
behaviour using AI models. This study introduces the PSS framework, combining Transformer-based 
Attention and Graph Attention Networks (GATs) to model nuanced sleep characteristics. We utilize the 
Nationwide Children’s Hospital Sleep Data, a paediatric Polysomnography (PSG) dataset containing EEG 
and physiological parameters such as ocular movements, EMG activity, blood pressure, and respiratory rate. 
From this, we extract sleep epoch features and demographics to form Sleep Signature Groups that reflect 
common behavioural patterns. Unlike conventional classification, our method captures personal variability 
and delivers individualized sleep hygiene guidance. The model achieved 94% accuracy in detecting sleep 
patterns, outperforming traditional methods. Beyond clinical applications, it can be integrated with wearable 
sensors (e.g., Fitbit, Oura, Apple Watch) to personalize wake/sleep routines and environments. It also enables 
early detection of sleep disorders and aligns daily schedules with individual chronotypes to enhance well-
being. By focusing on sleep behaviour rather than rigid diagnostic categories, this approach supports non-
pharmacological, personalized interventions backed by scientific evidence. Our work opens the door to 
precision sleep medicine, offering actionable insights for clinicians, researchers, and technology innovators. 
Keywords: Personalized Sleep Signature, Transformers, GAT, NCH Sleep Data, Polysomnography  
 
1. INTRODUCTION 
 
Sleep is a physiological process that is controlled and 
stimulated by the human brain. Sleep maintains an 
individual's physical and mental health. While 
sleeping, the human body renews and reinforces 
itself, removing metabolic waste that is accumulated 
while awake. Sleep also rebuilds memory and 
supports the development of long-term memory. 
Given the great benefits of sleep to human beings, 
everyone must make sure they sleep enough. Poor or 
inadequate sleep disrupts the body's internal 
circadian rhythm, predisposing it to develop 
diseases, including severe ones like cardiovascular 
disease, cognitive impairment, and memory loss. 
This negatively impacts daily functions, like study or 
work, and can lead to decreased appetite, lower 
productivity at work, and increased chances of 
accidents. Sleep disorders are complex and require 
disease-specific management. Moreover, sleep is 
personal, and the impact of sleep disruption is 

personal to each human individual. Objective 
disease detection for personal diagnosis is thus 
mandated. Early detection could guarantee optimal 
treatment and management of sleep disorders. 
Traditional diagnosis processes require highly 
trained clinical scientists and sleep physicians to 
manually interpret and analyze. Manual assessment 
is susceptible to inter- and intra-observer variability 
and is time-consuming. With computer-assisted 
detection of sleep disorders, diagnosis support 
systems can improve cost-effectiveness and reduce 
inter- and intra-operator variability. Support for 
disorder diagnosis is a challenging task due to the 
variability and uniqueness of the symptoms. 
Sleep is a universal natural process but surprisingly 
intricate, individualized, and with a significant 
amount of inter- and intra-individual variation, 
which has been reported to be correlated with age, 
race/ethnicity, body mass index (BMI), physical and 
mental well-being, and chronotype among others. 
Embracing such complexity, "Personalized Sleep 
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Medicine" is a cutting-edge, highly revolutionary 
field in medicine that addresses the individual-
specific sleep-related health requirements of 
individuals in terms of the bidirectional interaction 
between sleep and health. Such a new paradigm goes 
beyond the traditional one-size-fits-all approach and 
focuses on individual-specific physiological and 
psychological characteristics to optimize sleep 
duration and quality and properly treat sleep 
disorders. 
As per the study conducted by the Global Wellness 
Institute in 2024, Over 30% of adults globally report 
insomnia symptoms, and 50–70 million U.S. adults 
are affected by sleep disorders annually. In the U.S., 
30–40% of adults experience insomnia symptoms 
each year, and 10–30% suffer from obstructive sleep 
apnea. Among Gen Z adults, nearly 40% report 
sleep-related anxiety at least three times a week—a 
notable increase fueled by stressors like social media 
and economic uncertainty which shows the 
Generational Impact. In conclusion, around 44% of 
adults worldwide report worsening sleep quality 
over the past five years, with 67% experiencing 
nightly disturbances. 
Sleep disorders develop uniquely in each individual, 
making accurate diagnosis and effective treatment a 
significant challenge. Traditional diagnostic 
methods rely heavily on manual scoring and fixed 
criteria, which overlook the high degree of subject-
specific variability in sleep patterns. Even among 
patients with the same diagnosis, there can be 
considerable differences in sleep architecture, 
complicating the ability to generalize findings across 
populations. This heterogeneity in symptoms and 
physiological responses demands a shift from rigid 
diagnostic labels to more personalized, data-driven 
approaches that can adapt to individual variations in 
sleep behaviour. To overcome the aforementioned 
challenges, we present a model based on 
Transformer-based Attention with GAT that learns 
PSS from Polysomnography data. We initialize our 
method by extracting epoch-wise embeddings via 
Transformers, obtaining temporal dependency in 
sleep patterns. These embeddings are further 
processed by GAT, modelling inter-dependence 
between sleep epochs and subjects to identify 
clusters of sleep behaviour. Lastly, extract similar 
sleep patterns to form Sleep Signature groups. Not 
only does this hybrid deep learning approach 
improve sleep classification accuracy but also yields 
explainable, data-driven recommendations for 
personal sleep suggestions. 
The remainder of this paper is categorized as 
follows. The next section provides a literature review 
of related studies. Section 3 describes data and 

method and Section 4 presents the review and 
results. Section 5 specifies the interpretation of these 
results focusing on the limitations and potential 
future scope.  
 
2. LITERATURE REVIEW 
 
The literature for this research summarizes studies 
between the years 2018 and 2024 under four aspects 
critical to our study. Firstly, we discuss studies on 
the prediction of sleep disorder, which make use of 
machine learning and deep learning models in order 
to aid early diagnosis and risk analysis. Secondly, we 
discuss studies based on Nationwide Children's 
Hospital (NCH) sleep data. Third, we discuss 
progress in Transformer models, specifically their 
use in sleep research, where self-attention allows 
effective feature extraction from complicated time-
series sleep data. Finally, we summarize studies on 
Polysomnography (PSG) signal clustering, which 
concentrates on clustering sleep patterns and 
uncovering latent structures in multimodal sleep 
signals. 
 
2.1. Related Works on Sleep Disorder Analysis  
 
The work of Xu et al. [2] presents an overview of 
automated systems for the diagnosis of sleep 
disorders, with focus on the convergence of machine 
learning (ML) and deep learning (DL) approaches. 
The authors point to the shortcomings of 
conventional diagnostic approaches, including 
polysomnography, which tend to be resource-
intensive and time-consuming. The authors point out 
issues of interpretability of ML models and require 
more robust systems that can work in real-time 
environments. Gokulan et al.'s study [5] is centred on 
identifying different deep learning parameters in 
diagnosing sleep disorders, given the importance of 
effective and accurate detection. The research 
emphasizes machine learning and deep learning 
integration for improved diagnostic precision and 
early intervention. The study uses a hybrid model 
that is a combination of 1D CNN and Bidirectional 
LSTM and attains a 92% accuracy rate in sleep 
disorder classification. The work of C. Wan et al.[6] 
introduces a new transformer-based model for sleep 
stage classification and obstructive sleep Apnea 
(OSA) prediction from electroencephalogram (EEG) 
data. The method utilizes the advantage of 
transformer models to improve the accuracy and 
efficiency of sleep disorder diagnosis, overcoming 
shortcomings of existing approaches. They 
investigate the correspondence between sleep stages 
and OSA severity using the predicted sleep stage 
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features to train different regression models for 
Apnea-Hypopnea Index (AHI) prediction. The 
experiments show a better sleep stage classification 
performance of 78.7%. 
Ahadian et al.,[10] in their paper talks about the 
Attention mechanism for Sleep Disorder Prediction. 
This study employs Temporal Convolutional 
Networks (TCN), Long Short-Term Memory 
(LSTM) to analyze time series data, and Temporal 
Fusion Transformer model (TFT). [11] Chen et al., 
introduce NAMRTNet, an architecture of the deep 
model that is founded on the initial single-channel 
EEG signal to meet these challenges. The model 
applies an adjusted ResNet network for extracting 
features from sub-epochs of individual epochs, and 
also a temporal convolutional network (TCN) 
network for long-time series feature dependency 
capture. 20-fold cross-validation recognition rate 
using the NAMRTNet model on Fpz-cz channel data 
from the public sleep dataset Sleep-EDF was 86.2%. 
Their future horizon is to make the NAMRTNet 
usable for multimodal signals acquired from 
wearable devices. 
In another study [12] they propose an automated 
sleep-disorder-detection technique based on 
electrooculography (EOG) and 
electroencephalography (EEG) signals to overcome 
the limitations of automated, real-time, and non-
invasive sleep-disorder diagnosis. The pre-processed 
EEG and EOG signals are converted into a two-
dimensional time-frequency image by employing a 
complex-Morlet-wavelet (CMW) transform. This 
transform helps in capturing both the frequency and 
time properties of the signals. Then the 
characteristics are extracted through a bidirectional 
gated recurrent unit (Bi-GRU) and a self-attention 
layer with an ensemble-bagged tree classifier 
(EBTC) to properly classify sleep disorders and  
very effectively detect them. The overall system 
integrates the features of EOG and EEG signals to 
well classify individuals with insomnia, narcolepsy, 
nocturnal frontal lobe epilepsy (NFLE), periodic leg 
movement (PLM), rapid-eye-movement (RBD), 
sleep behaviour disorder (SDB), and healthy, 
achieving success rates of 99.7%, 97.6%, 95.4%, 
94.5%, 96.5%, 98.3%, and 94.1%, respectively.  
 
2.2. Related work on Transformer based models 
 
To address the gap of the potential of combining 
convolutional and recurrent architectures for time 
series compression tasks, Zheng et al [4] designed a 
new temporal convolutional recurrent autoencoder 
(TCRAE) based framework for time series 
compression, which is equivalent to getting a lower 

reconstruction error of the time series. 
Computational experiments across five datasets 
indicate that the developed temporal convolutional 
recurrent autoencoder performs better compared to 
state-of-the-art benchmarking models through lower 
reconstruction errors at the same compression ratio 
with an improvement rate of up to 45.14% for the 
average mean squared errors. The paper 
"MultiChannelSleepNet" [7] presents a transformer 
model for sleep stage classification based on 
multichannel polysomnography (PSG) data. The 
approach utilizes transformer encoders for 
individual channel feature extraction and multi-
channel data fusion, offering improved accuracy in 
sleep staging. The outcomes show better 
classification performance than state-of-the-art 
approaches, confirming the potency of the proposed 
model in dealing with intricate EEG data.  However, 
the research might be limited in its use of particular 
datasets, which may limit generalizability to a 
variety of populations and conditions. [8] Kim et al 
in their paper suggest a new method using a Time 
Series Transformer (TST) and Machine Learning 
Ensembles to forecast sleep quality and associated 
measures. The model experienced a drop in 
performance when replacing missing values by 
merely identifying the nearest neighbours without 
temporal continuity. Ren et al [9] introduce a new 
deep learning model, by incorporating the vision 
transformer with supervised contrastive learning, 
achieving the effective sleep stages classification. 
Experimental results indicate that the model makes 
the multi-channel PSG signals easier to classify. 
They achieved a mean F1-scores of 79.2% and 
76.5% on the two public databases surpassing the 
current literature, demonstrating the model's 
excellent ability. 
 
2.3. Related work on the NCH dataset 
 
Lee et al.[14] in their article discusses the NCH data. 
The authors state that The NCH Sleep DataBank 
contains 3,984 polysomnography studies and more 
than 5.6 million clinical observations on 3,673 
distinct patients during 2017-2019 at NCH. The 
novelty of the dataset is as follows: (1) huge sleep 
dataset ready for finding novel insights through data 
mining, (2) express emphasis on child patients, (3) 
collected in a realistic clinical environment, and (4) 
the included rich set of clinical information. 
Although the manuscript mainly discusses the 
creation and importance of the dataset, it does not 
discuss in great detail the particular approaches 
utilized for exploring or analyzing the data. 
Nonetheless, the availability of the dataset on sites 
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such as Physionet indicates that it is designed to be 
used with currently available tools for the analysis of 
physiological data, possibly including automatic 
sleep scoring and other analysis methods. The paper 
highlights the promise of this dataset to advance 
scientific findings in paediatric sleep research. The 
article by Zhang et al [14] discusses several sleep 
stage classification techniques in paediatric 
participants based on EEG signals. The research 
utilizes an HNN methodology that combines multi-
domain inputs, such as time-domain signals and 
frequency domain. One of the limitations mentioned 
in the research is the loss of temporal information by 
utilizing PSD obtained with short-time segments, 
and this led to lower performance relative to time-
domain signals. 
 
2.4.Related work on Signal Clustering with PSG 

data 
 
Kazemi et al [15] presented a new semi-
unsupervised sleep staging approach, especially 
applicable to REM sleep behaviour disorder (RBD), 
through the use of a two-stage procedure: initially 
extracting knowledge from limitedly labelled data to 
maximize feature selection, clustering order, and 
initial centroids; and secondarily using iterative 
binary clustering on unlabelled data to detect sleep 
stages and reveal emergent EEG patterns not in the 
conventional classifications. This method 

overcomes the issue of data sparsity and improves 
sleep stage accuracy, especially in such 
multicomponent disorders as RBD. Yet, by 
depending on a first small, annotated set, bias may 
be introduced, and generalizability of found 
emergent patterns must be confirmed on 
heterogeneous populations since the performance of 
the method depends inherently on the quality and 
representativeness of the first annotated data. 
Rodríguez-Sotelo et al. [16] suggested a complete 
unsupervised method of automatic sleep stage 
clustering from EEG signals, obtaining complete 
time and spectral features such as power, 
coherences, asymmetries, and wavelet coefficients 
and then clustering these using an optimization 
algorithm of a minimum sum of squares cost 
function. This strategy was meant to automate the 
process of sleep staging without using labelled data 
and presented similar accuracy and kappa 
coefficients compared to previous work. 
Nevertheless, the unsupervised character of the 
method might have difficulty with noisy or very 
variable EEG data, and the absence of labelled data 
for validation could restrict the clinical 
interpretability of the produced clusters since there 
is no ground truth against which to compare the 
automatic staging directly. Furthermore, the stability 
of the clustering results across heterogeneous patient 
populations and recording conditions is yet to be 
fully determined. 

 
2.5. Limitations of existing works 
 
In spite of huge progress in machine learning 
(ML) and deep learning for the prediction of sleep 
disorders, current models mostly have a 
generalized orientation instead of personalizing 
sleep patterns. Most of the studies make use of 
population-level trends instead of accounting for 
personalized variations in sleep physiology, 
which can play a role in disorder expression and 
progression. Although a few ML and deep 
learning models exist for sleep stage classification 
and detection of disorders, they do not take into 
consideration subject-specific attributes, thus 
confining their potential to personalized diagnosis 
and treatment planning. The absence of 
individualization in today's research points out an 
important sleep medicine gap wherein custom 
models would be able to provide more precise 
predictions, pre-disorder detection, and 
individualized intervention based on an 
individual's personalized sleep signature. A GAT-
based sequential model with Transformers can 
find informative, person-specific sleep signatures 

that go beyond universal sleep scoring. With the 
subject-level relationship modelling and sleep 
transition, the technique allows subject-wise 
clustering based on comparable sleep activities 
for customized intervention. 
 
 2.6. Related Research Questions 
 
Past studies on sleep disorder prediction have 
mainly concentrated on deep learning and ML 
models, but none have used Graph Attention 
Networks (GAT) to study dependencies between 
epochs in multiple subjects. This restricts the 
knowledge of how sleep patterns change over 
time and how various subjects exhibit similar 
sleep behaviours. Moreover, although 
personalization in sleep medicine is of increasing 
interest, it has been suggested by no study so far 
that a personalized personalization program with 
a grouping strategy according to subjects' 
individual PSG features and disorder risk is 
proposed[1]. Bridging these gaps can result in 
more accurate clustering, improved disorder 
prediction, and individualized intervention 
strategies for patients with comparable sleep 
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patterns. Below stated are some of the research 
questions: 
 
• How can sleep disorder prediction models better 
account for individual variability in sleep patterns 
rather than relying solely on population-level 
trends? 
• What methods can be developed to personalize 
sleep analysis by incorporating subject-specific 
physiological and demographic features? 
• Could be there phenotypes within the groups of 
the population that exhibit the same sleep 
disorders? 
 
3. NEED FOR RESEARCH 
 
Traditional approaches rely on strict sleep stage 
classification and general rules, which tend to 
overlook customized sleep characteristics. The 
present study must bridge the gap between 
standardized sleep testing and customized sleep 
data with state-of-the-art data-driven approaches. 
Sleep disorders occur differently in different 
people, and hence it is hard to detect them using 
traditional methods. While many studies have 
been conducted on Sleep Stage classification and 
Sleep Disorder Prediction, fewer or no studies 
have been conducted on individualizing the sleep 
features and classifying participants according to 
their phenotype or sub-groups. Most modern 
models treat the epochs separately, ignoring the 
sequentially of sleep stages and disorder 
evolution.  
 
3.1. Problem Statement  
Sleep disorders develop differently in different 
people, and thus accurate diagnosis and 
personalized treatment is a challenging task. 
Traditional sleep analysis methods rely on manual 
scoring and predefined diagnostic criteria, which 
cannot accommodate subject-specific variability 
in sleep patterns. Further, disorder diagnosis 
assistance is highly complex due to the 
individuality and variability of symptoms. Even 
within the same diagnosis, there can be variation 
in sleep architecture among patients, which makes 
generalization across people difficult. Such 
heterogeneity demands a data-driven, 
personalized paradigm that goes beyond rigid 
diagnostic categorizations and instead learns 
nuanced representations of sleep behaviour to 
assist in disorder detection. 
Secondly, one of the essential problems in sleep 
analysis is dealing with multi-scale data 
relationships,    wherein epoch-level physiological 

signals have to be mapped onto subject-level 
diagnosis labels. Because diagnosis labels are 
provided at the subject level and do not change 
with epochs, traditional models might find it 
difficult to learn useful relationships between 
sleep patterns and diagnostic results. This calls for 
a model that will bridge the gap between fine-
grained sleep epoch data and high-level subject 
diagnosis without losing sight of the relations 
between sleep stages, sleep behaviours and 
disorder classifications. To tackle these 
challenges and fill the research gap identified, we 
introduce the PSS which is a Transformer-based 
Attention-based GAT method that models both 
intra-subject temporal relationships and inter-
subject similarities to make more personalized 
and interpretable sleep disorder predictions. 
 
3.2. Expected Impact of this Research 
 Personalized Sleep Medicine: Goes beyond 

one-size-fits-all sleep guidance. 
 Enhanced Diagnosis Support: Provides an 

effective mechanism for differentiating 
sleep disorders based on consecutive sleep 
parameters. 

 As AI advances in the field of medicine, it is 
not intended to substitute physicians but to 
aid them. Sleep signatures created by our 
model can yield initial insights, but ultimate 
clinical judgments must always be 
confirmed by physicians. After additional 
validation and regulatory clearance, such 
models could one day become part of 
clinical routines, aiding in early detection, 
long-term tracking, and personalized 
treatment for sleep disorders. 

 The model outputs, including personalized 
sleep pattern classification and disorder risk 
prediction, have the potential to be used as a 
decision-support tool for sleep specialists. 
The findings can be utilized by clinicians to 
confirm and fine-tune diagnoses, and hence 
result in more focused and effective 
treatment options. 

 Such research and sleep professionals can 
utilize this GAT-Transformer-based system 
to investigate sleeping patterns in different 
populations, delineate new types of 
disorders, and optimize targeted treatment 
methods. 
 

3.3. Reason why conventional clustering 
models like K-Means was not used 
K-Means could not be applied directly since it 
needs fixed-dimensional, dense feature vectors, 
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whereas PSG data is naturally high-dimensional, 
sequential, and multimodal. Sleep data is captured 
at the epoch level, hence sparse and not amenable 
to direct clustering without learning first 
meaningful subject-level representations. Further, 
K-Means requires globular and distinct clusters in 
Euclidean space, but sleep architecture is very 
non-Euclidean with intricate time dependencies 
that can't be satisfactorily expressed using basic 
distance-based clustering. PSG data contain 
several types of signals (EEG, EOG, EMG, 
breathing, and auxiliaries), adding to the 
complexity. To overcome these issues, we have 
utilized a Transformer-based model to learn 
informative embeddings through self-attention 
mechanisms, which are able to capture long-range 
dependencies over epochs. In contrast to K-
Means, Transformers adaptively weigh temporal 
features that are important instead of assuming 
equal importance over time.  
 
 3.4. Choice of Transformer based Attention 
Model 

 Repeated Disorder Labels Throughout 
Epochs Cause Bias: Because a single 
disorder label is assigned to every 
subject, it is repeated for all of its epochs. 
When one disorder belongs to a subject 
with a huge number of epochs, the model 
can easily overfit the most common 
disorder, resulting in poor generalization 
upon seeing novel subjects. 

 Extremely Large Data Imbalance 
Between Epochs and Diagnosis Labels: 
Even with 100 subjects, epochs can be 
120,000+, while diagnosis labels are still 
only 10 different values. Typical ML/DL 
models have a hard time dealing with 
such exceedingly imbalanced 
hierarchical data (high-frequency epoch-
level data vs. low-frequency diagnosis-
level data). Without effective modelling, 
the disorder label might emerge as a poor 
supervisory signal, swamped by the 
exceedingly large number of input 
features. 

 Need for Sequential Modelling to Model 
Sleep Patterns Over Time: Because sleep 
disorders occur through typical 
transitions between sleep stages, a 
sequential model is required to capture 
the way these transitions change over 
time. In contrast to standard ML models 
that handle epochs separately, a 
Transformer-based model uses attention 

mechanisms to concentrate on 
significant time-dependent patterns over 
several epochs and is less susceptible to 
bias from high-frequency disorder 
labels. 

 Improved Generalization Through 
Personalized Representations: Through 
the extraction of embeddings from 
temporal sleep data, the Transformer has 
the ability to learn representations 
immune to subject-level biases, with less 
overfitting to the most frequent disorder 
while retaining its ability to identify 
significant variation in sleep 
architecture. 

  
4. METHODOLOGY 
 
4.1. Problem Formulation 
Accurate diagnosis of sleep disorders remains an 
ongoing challenge due to significant inter-
individual variability in sleep architecture. 
Traditional diagnostic frameworks rely on fixed 
scoring criteria and manual annotations, which are 
unable to accommodate the nuanced and 
personalized nature of sleep behaviours. Even 
within the same clinical diagnosis, patients often 
present vastly different sleep profiles, making it 
difficult to generalize findings or apply uniform 
interventions. This lack of adaptability in current 
methods limits their clinical utility, especially in 
diverse and real-world populations. To design an 
effective and personalized diagnostic framework, 
there is a critical need to move beyond rigid 
diagnostic labels toward individualized 
representations of sleep dynamics. 
 
4.1.1. Hypothesis and Methodological 
Justification 
 
We hypothesize that a data-driven model capable 
of learning Personalized Sleep Signatures (PSS) 
from multi-modal sleep data can better capture 
individual differences in sleep architecture, 
thereby improving diagnostic accuracy and 
supporting personalized intervention strategies. 
By using Transformer-based Attention 
mechanisms in combination with GATs, the 
model aims to extract both temporal dependencies 
and relational patterns from EEG and 
physiological signals. This methodology allows 
for the formation of Sleep Signature Groups that 
reflect behaviourally meaningful and clinically 
relevant sleep patterns, paving the way for 
precision sleep medicine. Our approach is further 
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validated on a paediatric PSG dataset to 
demonstrate its ability to generalize across 
individuals despite heterogeneous sleep 
presentations. 
 
4.1.2. Research Design  
 
This study follows an applied, data-driven 
experimental research design, aimed at 
developing and evaluating a novel AI-based 
framework for personalized sleep disorder 
characterization. Our approach combines 
supervised machine learning and graph-based 
deep learning techniques to extract individual-
specific patterns from PSG recordings and 
demographic data. We draw inspiration from 
previous works in medical informatics, 
neurology, and behavioural health analytics, 
where deep learning has been applied to large-
scale physiological datasets to detect anomalies or 
cluster patients. For instance, prior studies from 
Europe and North America have applied deep 
neural networks to adult PSG datasets for sleep 
staging or apnea detection. However, these 
approaches often rely on standard classification 
pipelines without accounting for inter-individual 
variability or cross-stage relational features. In 
wearable technology domains, similar approaches 
have been used in sports science and occupational 
health to recommend customized interventions 

based on biometric trends. Our design is 
distinguished by its focus on paediatric 
populations and its integration of 
temporal(Transformer) and relational (GAT) 
attention mechanisms to form sleep signature 
groups. This multidisciplinary methodology 
reflects best practices from both healthcare and AI 
while addressing a key gap in personalized sleep 
medicine. 
 
4.2. NCH Sleep DataBank  
 
This data set comprises 3,984 paediatric sleep 
studies on 3,673 unique patients at NCH in 
Columbus, Ohio, USA from 2017 through 2019, 
along with longitudinal clinical data for the 
patients. The polysomnography published 
includes the patient's physiologic signals and the 
technician's scoring of sleep stages and narratives 
of other abnormalities.[3] 
The data employed in our study comprises 100 
subjects aged between 1 and 18 years, providing 
us with a rich and diverse sleep profile at different 
stages of development. We have utilized Stratified 
random sampling to make sure that each group of 
participants with the disorders had an equal 
opportunity of selection and thus it will provide 
representativeness of results. Summary of 
participants selected across each sleep disorder is 
given in Table 1 .

Table 1: Number of participants across each sleep disorder 
Sleep Disorders No of participants 

Behavioural insomnia of childhood, sleep-onset association type 5 

Benign sleep myoclonus of infancy 5 

Bruxism, sleep-related 4 

Chronic intermittent hypoxia with obstructive sleep apnea 4 

Delayed sleep phase syndrome 5 

Epilepsy with continuous spike-wave during slow-wave sleep 5 

Excessive daytime sleepiness 5 

Idiopathic sleep-related nonobstructive alveolar hypoventilation 5 

Obstructive sleep apnea (adult) (paediatric) 5 

Periodic limb movements of sleep 5 

Recurrent isolated sleep paralysis 4 

REM sleep behaviour disorder 4 

Sleep arousal disorder 5 

Sleep-related laryngospasm 5 

Sleep talking 5 

Sleep terror 5 

Sleep walking 6 

Sleepwalking and eating 4 

Sleep-disordered breathing 5 

Sleep-related head banging 4 

Sleep-related hypoventilation 5 
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Note: We consider ‘Sleep Walking’ and ‘Sleep Walking and eating’ as two different diagnoses as signal 
involvements for each could be different. The data of disorders show that we have well balanced data for our 
training. Table 2 shows the distribution of age and gender of the group selected for the study. 
 

Table 2: Distribution of Age and Gender 

Age Group 
No of Male 
participants 

No of Female 
participants 

0-4 10 16 

5-9 12 19 

10-14 7 18 

15-19 8 10 

 
4.2.1. Data Collection and Data Properties 
 
Sleep studies were downloaded manually and 
transformed into EDF+ format between May 
2019. and Feb 2020 with the help of Natus 
Sleepworks version 9. The time-series data were 
padded with zeros during the conversion as part of 
the process. To have a complete set of guidelines 
on standard PSG procedures such as equipment 
specifications and signal measurements, technical 
guidelines from the American Association of 
Sleep Technologists (AAST) contain guidelines 
on standard procedures in polysomnography. 
 
4.3. Machine usage and specifications 
Differential amplifiers are employed to 
differentiate between the wanted physiologic 
voltage at the site of exploration and unwanted 
voltages from the body and outside environment, 
utilizing common mode rejection. The normal 
minimum requirement for PSG common mode 

rejection ratio is 10,000:1. The signal should be 
sampled frequently enough to yield a faithful 
waveform. As per Nyquist's theory, the lowest 
rate would be two times the uppermost frequency 
under observation, that is, 200 Hz and is also the 
lowest setting advised for EEG, EOG, EMG, 
ECG, and snore microphones. The ideal setting of 
these parameters should be 500 Hz. The lowest 
digital resolution is 12 bits/sample. 
Electrodes are employed to measure EEG, EOG, 
EMG, ECG, and occasionally respiratory effort. 
The site where the electrode must be applied is 
cleaned by gently abrading the skin to obtain 
maximum impedance without compromising the 
dermis. In order to get the best signal quality, all 
electrode pairs must be matched as close as 
possible to the input impedance. In the electrode 
impedance standard upper limit, 5k ohms is the 
standard used for EEG and EOG, and 10k ohms 
for EMG. 

 
4.4. Montage Filter & Sensitivity Settings 
Table 3 provides information about the signals we have used in our study.
 

Table 3: Filter & Sensitivity information of signals 

Signal Sensitivity 
High-
Frequency 
Filter 

Low-
Frequency 
Filter 

Sampling 
Rate 

Frontal EEG (F4-M1, F3-M2) 5-7 µv/mm 35 Hz 0.3 Hz 500 Hz 

Occipital EEG (O2-M1, O1-
M2) 

5-7 µv/mm 35 Hz 0.3 Hz 500 Hz 

ECG (ECG1-ECG2) 20 µv/mm 70 Hz 0.3 Hz 500 Hz 

Chin EMG (EMG1 EMG2 
EMG3) 

10-7 µv/mm 100 Hz 10 Hz 500 Hz 

Left Outer Canthus (E1-M2) 5-7 µv/mm 35 Hz 0.3 Hz 500 Hz 
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Right Outer Canthus (E2-M2) 5-7 µv/mm 35 Hz 0.3 Hz 500 Hz 

Snore Microphone (Snore) 20 µv/mm 100 Hz 10 Hz 500 Hz 

Pressure Flow (Pflow) 20 µv/mm 15 Hz 
DC or <0.03 
Hz 

100 Hz 

 
4.5. Electrode placement  

 
Figure 1: Electrode placement as per the American 
Academy of Sleep Medicine AASM [18] 
 
Parameters involved in the analysis include: 

• Snore Microphone: Positioned above the 
trachea or lateral to the neck to pick up 
snore noises. The technologist must 
palpate for the site of maximal vibration 
when the patient hums or snores. 

• Pressure Flow (Pflow): A nasal cannula 
is positioned beside the nose/mouth to 
record nasal/oral flow. 

• Polysomnography Signals: The PSG 
signals are epoch-level and include EEG 
(brain activity), EOG (eye movement), 
EMG (muscle activity), ECG (heart 
activity), and other physiological 
markers' signals. These signals capture 
the dynamic of sleep architecture, 

allowing detailed transitions between 
sleep stages to be analyzed. 

• Sleep Annotations & Epoch Mapping: 
Annotations provide sleep stage labels 
for their respective epochs, allowing it to 
be detected whether the sleep profiles are 
normal or abnormal. 

• The data complies with traditional sleep 
stage naming, which aids in sequential 
sleep pattern modelling. 

• Diagnosis & Demographics: The table 
outlines the demographic data used 
within the study. 
 

5. MODEL ARCHITECTURE 
 
5.1. Experimental Setup 
Both models used in the experiments were 
executed on Python 3.12, and dependencies were 
installed for each model accordingly. The training 
was done with two RTX 2080-Ti GPUs. In the 
training procedures, the RAdam optimizer was 
utilized with a learning rate of 0.001 for 2400 
epochs. The learning rate was 0.001 for 50 epochs 
in the fine-tuning. The batch size for both training 
stages was fixed at 128, and the model dimension 
(d model) was also fixed at 128. The random seed 
was set to 42 for the entire training process for 
both the training processes to achieve 
reproducibility. 
The overall flow of the process is shown in 
Figure 2. 

 
Figure 2: High-level design flow 

5.2. Data Preparation and Training 
We preprocess the PSG dataset by dividing it into 
epochs and assigning features to five broad signal 

classes: EEG, EOG, ECG, EMG, and 
miscellaneous. There are several channels in each 
category, and these channels are also classified. 
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Since there was variability in the Sampling 
frequency(SF) in every subject, all of them were 
downsampled to the most common occurring SF 
which is 256 Hz. Since the data was previously 
noise-cleaned and artifact-free, this step was 
omitted. The data for every subject spanned 
approximately 2500 epochs, and every epoch was 
a window of 30s time. The dataset held 13 features 
that are the PSG signals themselves for each 
epoch. Subject-level diagnostic labels (categorical 
disorder names) were encoded into numerical 

labels via LabelEncoder. This resulted in a 
numeric version of the 22 sleep disorder classes, 
from 0 to 21. The subject-level encoded labels and 
epoch level information were then merged into 
one dataframe. Relevant features were selected, 
excluding subject IDs, epoch timestamps, and 
original diagnostic labels. The feature values were 
standardized to zero mean and unit variance using 
StandardScaler. It was performed on the entire 
dataset before dividing the data into training and 
testing sets to prevent data leakage. 

 
Figure 2: Flow of Preprocessing of PSG signals 

 
The normalized and preprocessed data sample is included in Table 4. 

Table 4: Sample normalized data for 7 signals for a single participant 

Study_pat_id Epoch 

EOG 
LOC-M2 

EOG 
ROC-M1 

EMG 
Chin1-
Chin2 

EEG F3-
M2 

EEG F4-
M1 

Snore 
Resp 
PTAF 

1 0 0.625 0.545 0.551 0.395 0.344 0.116 0.452 

1 1 0.603 0.480 0.556 0.361 0.363 0.116 0.451 

1 2 0.627 0.487 0.538 0.363 0.376 0.117 0.451 

1 3 0.614 0.546 0.539 0.359 0.400 0.116 0.451 

1 4 0.543 0.554 0.547 0.334 0.420 0.116 0.451 

 
The reason why feature extraction was not 
performed  
We preferred to directly use raw and scaled PSG 
data rather than using conventional feature 
extraction due to the fact that Transformers and 
GAT learn hierarchical representations by 
themselves. Feature extraction may result in 
information loss prior to the Transformer 
processing the data, constraining the model to 
learn temporal dependencies and detailed sleep 
patterns. Because Transformers transform raw 
inputs into tensor embeddings, any previous 
dimensionality reduction might discard essential 
sleep features. Moreover, the GAT model further 
improves embeddings in that stacking multiple 
steps of feature compression would gradually 
eliminate useful subject-level differences. 

Through the use of raw but scaled inputs, we 
guarantee that the entire signal information is 
retained so that the models can learn the most 
pertinent features from the data directly. This 
approach has helped in yielding better results on 
closer inspection. 
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5.3. Training level 1: Transformer-based Attention Mechanism 
 

 
Figure 3: Level 1 Model Architecture 

 
The Sleep Signature Transformer model interprets 
PSG signals through the learning of temporal 
dependencies between epochs. The input PSG 
signals (EEG, EOG, EMG, ECG, and 
miscellaneous signals) are first transformed into 
tensor representations. Each of these types of 
signals is processed separately by an expert 
Transformer model that learns temporal 
dependencies over epochs. The Transformer 
models are 3 layers of multi-head self-attention 
with 128-dimensional embeddings and Layer 
Normalization for stabilizing training. This is 
shown in figure 3. 
Every signal-specific Transformer operates on 
tensors of shape [N, T, F], where N is the number 
of subjects, T is the number of epochs for every 
subject, and F is the number of features in that 
category of a signal. Once signal-specific 
embeddings of shape [N, T, D] are extracted, 
embeddings are concatenated in the feature 

dimension to create a combined representation for 
every subject. 
For capturing subject relationships, a Graph 
Attention Network (GAT) is employed. Subject-
level embeddings are employed as node features 
in a graph with nodes being subjects and edges 
formed over feature similarity. The GAT model 
has 2 layers and 2 attention heads that process 
subject embeddings and optimizes them for 
downstream group formation to produce the Sleep 
Signatures. 
The training was done with AdamW optimizer on 
a learning rate of 0.001 and batch size of 128. The 
training was done for 50 epochs and early 
stopping has been done over validation loss. The 
model reported 0.942 training accuracy in the 
stage of Transformer with training loss = 1.320 
and validation loss = 0.978. 
Each signal is processed through its own 
Transformer, generating (T, D) and generating a 
tensor object of shape torch.Size([2504, 640]. 

 

 
Figure 4: Sample snapshot of Transformer embeddings 

 
Table 5: Overview of input and output data shape for Transformer model 

Parameter Value/Shape 

Input Data Shape 
EEG: (100, 2504, 6), EOG: (100, 2504, 3), EMG: (100, 2504, 2), Misc: (100, 2504, 2), ECG: (100, 2504, 

2) 

Output Data 
Shape 

Transformer Embeddings: (100, 2504, 128) 

 
5.4. Training level 2: GAT  
The signal category-specific extracted 
embeddings are then concatenated along the 
feature axis to create a shared representation for 

each subject. These subject-level representations 
are then employed to build a graph structure with 
nodes representing a subject and edges being 
created according to feature similarity. A Graph 
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Attention Network (GAT) is utilized to learn 
subject relations and improve embeddings by 
aggregating neighbour node information. The 
GAT model has two multi-head attention layers 
with each head learning independently distinct 
relationships among subjects. The last node 

representations retain useful subject similarities in 
sleep patterns. The model architecture is shown in 
Figure 5. In order to claim that the PSS model has 
better performance, we have also trained the data 
with Transformer only architecture. The results of 
both the training processes are given in Table 7. 

 

 
Figure 5: Training level 2 Model Architecture 

 

 
Figure 6: Sample snapshot of GAT embeddings produced for all subjects 

 
Table 6: Overview of input and output data shape for Transformer model 

Transformer 
Embeddings 

(100, 2504, 128) - Output from Transformer 

Epoch Aggregation 
(Mean) 

(100, 2504, 128) (100, 128) 
Mean over epochs for subject-level 
embeddings 

Graph Construction (100, 128) Graph (100 nodes) 
Nodes = Subjects, Edges = Feature 
Similarity 

GAT Input (100, 128) (100, 128) GAT processes subject relationships 

Final Subject 
Representation 

(100, 128) (100, 128) 
Updated embeddings with learned 
relationships 

 
 

 
Figure 7: Training and validation loss obtained in the two training levels. 
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Table 7: Model parameters and Evaluation Metrics 

  Optimizer 
Learning 
Rate 

Batch 
Size 

Training 
Epochs 

Early 
Stopping 

Training 
Accuracy (Level 
1: Transformer) 

Training 
Loss 

Validation 
Loss 

Transformer 
only 
approach  

AdamW 0.001 128 50 
Based on 
validation 
loss 

0.85 1.32 1.986 

PSS AdamW 0.001 128 50 
Based on 
validation 
loss 

0.94 0.875 1.102 

 
5.5. Similarity Analysis 
We use Cosine Similarity that measures angular 
similarity between two subject embeddings using 
the formula, where A and B are two subjects. 

cosine similarity =
⋅

‖‖⋅‖‖
  ----(1) 

Steps involved: 
(A) Compute Similarity Matrix 

 Compare every subject against all other 
subjects. 

 Use 
torch.nn.functional.cosine_similarity  

(B) Interpretation of Values 
 Cosine similarity ≈ 1 → Highly similar 

subjects 
 Cosine similarity ≈ 0 → No similarity 
 Cosine similarity ≈ -1 → Opposite sleep 

patterns 
 

Table 8: Similarity Matrix of first five participants 

Subject S1 S2 S3 S4 S5 

S1 1 0.85 0.67 0.73 0.81 

S2 0.85 1 0.72 0.69 0.75 

S3 0.67 0.72 1 0.63 0.7 

S4 0.73 0.69 0.63 1 0.74 

S5 0.81 0.75 0.7 0.74 1 

 
Based on the similarity matrix, the similar 
subjects are grouped and each Sleep Signature 
groups are formed. 
 
6. Comparison of PSS with the existing models 
We reviewed key studies focusing on either sleep 
pattern grouping or sleep disorder prediction 
using various machine learning and deep learning 
techniques. While prior models achieved notable 
accuracies (ranging from 86% ), most focused on 
disorder classification. In contrast, our approach 
emphasizes deep phenotyping within sleep 
disorders by analyzing individual sleep patterns, 
achieving a strong performance of 94% accuracy 
as seen in Table 9. 

Table 9: Comparison of model performance with existing studies 

  Objective/Model Accuracy/F1-Score 

[5] combination of CNN and Bi-LSTM to detect sleep disorders 92% 

[11] Used single-eeg channel to classify sleep disorders with TCN, ResNet 86% 

[19] 
Detect sleep disorders (apnea, insomnia, restless leg syndrome) using deep learning 
models. 

CNN (apnea): 93.5% accuracy 
(p=0.001)        
RNN (insomnia): 89.8% accuracy 
(p=0.003) 

[20] 
Screen sleep apnea severity (AHI ≥15) using wearable device data (SpO2, respiratory 
signals). 

Severity classification: 71% accuracy 

[21] Classify insomnia, PLM, RBD, and NFE using ECG signals. F1-scores: 95–99% across disorders 

[22] Detect disorders (insomnia, apnea) via ensemble ML and feature analysis. 0.94 precision 

  Our approach 94% 

 
7. RESULT AND DISCUSSION 
The objective of this PSS pipeline was to classify 
subjects based on inherent sleep behaviour 
patterns rather than simply clustering subjects 
based on labelled disorders. Standard approaches 
cluster subjects based on accessible disorder 
labels, but our effort attempts to discover hidden 

patterns in sleep data that can indicate an 
impending predisposition towards similar 
disorders. Our PSS is an individualized statement 
of a subject's sleep properties, learned on multi-
signal PSG data using Transformer-based 
attention and GAT that has produced 94% 
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accuracy. It can potentially be used for the early 
identification of subjects at risk for similar 
disorders based on their sleep properties rather 
than waiting for clinical symptomology to arise. 
Having multiple PSG signals (EEG, EOG, EMG, 
respiratory rate etc.) ensures that grouping is 
performed on complex sleep patterns and not on 
each feature such as Apple watch or Fitbit does 
which sometimes omit important features 
observed in other signals as well. Rather than 
adopting a one-size-fits-all strategy, our model 
identifies individualized sleep signatures from 
PSG signals and captures relevant subject-level 

connections. Personalization here doesn't take the 
form of medication, medical treatments, or 
clinical interventions. There are no explicit 
medical recommendations, but outputs from the 
model can provide evidence-based lifestyle 
interventions inspired by literature[17], such as 
sleep hygiene optimization or identification of 
patterns related to sleep disorders. Table 10 
provides the non-pharmacological interventions 
recommended for each Signature. Implications 
derived from the similarity index are enumerated 
in Table 9: 

 
 
 
 
 

Table 9: Sleep Signature of participants and their sleep PSG pattern 

Sleep 
Signature 

groups 
No. of 

Subjects 

EEG F3-M2 
(ÂµV) 
Range 

EOG LOC-
M2 (ÂµV) 

Range 

EOG ROC-
M1 (ÂµV) 

Range 

EMG LLeg-
RLeg (ÂµV) 

Range 

Sleep 
Transitions 

Range 
Snore Index 

Range 

1 20 8.61 - 48.45 4.25 - 37.06 6.66 - 32.96 5.35 - 24.23 10.89 - 39.9 0.71 - 9.38 

2 20 14.3 - 46.32 10.68 - 28.15 23.93 - 36.72 7.33 - 22.03 20.49 - 49.37 0.08 - 5.66 

3 35 27.57 - 28.91 9.35 - 38.93 10.08 - 17.12 3.35 - 10.08 24.12 - 31.72 0.03 - 5.3 

4 25 10.7 - 24.15 8.75 - 39.62 15.18 - 39.16 5.52 - 11.98 27.26 - 46.46 3.71 - 8.54 

  
Table 10: Characteristics and interventions of each Group 

Sleep 
Signature 

Group 
Sleep Disorder PSG Characteristics Non-Pharmacological Interventions 

1 Narcolepsy 
SOL < 10 min, REM sleep latency < 20 min, 
MSLT: Mean latency < 5 min, 2+ SOREM 

Regular sleep/wake times, scheduled 
naps, avoiding sleep deprivation 

1 Dyssomnias 
Difficulty initiating/maintaining sleep or 

excessive sleepiness 
behavioural therapy 

1 
Intrinsic Sleep 

Disorders 
Originates within the body (e.g., insomnia, 

narcolepsy, OSAS, PLMD, RLS) 
Stimulus control therapy 

2 
Extrinsic Sleep 

Disorders 
Caused by external factors (e.g., poor sleep 

hygiene, alcohol dependence) 
Improving sleep hygiene, behavioural 

therapy 

2 
Circadian Rhythm 
Sleep Disorders 

Misalignment of sleep pattern with societal 
norms 

Light therapy, chronotherapy, regular 
sleep schedule 

3 Parasomnias 
Undesirable behaviours during sleep (e.g., 

sleep terrors, REM behaviour disorder) 
Ensuring room safety, avoiding triggers 

2 Insomnia Difficulty falling or staying asleep 
Sleep hygiene education, cognitive 

therapy, relaxation techniques 

2 
Shift Work Sleep 

Disorder 
Sleep disturbances due to irregular work shifts 

Maintaining a regular schedule, 
napping, optimizing the sleep 

environment 

3 Sleep Apnea (OSAS) 
Respiratory pauses, oxygen desaturation, 

increased arousals 
Weight loss, positional therapy, 

CPAP/BIPAP 
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3 
Restless Legs 

Syndrome (RLS) / 
PLMD 

Leg movements disturbing sleep, often linked 
to iron deficiency 

Iron therapy if low ferritin, 
walking/exercise 

1 
Idiopathic 

Hypersomnia 
Excessive daytime sleepiness with no clear 

cause 
Regular schedule, avoiding alcohol, 

shift work 

 
8. CONCLUSION  
 
This study built a PSS pipeline to categorize 
paediatric patients (age ≤ 18) based on sleep 
behaviour patterns, which remains quite under-
explored. By using Transformer-based feature 
extraction and GAT relational modelling, we 
achieved informative embeddings that revealed 
PSG-derived similarities, disorder co-
occurrences, and risk progression possibilities. As 
opposed to the standard clustering algorithms like 
K-Means, which assume simple feature 
distributions, our approach handled the intricate, 
sequential PSG data with ease. The findings 
highlight the potential for the early detection of 
disorder and personalized sleep medicine by 
identifying subjects likely to develop conditions 
of a similar nature. 
 
8.1. Reflection on Objectives and Outcomes 
This study was driven by the need to explore 
whether individual variability in sleep patterns 
could be better captured than in traditional 
population-level models and whether phenotypic 
subgroups might exist within those diagnosed 
with the same sleep disorder. The outcomes 
indicate that modelling subject-specific sleep 
patterns using a graph-based representation is a 
promising step toward answering these questions. 
The results support the hypothesis that 
personalized analysis—by incorporating both 
physiological and demographic features—can 
reveal meaningful groupings and disorder risks. 
The primary objective of this study was to move 
beyond traditional, generalized sleep disorder 
models and develop a framework capable of 
identifying personalized sleep patterns and 
supporting individualized diagnosis. Our model 
successfully introduced a novel attention-based 
approach integrating Graph Neural Networks to 
represent sleep architecture in a subject-specific 
manner. The outcomes particularly the sub-
phenotypes of groups of participants with similar 
sleep behaviour and the non-pharma accuracy in 
classifying personalized sleep signatures—
indicate a strong alignment with the initial goals. 
Additionally, the ability to cluster individuals 
based on their sleep dynamics, rather than relying 
solely on pre-labelled disorders, marks a 
meaningful advancement toward deep 

phenotyping in sleep medicine. However, while 
the model met most technical and conceptual 
objectives, the translation of these findings into 
real-world, longitudinal use cases remains an area 
for future exploration. 
 
8.2. Clinical and technical contributions of this 

study 
Firstly, this model supports the vision of 
personalized sleep medicine by moving beyond 
generalized diagnostic approaches to account for 
individual variability in sleep patterns. By 
generating sleep signatures and classifying 
disorder risks, it serves as a decision-support tool 
for clinicians, aiding in early detection, 
personalized treatment planning, and long-term 
monitoring. While not a substitute for clinical 
expertise, the model's outputs can enhance 
diagnostic precision and guide sleep specialists in 
tailoring interventions. With further validation 
and regulatory approval, it holds the potential for 
integration into routine clinical workflows. 
Secondly, GAT with transformer-based attention 
mechanisms to model subject-specific sleep 
behaviour. Unlike existing approaches that treat 
sleep data as isolated sequences, our model 
represents sleep epochs as graph nodes, enabling 
the capture of both intra-subject temporal 
dynamics and inter-subject similarities. This 
graph-based modelling allows the system to learn 
meaningful relationships between sleep patterns 
across individuals—something not previously 
explored in sleep disorder research. By enabling 
clustering based on sleep architecture rather than 
solely on diagnostic labels, our approach 
facilitates more granular, personalized insights 
and sets a new direction for adaptive, data-driven 
analysis in sleep medicine. 
8.3. Limitations and Future Scope 
Despite the promising results of this study, there 
are a few limitations to consider. Although the 
model may perform well on retrospective 
datasets, its effectiveness in real-world, 
longitudinal, or wearable-device settings is yet to 
be validated. Furthermore, translating 
personalized sleep signatures into actionable 
clinical workflows or therapeutic decisions may 
require further development, validation, and 
collaboration with healthcare providers to ensure 
practical integration into clinical practice. 
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Future directions include constructing a Retrieval-
Augmented Generation (RAG) system that sleep 
clinicians could use to leverage predictions from 
crude EEG/PSG signals in order to improve 
explainable AI-based decision assistance. In 

addition, real-time monitoring, wearables 
integration, and multi-modal data fusion will 
potentially further help paediatric sleep disorder 
diagnosis and treatment planning. 
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